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Abstract

The site-specific management of weeds in grassland is often challenging be-1

cause different weed control strategies have different trade-offs regarding the2

required resources and treatment efficiency. So, the question arises whether3

a wide tractor-based system with section control or a small agricultural robot4

has a higher weed control performance for a given infestation scenario. For5

example, a small autonomous robot moving from one weed to the next might6

have much shorter travel distances (and thus lower energy and time costs) than7

a tractor-mounted system if the locations of the weeds are relatively isolated8

across the field. However, if the plants are highly concentrated in small areas9

so-called clusters, the increased width of the tractor-mounted implement could10

be beneficial because of shorter travel distances and greater working width.11

An additional challenge is the fact that there is no complete knowledge of12

the weed locations. Weeds may not have been detected, for example, due to13

their growth stage, occlusion by other objects, or misclassification. Weed control14

strategies must therefore also be evaluated with regard to this issue. Thus, in15

addition to the driving distance, other metrics are also of interest, such as the16

number of plants that were actually controlled or the size of the total treatment17

area.18

We performed this investigation for the treatment of the toxic Colchicum19

autumnale, which had been detected in drone images of extensive grassland sites.20

In addition to real data, we generated and analyzed simulated weed locations21
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using mathematical models of stochastic geometry. These offer the possibility22

to simulate very different spatial distributions of toxic plant locations. Different23

treatment strategies were then virtually tested on this data using Monte Carlo24

simulations and their performance was statistically evaluated.25

Keywords: weed control strategy, tractor-mounted implement, autonomous

robot, stochastic model, partial information

1. Introduction26

In the last years the interest in site-specific weed management tools has27

grown substantially as they allow for a minimum impact on the environment28

and, at the same time, reduce operational costs (Schellberg et al., 2008; Chris-29

tensen et al., 2009; Wegener, 2020). This interest led to a diverse set of treat-30

ment tools, all of which with different advantages and disadvantages (Chris-31

tensen et al., 2009; Machleb et al., 2020; Stoll, 2020; Martin et al., 2022). So32

for example the question arises how a treatment tool fares with different spatial33

distributions and severities of weeds on a field. In addition to this, site-specific34

methods rely on precise localization of the targeted weeds. Regardless of how35

these locations are acquired, a complete and perfect survey of the weed pop-36

ulation is practically infeasible. It is therefore also important to investigate37

how weed management based on partial information performs with respect to38

the whole (unobserved) weed population. The easiest and most flexible way to39

answer these questions is to rely on computer simulations. Various models for40

a broad variety of weeds have been proposed in the past (Holst et al., 2007;41

Freckleton and Stephens, 2009; Somerville et al., 2020). With these, answers42

to questions have been found predominantly about cultural weed management43

such as the benefits of landsharing versus landsparing (Colbach et al., 2018),44

the management of parasitic plants (Pointurier et al., 2021), the effect of sowing45

strategies with regard to weeds (Andrew and Storkey, 2017), or even complex46

crop-weed interactions (Colbach et al., 2021). Nevertheless, it is still an open47

question how the treatment performance of site-specific treatment tools can be48
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compared for different infestation scenarios. This holds even more so when fo-49

cusing on grassland sites instead of arable land (although there are studies for50

similar problems such as route planning (Maini et al., 2022)) and accounting for51

partial observations of the weeds.52

For these reasons we performed a virtual scenario analysis to compare differ-53

ent tools for physical weed management in grassland. Simulated weed locations54

allowed to create several prototypical infestation scenarios with varying sever-55

ities. While in the real world these scenarios may not occur in isolation, they56

form recurring patterns that make up realistic infestations and understanding57

their performance characteristics allows to transfer the results of the present58

paper to some extent to an unobserved real field. Additionally, experimental59

observations of Colchicum autumnale plants on an extensive grassland site were60

also employed to provide a realistic baseline for the simulation study. Here, C.61

autumnale are toxic plants, which pose a thread to farm animals especially in62

hay or silage. Note, however, that the present paper does not present a thorough63

(stochastic) model for the experimental C. autumnale locations, which would64

require much more empirical data over a longer timespan. The focus is to simu-65

late the whole process of (partial) observation of the weed locations on the field,66

routing of the tools, and the treatment of the targeted weeds. With the proposed67

simulation framework it is possible to illuminate the aforementioned questions68

in silico without the need for extensive experimental setup (e.g., building of the69

treatment tool, finding suitable fields, etc.). This provides an inexpensive way70

to test machine specifications before constructing a prototype of the treatment71

tool, or helps potential buyers to decide which tool on the market best fits72

their usage scenarios. For the present paper, the considered treatment tools are73

inspired by the non-chemical weed control tools developed in Stoll (2020) and74

Martin et al. (2022)—that is a small autonomous robot with circular mower and75

a water-hydraulic tractor-based system with section control—, but the results76

apply also to some extent to other tools such as site-specific herbicide sprayers,77

or spot-spraying through unmanned aerial vehicles (UAV) if overlapping treat-78

ment areas can be excluded, for example, with suitable application maps. Here,79
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the two considered treatment tools differ primarily in terms of flexibility—the80

autonomous robot is able to move from one targeted location to the next, while81

the tractor traverses the field in meandering lines—and working width. One82

of the main goals of the present paper is thus to evaluate in which infestation83

scenarios one treatment tool outperforms the other especially in the light of84

unobserved weed locations.85

2. Materials and methods86

The present paper deals with two kinds of weed locations—experimentally87

observed and simulated ones. In this section, we first describe the acquisition88

and preprocessing of the experimental dataset. After that, the methods for89

simulating weed locations and the virtual weed control tools are laid out.90

2.1. Data acquisition91

The experimental dataset consists of locations of C. autumnale flowers that92

have been extracted from drone images. The images were acquired on September93

3rd and 10th, 2019, on an extensive grassland field near Nürtingen, Germany.94

The field had an area of about 8256 m2, see Figure 1. At the two observation95

dates different C. autumnale plants were blooming leading to varying numbers96

of visible flowers. The camera, a Sony alpha 7 RII with a CMOS full-frame97

42.4 MP image sensor and its lens with 24 mm focal length, was mounted on98

a HiSystems MK ARF-OktoXL 4S12 octocopter. The route of the drone was99

about 10 m above ground and was chosen such that the resulting images had an100

overlap of about 55%.101

The individual drone images where stitched to two orthomosaics (one for102

each observation date) using the Agisoft Metashape software. In the same103

step, the orthomosaics were georeferenced by matching markers (ground control104

points) that were placed on the field and whose GPS positions were obtained105

by real-time kinematic positioning with their corresponding pixel coordinates.106
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2.2. Data preprocessing107

2.2.1. Image registration108

In addition to the georeferencing, the overlap between the two orthomosaics109

has been further improved by pixel-based image registration. For this, matching110

pairs of control points in the two images have been created by visual inspection111

at objects such has fence posts or trees that remained unchanged between the112

two observations. Then, MathWorks MATLAB was used to find a coordinate113

transformation that transforms one orthomosaic to match the second one. Here,114

the ‘projective’ transformation type (Jähne, 2005; MathWorks, 2021) was chosen115

out of ‘nonreflective’, ‘similarity’, ‘affine’, ‘projective’, and ‘polynomial’ with116

degrees up to 4 (see MathWorks (2021)) as a trade-off between minimizing the117

Euclidean distance between the first set of control points and the transformed118

control points of the second orthomosaic and visual goodness-of-fit. For both119

aligned orthomosaics a region of interest W ⊂ R2 was defined by removing all120

parts of the images that did not show the considered field or where information121

from one observation was missing. In the following, only this cutout of the122

orthomosaics is considered.123

2.2.2. Observed weed locations124

For the two aligned orthomosaics, C. autumnale flowers were automatically125

detected using the predictor developed in Petrich et al. (2020). Manual checking126

of each predicted weed location and visual inspection of the remaining images127

ensured an accurate survey of weed locations at the two observation dates. Here,128

we considered locations that are closer than 5 cm to each other to be the same129

weed and replaced these locations with their centroid.130

The resulting weed locations are shown in Figures 1a and 1b. In total there131

were n
(Exp)
1 = 550 detected flowers in the observation from September 3rd, 2019132

and n
(Exp)
2 = 1792 flowers from September 10th. In the following we refer to133

the first as Exp1 and to the latter as Exp2. It is interesting to note that only134

about 20% of the weed locations in the smaller dataset Exp1 had weed locations135

closer than 2 m in the other dataset Exp2. This indicates that a large amount of136
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(a) Experimentally observed

weed locations from the 3rd

September, 2019 (Exp1).

(b) Experimentally observed

weed locations from the 10th

September, 2019 (Exp2).

(c) Combination of the ob-

served weed locations Exp1

and Exp2 acting as the ground

truth locations Exp.

Figure 1: Visualization of experimental data. The green area corresponds to the whole field.

information is gained by considering both datasets instead of simply the larger137

one.138

2.2.3. Experimental ground truth weed locations139

Obviously, the two datasets Exp1 and Exp2 were partial observations of the140

complete weed population on the field. This incompleteness of the observations141

could have multiple reasons such as the plants were not yet in a growth state in142

which they can be detected, they were occluded by other objects, etc. For the143

present simulation study, we made the simplifying assumption that the locations144

of the whole population can be obtained by combining the observed datasets145

Exp1 and Exp2, see Figure 1c. This is possible since we do not aim to provide146

an accurate modeling of the true weed population, but rather only use the147

experimental data as a rough baseline for our scenario analysis. Note, however,148

that for the combination, we again considered locations closer than 5 cm to each149

other to be the same weed and replaced these locations with their centroid.150

The resulting experimental ground truth weed location dataset, denoted Exp151

in the following, comprised a total of n(Exp) = 2313 locations (29 locations152

were thus found in both observed datasets). So in summary, we have a ground153

truth dataset (Exp) comprised of all weed locations and two subsets thereof154
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(Exp1 and Exp2) corresponding to the weeds that were observed at the two155

observation dates (September 3rd and 10th, respectively). This general setup156

will be maintained for the simulated data, see Section 2.3.157

2.3. Simulated data158

In addition to real experimental data, we also considered simulated data, i.e.,159

we generated and analyzed simulated weed locations using mathematical mod-160

els of stochastic geometry, see Chiu et al. (2013). This allowed us to investigate161

various scenarios not readily available with experimental data. By investigating162

these prototypical scenarios, clues can be obtained for the treatment perfor-163

mances on a given infestation. The general setup was to first simulate ground164

truth weed locations. However, in practice only a subset of the actual weed lo-165

cations is observed. We imitate this partial information problem with a second166

step where we remove some locations from the ground truth datasets, which167

‘were not observed’.168

2.3.1. Ground truth weed location model169

The simulated ground truth weed locations s
(gt)
1 , . . . , s

(gt)

n(gt) were drawn from170

a stochastic point-process model, where n(gt) denotes the total number of weed171

locations generated in the area under consideration. More specifically, the se-172

quence of simulated locations s
(gt)
1 , . . . , s

(gt)

n(gt) was obtained as a realization of an173

inhomogeneous Poisson point process S
(gt)
1 , S

(gt)
2 , . . .. In the following, we give174

a short introduction of the mathematical background and refer to Chiu et al.175

(2013) for a more in-depth discussion.176

Consider a bounded sampling window W ⊂ R2, which in our case coincides177

with the considered field visualized in Figure 1, and the expected number of weed178

locations Λ(B) for a subset B ⊂ W (‘parts of the considered field’) given by179

the integral Λ (B) =
∫
B
λ(x) dx of a (non-negative) intensity function λ :W →180

[0,∞). Then, one says that a sequence of random locations S1, S2, . . . ⊂ W181

follows an inhomogeneous Poisson point process with intensities Λ(B), B ⊂ W,182

if the following conditions are fulfilled: Consider the random number of points183
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Φ (B) = #{Si : Si ∈ B for i = 1, 2, . . . } in any test set B ⊂ W, where #(·)184

denotes set cardinality, and assume that185

(a) the random variable Φ (B) is Poisson distributed, i.e.186

P (Φ (B) = n) =
Λ (B)

n

n!
exp(−Λ (B)) for each n = 0, 1, . . .,

(b) the random numbers of points Φ (B1) , . . . ,Φ (Bk) in k pairwise disjoint187

(i.e. non-overlapping) test sets B1, . . . , Bk ⊂ W are independent of each188

other, for each k = 2, 3, . . ..189

Note that condition (a) implies that the expectation of the random number of190

points Φ (B) in the set B ⊂ W is given by EΦ (B) = Λ(B). Thus, indeed, Λ (B)191

measures the expected number of weeds in a given part B ⊂ W of the field, and192

the intensity function λ : W → [0,∞) governs the spatial distribution of the193

simulated weeds.194

In Section 3, we consider various (virtual) scenarios where the weed loca-195

tions have different spatial distributions. These scenarios were modeled by cor-196

responding choices of the intensity function λ. For this, the function λ was197

chosen such that the expected number of points EΦ (W) =
∫
W λ(x) dx in the198

sampling window W was set equal to the number of weed points n(Exp) in the199

experimental ground truth dataset Exp multiplied by some factor λ∗ > 0, which200

we call intensity factor hereinafter, i.e.,
∫
W λ(x) dx = λ∗n(Exp). More precisely,201

we chose λ by considering a certain basis function λ0 : W → [0,∞) and a nor-202

malizing factor α > 0 such that
∫
W αλ0(x) dx = n(Exp). Then, in a second step,203

we multiply αλ0(x) by the intensity factor λ∗, i.e., λ(x) = λ∗αλ0(x) for each204

x ∈ W.205

Note that by considering different kinds of basis functions λ0 we were able to206

generate different types of weed distribution patterns, see Figure 2. Moreover,207

the intensity factor λ∗ allowed us to investigate different degrees of severity of208

the weed infestation without changing its spatial distribution.209

The stochastic ground truth dataset models—given primarily by their cor-210

responding basis function λ0—are described in the following.211
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Figure 2: Contour plots of the intensity functions λ with intensity factor λ∗ = 1 of the

inhomogeneous Poisson point processes used for the simulated ground truth datasets.

Calibrated ground truth model Cal. The model Cal was calibrated to the ex-212

perimental ground truth dataset Exp by employing a non-parametric kernel213

smoothing function (see, e.g., Hastie et al. (2009)) as basis functions λ0. More214

specifically,215

λ(x) = λ∗α

n(Exp)∑
i=1

k(Cal)
(
‖x− s(Exp)

i ‖
)

with k(Cal)(z) = exp

(
− z2

2h(Cal)2

)
for x ∈ W, z ≥ 0, the normalization factor α, and some bandwidth parameter216

h(Cal) > 0, where ‖x − s‖ denotes the Euclidean distance of x, s ∈ R2. Fur-217

thermore, (s
(Exp)
1 , . . . , s

(Exp)

n(Exp)) are the weed locations of the experimental ground218

truth dataset Exp. The bandwidth h(Cal) was chosen by drawing values at219

random from a gamma distribution with mean 1.5 and standard deviation 1.1.220

The best value was selected by considering the resulting intensity function as221

kernel density estimator (through normalization with 1/n(Exp)) and maximizing222

the likelihood using cross-validation given the locations in Exp (Loader, 1999;223

Hastie et al., 2009). In summary, Cal thus closely models the spatial distribu-224

tion of the experimental data and provides the most realistic simulated dataset,225

see Figure 2. Compared to Exp, however, in Cal the exact locations of the226

weeds are drawn at random and can be influenced by choosing different values227

for the intensity factor λ∗.228

Homogeneous ground truth model Hom. The model Hom is based on a ho-229

mogeneous Poisson process. Then, the intensity function λ is constant, i.e.,230

λ(x) = λ∗α for each x ∈ W with λ0(x) = 1 for each x ∈ W and α = n(Exp)/|W|,231
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where |W| > 0 denotes the area of the sampling window W. This model rep-232

resents the case where the weeds are located completely at random across the233

field W, see Figure 2.234

Centered ground truth model Cen. The weed locations of the model Cen are235

drawn using a bivariate normal distribution with expectation vector µ(Cen) ∈ W236

being the centroid of the sampling window W. More precisely,237

λ(x) =
λ∗α√

(2π)2 det Σ(Cen)
exp

(
−1

2
(x− µ(Cen))T(Σ(Cen))−1(x− µ(Cen))

)
for each x ∈ W, where the positive definite dispersion matrix Σ(Cen) ∈ R2×2

238

was set equal to239

Σ(Cen) =

218.8 324.1

324.1 549.4

 .

The entries of Σ(Cen) were determined by visual examination and rescaled to240

meters. In summary, in the model Cen, the weed locations are concentrated241

in a central cluster around the expectation vector µ(Cen) ∈ W, while only few242

weeds are generated near the boundary of the field W, see Figure 2.243

Sinusoidal ground truth model Sin. The intensity function λ of the model Sin244

arranges the weed locations in sinusoidal waves through the sampling window,245

where λ is given by246

λ(x) = λ∗α sin

(
2π
〈
u(Sin), x

〉
λ(Sin)

)
+ 2 for each x ∈ W.

Here < ·, · >: R2 ×R2 → R is the dot product with the (unit) normal vector of247

the wave front u(Sin) ∈ R2 and the wave length λ(Sin) > 0. The wave direction248

u(Sin) has been set equal to the (normalized) direction of the longest side of the249

rectangular bounding box of the sampling window W, and λ(Sin) = 28.3 m was250

chosen by visual examination and rescaled to meters. Therefore, the dataset251

model Sin produces weed location in a wave-like pattern, see Figure 2.252
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2.3.2. Observation model253

In practice, only some of the weeds in the population can be observed. This254

can have several reasons such as the plants were not yet in a growth state255

in which they can be detected, they were occluded by other objects, etc. For256

our simulation study, we imitated this by eliminating some of the weed locations257

from the ground truth datasets (so-called independent thinning). The remaining258

locations acted as the observed datasets. Here, we distinguished between two259

different cases analogous to the experimental dataset: the thinning probability260

was chosen such that the expected number of locations in the resulting dataset261

was (i) equal to that in Exp1, and (ii) equal to that in Exp2.262

More formally, each of the weed locations s
(gt)
1 , . . . , s

(gt)

n(gt) of a simulated263

ground truth dataset model (i.e., Cal, Hom, Cen, or Sin) was eliminated264

with a certain probability independent of its position and the deletion of any265

other weed location (so-called independent thinning, see Chiu et al. (2013)).266

As mentioned above, two different thinning probabilities were considered. With267

n(Exp), n
(Exp)
1 , and n

(Exp)
2 the number of weed locations in Exp, Exp1, and Exp2,268

respectively, the first thinning probability is given by p
(obs)
1 = n

(Exp)
1 /n(Exp).269

The resulting models correspond to Exp1 and are denoted with superscript ‘1’,270

e.g., Hom1. The second thinning probability, on the other hand, is given by271

p
(obs)
2 = n

(Exp)
2 /n(Exp). The resulting models correspond to Exp2 and are de-272

noted with superscript ‘2’, e.g., Hom2. As seen in Section 2.2.2, Exp1 contained273

fewer observed weeds compared to Exp2. Naturally, this fact translates to the274

corresponding simulated datasets. For the formal treatment of the present simu-275

lation study both thinnings are treated analogously. For simplicity, we therefore276

denote the n(obs) ≤ n(gt) “observed” weed locations selected from the originally277

simulated weed locations s
(gt)
1 , . . . , s

(gt)

n(gt) as s
(obs)
1 , . . . , s

(obs)

n(obs) .278

2.4. Treatment strategies279

Now that the generation of the simulated datasets is established, we describe280

two different treatment strategies, which are applied in Section 3 to the experi-281

mental and simulated datasets. The treatment strategies are a combination of282
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three parts: (i) the action threshold (see Section 2.4.1) to select the targeted283

weed locations, (ii) the treatment tool, which is either an autonomous robot (see284

Section 2.4.2), or a tractor with attachment (see Section 2.4.3), and (iii) the (pa-285

rameter) configuration of the virtual treatment tool. The considered tools are286

based on the real-world analogues presented in Stoll (2020) and Martin et al.287

(2022).288

2.4.1. Action threshold289

For both treatment strategies considered in this paper, we apply an action290

threshold, which is used as a simple preprocessing method to improve the treat-291

ment instead of simply targeting each observed weed locations. More specif-292

ically, we ignore isolated weeds, which might drastically increase the distance293

a treatment tool has to drive, while having only a very limited effect on the294

treatment quality (see Section 3.1 for a description of suitable performance295

measures). Furthermore, in Section 3 varying settings for the action threshold296

are investigated.297

Formally, the action threshold `a > 0 m caps the nearest neighbor distance298

(in meter) of the treated weed locations, i.e., given the observed weed locations299

s
(obs)
1 , . . . , s

(obs)

n(obs) , the n(tgt) ≤ n(obs) targeted weed locations s
(tgt)
1 , . . . , s

(tgt)

n(tgt)300

that are fed into the treatment tools are those points s
(obs)
i with i = 1, . . . , n(obs)

301

such that there is some j 6= i with ‖s(obs)
i − s(obs)

j ‖ ≤ `a. Note that by setting302

`a =∞m, all observed weed locations are being targeted.303

2.4.2. Autonomous robot304

The first treatment tool, denoted as Robot, imitates an autonomous robot305

that is able to drive directly from one target location to another (see, e.g., Stoll306

(2020)). The treatment is performed, e.g., by activating a circular mower. In307

reality, this would result in an oblong treatment area along the driving direction308

as no cutting occurs in the center of the mower. For simplicity sake, however,309

we assume a disk-shaped area. After the treatment, the robot continues straight310

to the next target location, see Figure 3a.311
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(a) The tool Robot goes directly from one tar-

geted weed location to the next, where a disk-

shaped area is treated.

(b) The tool Tractor meanders through the

weed infested area such that each targeted

weed location is covered by one of its sepa-

rately controllable treatment sections. The me-

andering width is thus equal to the width of

the attachment. Once the tool crosses a tar-

geted weed location a rectangular area with a

given side length along the driving direction is

treated. In the illustrated example the treat-

ment tool consists of three sections.

Figure 3: Illustration of the treatment tools Robot (left) and Tractor (right) and their

parameters. The treatment tools start at a starting point x0 (bottom left corner) and drive

over the field W (green area) along a specified route (dashed line). Every time it crosses a

targeted weed location (pink dots), a tool-specific area is treated (blue area).

The parameter configuration consists of a treatment radius rt > 0 m (in312

meter), which specifies the radius of the treated circular area centered at each313

targeted weed location s
(tgt)
1 , . . . , s

(tgt)

n(tgt) . For our simulation study we assume314

that both treatment tools start in a fixed point x0 ∈ W, which will also be the315

point to where they return after they have finished. The route of the treatment316

tool Robot through the field is determined as the shortest tour through all317

target locations s
(tgt)
1 , . . . , s

(tgt)

n(tgt) and the starting point x0. This is known as318

the (Euclidean) traveling salesman problem (Jungnickel, 2008), which we solved319
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using the OR-Tools library (Perron and Furnon, 2019). The library produced320

a not necessarily optimal, but reasonably good route as finding the optimum321

can be very time consuming. The initial tour was chosen by iteratively adding322

the weed location with the shortest distance to the previous location beginning323

with the starting location. It is worth mentioning that as a consequence the324

route is independent from the treatment radius rt. More sophisticated strategies325

would also have been possible where instead of targeting observed weed locations326

directly, artificial target locations could have been computed depending on rt327

such that multiple (observed) weeds were treated simultaneously. However,328

these lead to extra complexity through additional constraints in practice such329

as through the imperfect positioning accuracy on the field.330

2.4.3. Tractor with attached treatment tool331

The second treatment tool, denoted as Tractor, behaves like a tractor332

with an attached treatment tool (such as the water-hydraulic tool proposed333

in Stoll (2020) and Martin et al. (2022)) that covers the weed infested area334

in a winding path. The attachment consists of several separately engageable335

sections for a site-specific treatment. Each of these sections treat a rectangular336

area surrounding a targeted weed location, see Figure 3b.337

For the precise definition of Tractor, we consider the targeted weed lo-338

cations s
(tgt)
1 , . . . , s

(tgt)

n(tgt) . The weed infested area Minf ⊂ W is then given by339

the convex hull (de Berg et al., 2008) of these targeted weed locations, and the340

primary driving direction ud ∈ R3 with ‖ud‖ = 1 is the direction of the longest341

side of the (arbitrarily oriented) minimum rectangular bounding box of Minf342

(or equivalently of the targeted weed locations). As described in Section 2.4.2343

for Robot, the tractor starts in a fixed point x0. From there it traverses Minf344

primarily in parallel line segments determined by the vector ud. The distance345

between these line segments is given by the meandering width wm > 0 m (in me-346

ter), which is equivalent to the width of the attached treatment tool. Relative347

to x0, the farthest parallel line segment is located such that its distance to the348

farthest targeted weed location (which is on the boundary of Minf) is equal to349
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wm/2. The tractor crosses orthogonally from one line segment to the other such350

that the infested area Minf is fully covered (i.e., the distance to the boundary of351

Minf is at most wm/2). The positive turning radius of a real tractor is neglected352

in this model. After Minf has been traversed, the tractor returns to the starting353

point x0. Note that there are two possibilities in which direction to start the354

traversal, namely ud or −ud. We chose the one that leads to the shortest route.355

An example route for Tractor can be seen in Figure 3b.356

While the tractor moves along the route described above, the ns > 0 individ-357

ual sections of the attached treatment tool perform a site-specific weed control.358

For this, the line segment of length wm perpendicular to the driving route is359

divided into ns parts. These parts correspond to the sections of the treatment360

tool, which engage (at least) ld/2 in front of and disengage (at least) ld/2 behind361

a targeted weed location with the default treatment length ld > 0 m. This leads362

to rectangular treatment areas for isolated weeds with side lengths ld ×wm/ns.363

Note, however, that for targeted weed locations close to each other these rect-364

angles can merge. For the simulation study considered in Section 3, we set the365

meandering width equal to wm = 2.5 m and the default treatment length to366

ld = wm/ns. The number of sections ns will be varied.367

3. Results368

Now that the entire simulation framework, i.e. the generation of the simu-369

lated weed locations and the treatment strategies, has been laid out, we describe370

the results of our case study.371

3.1. General setting372

The general setup for the case study is as follows. First, a set of ground truth373

weed locations {s(gt)
1 , . . . , s

(gt)

n(gt)} and the observed subset {s(obs)
1 , . . . , s

(obs)

n(obs)}374

with n(gt) ≥ n(obs) ≥ 0 were obtained, either from the experimental datasets (see375

Sections 2.2.3 and 2.2.2, respectively) or as realizations from stochastic models376

(see Section 2.3). Recall from Section 2.3.1 that for the simulated datasets, it377
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is possible to vary the mean number of ground truth weed locations relative to378

the experimentally observed ones in Exp through the intensity factor λ∗. In379

the following, we consider three different cases, i.e. λ∗ ∈ {0.5, 1, 2}, which are380

denoted with a subscript ‘<’ (such as Cal1
<), ‘0’ (such as Cal1

0), or ‘>’ (such as381

Cal1
>), respectively. Moreover, two observations were simulated, where either382

fewer or more weed locations were observed, just like with the experimental383

datasets Exp1 and Exp2, respectively. Based on the observed weed locations,384

the n(tgt) ≥ 0 targeted weed locations s
(tgt)
1 , . . . , s

(tgt)

n(tgt) were selected by ap-385

plying an action threshold `a ∈ {2.5 m, 5 m,∞m} eliminating locations with a386

nearest neighbor distance larger than `a. Note that for `a = ∞m no locations387

were thus removed from the observed dataset. In total six different configu-388

rations of treatment tools were considered, three for Robot with treatment389

radius rt ∈ {0.2 m, 0.4 m, 1.25 m} and three for Tractor with ns ∈ {1, 5, 10}390

separately controllable sections. Only the targeted weed locations were given to391

each of these individual strategies, which then produced a set of treated weed392

locations {s(t)
1 , . . . , s

(t)

n(t)} with n(gt) ≥ n(t) ≥ n(tgt) and a treated subset Mt of393

the field W. From the definition of the treatment tools, it is clear that every394

targeted weed location was treated, but there might have been some weed loca-395

tions near a targeted location that were also treated as ‘collateral damage’. The396

point where the treatment tools started and finished their tour x0 was set to the397

lowest point on the left of the field W and remained fixed for all simulations.398

3.2. Performance measures399

In order to quantify the performance of a treatment, we computed the fol-400

lowing performance measures, which are minimized by an opimal treatment:401

(a) the distance dd driven by the treatment tool (in meter, including the402

distance from and to the starting point x0),403

(b) the number fr of remaining weed locations relative to the total number of404

ground truth plants, where fr = n(gt)−n(t)

n(gt) ,405
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(c) the maximum density ρr of remaining weeds in a disk of radius 2 m, where406

ρr =
1

(2 m)
2
π

max
x∈G

#
{
i : ‖s(gt)

i − x‖ ≤ 2 m and s
(gt)
i 6∈ {s(t)

1 , . . . , s
(t)

n(t)}
}

and G ⊂ W is a square 5 cm-grid of the field W,407

(d) the treated area At relative to the area of the whole field, where At = |Mt|
|W|408

and | · | denotes the area of a given set, and409

(e) the treated area Aeff per treated weed (treatment efficiency), where Aeff =410

|Mt|
n(t) in m2.411

Note that the radius of the disk for ρr was chosen as a trade-off between cap-412

turing varying local weed concentrations, while still being large enough to cover413

more than one weed in a cluster.414

A great advantage of simulated data drawn from stochastic weed location415

models, compared to experimental data, is that the virtual treatments can be416

repeated without changing the considered scenario (in terms of the expected417

number of weed locations, their spatial distribution, etc.). Through these repli-418

cations independent samples of the treatment results can be obtained, which419

leads to great statistical reliability. For this reason, we drew 10 samples from420

each of the stochastic simulation models. In the following only the mean values421

obtained for the quality measures (a) – (e) are presented.422

3.3. Comparison of treatment strategies423

The first question, we want to answer is which strategy is the best one.424

Unfortunately, since no strategy outperforms its alternatives with respect to425

all performance measures (a) – (e) in all scenarios, the definition of optimality426

has to be relaxed. The importance of a performance measure might vary from427

context to context. We therefore aim to investigate common trade-offs, which428

might support decision making by identifying strictly inferior strategies.429

This problem can be tackled using the so-called Pareto-optimality known430

from multiobjective optimization, see, e.g., Miettinen (2012). In our case a431
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treatment strategy is Pareto-optimal if every other strategy with a better out-432

come regarding one performance measure would have a worse result regarding433

another measure. If for a strategy, on the other hand, there is no performance434

measure where it surpasses the others, this strategy is clearly inferior as the435

outcome can be improved regardless of what trade-off a decision maker is will-436

ing to make. This means more formally that when minimizing the objective437

functions (in our case performance measures) f1, . . . , fk : Rd ⊃ D → R for some438

integers d, k, the decision vector (in our case strategy) x∗ ∈ D is Pareto-optimal439

if there is no other vector x ∈ D with fi(x) ≤ fi(x
∗) for all i = 1, . . . , k and440

fj(x) < fj(x
∗) for at least one index j (Miettinen, 2012).441

In the following, we consider only two performance measures at a time as442

more would result in practically all strategies being Pareto-optimal. Moreover,443

visualizing three or more measures simultaneously is much harder. The results444

of each treatment strategy with respect to the considered performance mea-445

sures are shown in a scatter plot. The criterion for the Pareto-optimality is446

illustrated as a line—the so-called Pareto frontier—that separates the Pareto-447

optimal strategies on the line from the inferior ones on the top right of the448

line.449

In order to reduce complexity, we only consider the datasets corresponding to450

the early observation date (of September 3rd, 2019) and set the intensity factor451

λ∗ = 1 for the simulated data (i.e. Exp1, Cal1
0, Hom1

0, . . . ) when investigating452

the Pareto-optimality of the strategies. In Figure 4 the driving distance dd453

versus the treated area per treated weed Aeff are shown. Here it turned out that454

the Pareto-optimal strategies were those with the smallest individual treatment455

area (i.e., the smallest considered treatment radius rt = 0.2 m for Robot, or the456

maximum number of sections ns = 10 for Tractor). Furthermore, compared457

to Robot, Tractor drove a much larger distance, but treated a slightly smaller458

area per weed. The scenario Cen1
0 was the only one, however, where there was459

almost no difference between the two tools. Note that the driving distance dd460

does not change when varying the parameters rt or ns as the route of a treatment461

tool depends only on its type (Robot or Tractor) and the targeted weed462
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Figure 4: Scatter plots together with the corresponding Pareto frontiers of the driving distance

dd and the treated area per treated weed Aeff for various treatment strategies and infestation

scenarios.

locations, which are a function of the action threshold `a. Regarding `a, lower463

values, which reduced the number of targeted weed locations, led to lower driving464

distances as might have been expected. Consequently, `a = 2.5 m produced the465

lowest values of dd.466

In Figure 5, the trade-off between the fraction of remaining weeds fr and the467

treated area per treated weed Aeff are illustrated. Here, apparently almost all468

strategies were Pareto-optimal which points to the strong antagonistic depen-469

dency between the treated area and the number of remaining weeds. Two groups470

of treatment strategies could be made out: the first one comprised the strategies471

with the largest individual treatment area (i.e. Robot with rt = 1.25 m and472

Tractor with ns = 1) and treated significantly more area per weed at the473

benefit of hitting a larger percentage of the whole weed population compared474

to the remaining strategies in the second group. Interestingly enough, no big475

difference between the two tools was visible, only between their configuration.476
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Figure 5: Scatter plots together with the corresponding Pareto frontiers of the fraction of

remaining weeds fr and the treated area per treated weed Aeff for various treatment strategies

and infestation scenarios.
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Figure 6: Scatter plots together with the corresponding Pareto frontiers of the relative treated

area At and the highest remaining weed density ρr for various treatment strategies and infes-

tation scenarios.

The differences between `a = ∞m and `a = 5 m were negligible but there was477

visible contrast compared to `a = 2.5 m. As opposed to Figure 4, the latter478

action threshold usually performed the worst.479

Another important pair of competing performance measures is the relative480

treated area At and the highest remaining weed density ρr. The corresponding481

results are shown in Figure 6. Here, Tractor with ns = 10 was Pareto-optimal482

in all scenarios. The other strategies, Robot with rt = 1.25 m most of all, were483

in some cases able to decrease the highest remaining weed density ρr. The484

biggest difference was achieved for Exp1 and Cal1
0, whereas for the remaining485

scenarios little or no improvement was obtained with respect to ρr. Generally486

speaking a smaller value for the action threshold `a yielded better results.487

3.4. Influence of action threshold on treatment performance488

Another question that we want to investigate is how the action threshold `a489

affected the treatment performance. Like above, we considered only the early490
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Figure 7: Influence of the action threshold `a on the considered performance measures for

various infestation scenarios.

observation date and set the intensity factor λ∗ = 1, but restricted the tool491

configurations to the ones described in Stoll (2020) and Martin et al. (2022),492

namely Robot with treatment radius rt = 0.2 m and Tractor with section493

count ns = 10. The results are shown in Figure 7. By setting the action494

threshold `a = 5 m, small reductions in the driving distance dd compared to495

the baseline `a = ∞m could be observed, but practically no change for the496

other metrics. So a small net win could be achieved. For the smallest action497

threshold, `a = 2.5 m, more weeds remained untreated. It is also noteworthy,498

that especially for the Tractor the treated area per weed Aeff was mostly499

unaffected by the action threshold.500

3.5. Effect of observation date501

In order to study the effect of the observation date, we set the intensity502

factor λ∗ = 1 and considered only the action threshold `a = ∞m for the503

two treatment configurations, Robot with treatment radius rt = 0.2 m and504

Tractor with section count ns = 10. The resulting metrics are visualized505

in Figure 8. Between the two observation dates, large differences in almost all506

considered metrics could be observed. The datasets corresponding to September507

10th, 2019, where more weeds were observed (n
(Exp)
2 = 1792 versus n

(Exp)
1 = 550508

for September 3rd, 2019) had a much better treatment result. Notable outliers509
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Figure 8: Influence of the observation date on the considered performance measures for various

infestation scenarios.

were, however, the driving distance dd for Tractor, and the treated area per510

treated weed for both tool, which changed only marginally. It should be kept511

in mind that the individual treatment areas differ and except for the driving512

distance dd a comparison between the Tractor and the Robot would not be513

reasonable. All ground truth scenarios produced the same qualitative behavior514

of the considered performance measures.515
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Figure 9: Influence of the intensity factor λ∗ on the considered performance measures for

various infestation scenarios.
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3.6. Influence of the intensity factor λ∗516

In Figure 9 the dependency of the intensity factor λ∗ on the considered per-517

formance measures is shown, which illuminates the question how the treatment518

strategies performed when the number of (ground truth) weed locations varies.519

Of course, only simulated datasets could be considered. As before, we focused520

on Robot with treatment radius rt = 0.2 m and Tractor with section count521

ns = 10, and we ignored the action threshold, i.e. `a = ∞m. Apparently, the522

driving distance dd did not scale linearly with the mean number of weeds on the523

field. So, a low number of weeds lead to much larger distances (and therefore524

costs) per weed compared to cases where this number was already quite high.525

The Tractor tool was less affected by the increase in dd than Robot. For the526

treated area per treated weed Aeff , it was also observable that Aeff decreased527

with increased intensity factor λ∗. So the efficiency rose as more and more528

unobserved weeds stood near targeted weed locations and were treated.529

4. Discussion530

When it comes to evaluating the different treatment strategies, the Fig-531

ures 4, 5, and 6 showed how difficult it is to give general suggestions. However,532

certain strategies can be eliminated when considering only a few performance533

measures that are the most important ones in the current context. Especially534

when keeping the results shown in Figure 9 in mind, the Robot strategy gener-535

ally performed quite well. Only with an increasing number of weeds Tractor536

obtained better results in particular if the weeds are clustered. For real world537

applications, additional constraints come into play, such as a limited fuel tank538

of an automated robot resulting in a shorter reach, or the varying costs of per-539

sonal. The presented approach could also be extended to serve as a framework540

to investigate such more intricate questions that arise from planning a treatment541

tool to managing weeds on a large number of fields with a limited number of542

available treatment tools.543
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It turns out that by employing a (finite) action threshold, the driving dis-544

tance dd could be reduced. For the smallest value `a = 2.5 m, however, a545

noticeable degradation of the treatment performance could be observed, see546

Figure 7. The value `a = 5 m might be used as a compromise between a smaller547

driving distance and practically the same treatment performance compared to548

omitting the action threshold. For future research it might be worthwhile to549

implement more sophisticated methods to determine the set of targeted weed550

locations. For example, using point processes would allow for a model based551

prediction of unobserved weed locations. With this, additional virtual locations552

could be created in areas where unobserved weeds are assumed. Another ap-553

proach would be to predict unobserved weed locations using machine learning554

techniques. However, both approaches would require additional experimental555

data to build accurate models.556

In Figure 8, a strong dependency of the treatment success on the number557

of observed weeds can be seen. The importance of this relationship is only in-558

creased, when keeping in mind that only for simplicity’s sake we assumed the559

experimental locations Exp comprised the whole weed population. In reality,560

however, there might have been much more weeds on the field that were not561

captured during the two drone mappings. This partial information problem af-562

fects both online and offline treatment methods that either identify the targeted563

weed locations while the treatment tool is traversing the field (e.g., through at-564

tached cameras and real-time image processing), or decouple the acquisition of565

the image data/detection of weed locations with their treatment, respectively.566

For offline methods the weed population might change between the observation567

and the treatment (e.g., drone imaging in fall where the weeds are easiest to568

identify versus treatment in spring where the plants are most vulnerable). This569

might lead to an even larger amount of discrepancy between the observed and570

the ground truth weed locations. However, an in-depth analysis of this phe-571

nomenon is beyond the scope of the present paper. For online methods, on the572

other hand, it is not possible to combine information from several observations,573

e.g., from different days. These additional data sources could be necessary to574
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obtain an accurate survey of the whole weed population. Hybrid approaches575

that combine the benefits of online and offline techniques could be a solution.576

As said in the introduction, the findings might also be applicable for other577

treatment tools such as site-specific herbicide sprayers, or spot-spraying through578

UAVs. For this, it is necessary to account for tool-specific requirements. So579

while overlapping treatment areas are of no importance for a circular mower,580

they have to be eliminated when considering sprayers. However, this can be581

achieved by preprocessing the application maps prior to the treatment, or by582

tracking the treated areas during operation.583

Various extensions to the proposed framework are possible. First off, more584

sophisticated point-process models like (Poissonian) cluster point processes for585

the ground truth weed location and dependent thinning for the observed subset586

could be investigated to obtain more variability and more complex interdepen-587

dencies in the resulting point patterns. Ideally, a thorough stochastic model588

of real weed locations could be built. However, this would require more ex-589

perimental data from different fields at several time points. Another point for590

enhancement would be the addition of further treatment tools and configura-591

tions.592

5. Conclusions593

In the present paper, a simulation framework for comparing weed control594

tools under varying infestation scenarios was developed. This allowed a novel595

view on the pros and cons of very different kinds of treatment tools such as an596

autonomous robot, or a tractor-attached implement, where previously only one597

of these was studied in isolation. An additional unique feature was the focus on598

grassland sites and the accounting of partial observation of the weed population,599

which we found to have a strong influence on the overall treatment success.600

Furthermore, it turned out that the considered autonomous robot performed601

quite well in most scenarios, but the results for the tractor-mounted implement602

improved as the number of weeds increased. For both treatment tools slight603
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improvements could be achieved when isolated weeds were not treated.604
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