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Motivation/Goals
What is the benefit of stochastic network modeling?

I Representing the essential information of huge databases by a small
number of model parameters

I road system of Paris city
I (real) geographical data set

consisting of main roads
and side streets

⇒ object-oriented modeling (grid-free, fast algorithms)
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Simulated main roads

I Main roads
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Simulated side streets

I Main roads
I Side streets
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Network components along the roads/streets

I Main roads
I Side streets
I Network components:

I High-level components
(green)

I Low-level components
(blue)
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Serving zones
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I Network components:

I High-level components
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I Low-level components
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I Serving zones of high-level
components (black)

I shortest-path tree in
serving zones
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I developing a toolbox of stochastic network models (’to be kept in stock’)

Basic tessellation models

Iterated tessellation models
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Motivation/Goals
I using the ’model library’ to investigate physical network properties

(performance, costs) of existing and future networks

⇒ virtual networks design on the computer

⇒ construction of (virtual) networks with improved/otimised properties

⇒ computation of relevant network characteristics using extensive
Monte Carlo simulations and (approximative) analytical formulas

⇒ establish quantitative (functional) relationships between
I spatial distribution of infrastructure/network components and
I network performance

⇒ combined modeling and simulation of
I spatial network structure and
I network transport/performance (transport-relevant cost functionals)
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Overview
Models of stochastic geometry for

I two-dimensional patterns on geographical scales

⇒ telecommunication networks
⇒ tropical cyclone tracks

I three-dimensional patterns on microscopic scales

⇒ Li-ion batteries
⇒ organic solar cells
⇒ fuel cells
⇒ polycristalline alloys
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2D patterns on geographical scales
I telecommunication networks (inner-city, nationwide)
I tropical cyclone tracks
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Stochastic modelling of network components

Network components along the roads/streets

I Main roads and side
streets modelled by
stationary random graph T
with length intensity
γ = Eν1(T (1) ∩ [0,1]2)

I Network components:
I High-level components:

Cox process XH with
linear intensity λ` (HLC)

I Low-level components:
Cox process XL with
linear intensity λ′` (LLC)
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Stochastic modelling of serving zones

Serving zones

I Main roads and side
streets modelled by
stationary random graph T
with length intensity
γ = Eν1(T (1) ∩ [0,1]2)

I Network components:
I High-level components:

Cox process XH with
linear intensity λ` (HLC)

I Low-level components:
Cox process XL with
linear intensity λ′` (LLC)

I Serving zones of high-level
components

I to connect LLC to closest
HLC
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Stochastic modelling of serving zones

I consider the Voronoi tessellation TH = {ΞH,n} induced by the points XH,n
of the Cox process XH = {XH,n}

I i.e.,
ΞH,n = {x ∈ R2 : |x − XH,n| ≤ |x − XH,m| for all m 6= n}

Cox-Voronoi cell
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Shortest-path length

I Serving zone with shortest-path connection starting from an LLC and
ending at the corresponding HLC

I distribution of shortest-path lengths depends both on λ` and γ
I however, for PVT, PLT and PDT we have a certain scaling invariance
⇒ suffices to consider the ratio κ = γ

λ`
called scaling parameter
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Typical serving zone
I choose one of the serving zones at random⇒ typical serving zone

I more formally, consider Palm version X ∗H of XH whose distribution has
representation formula

Eg(X ∗H) =
1
λH

E
∑

i: XH,i∈[0,1]2
g({XH,n} − XH,i ) ,

I where g : L→ [0,∞) is an arbitrary measurable function and L denotes
the family of all locally finite sets of R2

I typical serving zone Ξ∗H = cell associated with the cell centre o in the
Voronoi tessellation constructed from X ∗H

I i.e.,
Ξ∗H = {x ∈ R2 : ‖x‖ ≤ ‖x − X ∗H,j‖ for all j ≥ 1}
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Shortest-path tree G on Ξ∗H

Typical serving zone Ξ∗H
(dashed) and corresponding
segment system S∗H (solid)

Shortest-path tree G with origin
o as root
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Shortest-path tree G on Ξ∗H

I Motivation: engineers are mainly interested in minimising the total length
of the telecommunication networks in a city

I But: further cost functionals have to be considered, e.g. capacity
functionals

I Idea: consider the shortest-path tree from the typical serving zone
I closely related with capacity problems
I and cost estimation for telecommunication networks
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Main branches of G

Half-trees Gh
1 (solid) and Gh

2
(dashed) of G emanating from

the root

Main branches LSP (dashed)
and LSP ′ (dot-dashed) of the

corresponding half-trees
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The idea of using copulas
I Goal: Find suitable parametric family of bivariate distributions for the

lengths CLSP and CLSP′ of the two main branches LSP and LSP ′

I Problem: it cannot be assumed that CLSP and CLSP′ are independent
random variables

=⇒ F(CLSP ,CLSP′ )(x , y) 6= FCLSP (x) · FCLSP′ (y)

I Possible solution: use a parametric copula combining marginal
distributions to a joint distribution of C = (CLSP ,CLSP′)

Definition (bivariate copula)
A function K : [0,1]2 → [0,1] is called a bivariate copula if there exists a
probability space (Ω,F ,P) supporting a random vector U = (U1,U2) such that
Ui ∼ U[0,1] for i ∈ {1,2} and

K (u1,u2) = P(U1 ≤ u1,U2 ≤ u2), u1,u2 ∈ [0,1]
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The idea of using copulas

=⇒ the bivariate joint distribution function of the random vector
C = (CLSP ,CLSP′) can be written as

FC(c) = KC(FCLSP (c1),FCLSP′ (c2))

where c = (c1, c2), c1, c2 > 0 (Sklar’s theorem)

Maximum-likelihood method (ML)

I assume parametric models for FCLSP (· | η1), FCLSP′ (· | η2) and KC(· | η)
with parameter vectors η1, η2 and η

I for a sample ci = (cLSP,i , cLSP′,i ), i = 1, . . . ,n, consider the loglikelihood

log L(η1 η2,η) =
n∑

i=1

(
log fCLSP (cLSP,i | η1) + log fCLSP′ (cLSP′,i | η2)

+ log
[
kC(FCLSP (cLSP,i | η1),FCLSP′ (cLSP′,i | η2) | η)

])
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2D patterns on geographical scales
I telecommunication networks (inner-city, nationwide)
I tropical cyclone tracks
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Motivation

I Tropical cyclones are . . .
I . . . major financial risk to (re-)insurance companies
I . . . threat to human lives

I Examples

I Hurricane Andrew, Florida, Louisiana, 1992: 26 fatalities, caused damages
amounting to 25.5 billion U.S. Dollars
→ at this time costliest hurricane in U.S. history, 11 insurers went bankrupt

I Hurricane Katrina, Florida, Louisiana, Mississippi, 2005: 1500 fatalities,
caused damages amounting to 81 billion U.S. Dollars
→ costliest hurricane in U.S. history

I Typhoon Mireille, Japan, 1991: 51 fatalities, caused damages amounting
to 10 billion U.S. Dollars
→ costliest typhoon in the Western North Pacific

I Necessity to assess risks posed by cyclones as precisely as possible
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I Tropical cyclones are . . .
I . . . major financial risk to (re-)insurance companies
I . . . threat to human lives

I Examples
I Hurricane Andrew, Florida, Louisiana, 1992: 26 fatalities, caused damages

amounting to 25.5 billion U.S. Dollars
→ at this time costliest hurricane in U.S. history, 11 insurers went bankrupt

I Hurricane Katrina, Florida, Louisiana, Mississippi, 2005: 1500 fatalities,
caused damages amounting to 81 billion U.S. Dollars
→ costliest hurricane in U.S. history
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Motivation

Andrew, the Miami area Katrina, New Orleans

Aftermath of hurricanes Andrew and Katrina
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Motivation

I Problems
I reliable cyclone track data only given for about 100 years
I insurers interested in risks caused by the largest cyclones having very small

occurrence probability (< 0.1%)
I tropical storm could occur that is more intense or causes more damage

than any historical measurement
→ this happened 1992 (Andrew) and 2005 (Katrina) in North Atlantic

I Approach

I analyze historical storm observations
I fit a spatial stochastic model
I generate further, synthetic cyclone tracks via Monte Carlo simulation
I perform risk assessment based on more comprehensive storm event sets

I Motivation for development of a stochastic simulation model for
tropical cyclone tracks
→ joint research project between Ulm University and Munich RE
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Historical cyclone observations

I Consider two ocean basins: Western North Pacific (WNP) and North
Atlantic (NA) since . . .

I . . . they offer the most comprehensive historical cyclone data bases
I . . . the most endangered coastal areas belong to these regions
→ high relevance for insurance companies

I Historical cyclone tracks are observed in 6 hours time intervals
→ the time, the geographical coordinates (storm location) and the
maximum sustained wind speed are measured every 6 hours

I Storm track is modeled as polygonal line by connecting each two
successive storm locations

I Additionally, translational speed and movement direction along each
storm segment can be computed→ both characteristics suffice to
completely determine the pathway of a storm track
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Historical cyclone observations - NA

Observation window of the NA split into 4 zones
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Historical cyclone observations - NA

I Criteria for the classification of cyclone tracks in the NA

start in zone touched zones end in zone class

0 0 0 0
1 1 1 5
2 2 2 2
3 3 3 3
0 0 and 1 0 0
1 0 and 1 0 1
0 0 and 1 1 1
1 0 and 1 1 1

0 or 3 0 and 3 0 or 3 3
1 1 and 2 1 1

1 or 2 1 and 2 2 2
2 1 and 2 1 2

1 or 3 1 and 3 1 or 3 4
2 or 3 2 and 3 2 or 3 4

0 0, 1 and 2 0 0
1 or 2 0, 1 and 2 0 2

start in zone touched zones end in zone class

0 or 1 0, 1 and 2 1 1
2 0, 1 and 2 1 2

0, 1, or 2 0, 1 and 2 2 2
0 0, 1 and 3 0 0

1 or 3 0, 1 and 3 0 3
0, 1 or 3 0, 1 and 3 1 1
0, 1 or 3 0, 1 and 3 3 3
0, 2 or 3 0, 2 and 3 0, 2 or 3 2

2 1, 2 and 3 1, 2 or 3 2
1 or 3 1, 2 and 3 1 1
1 or 3 1, 2 and 3 2 or 3 2

0 0, 1, 2 and 3 0 0
1, 2 or 3 0, 1, 2 and 3 0 2

1 0, 1, 2 and 3 1 1
0, 2 or 3 0, 1, 2 and 3 1 2

0, 1, 2 or 3 0, 1, 2 and 3 2 or 3 2

I Some cyclones that have been sorted into class 1 and satisfy certain
conditions are moved to class 4 or 5



Page 33 Stochastic Geometry - a toolbox for analysis, modeling and simulation | 2D patterns on geographical scales

Historical cyclone observations - NA

Historical cyclone tracks of class 0

Historical cyclone tracks of class 1

Historical cyclone tracks of class 2
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Historical cyclone observations - NA

Historical cyclone tracks of class 3

Historical cyclone tracks of class 4

Historical cyclone tracks of class 5
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UU/MR simulator

I UU/MR simulator for tropical cyclone tracks has been developed in a
research cooperation between Ulm University and Munich RE

I Storm event sets representing any arbitrary time span T can be
generated,
where typically T ≥ Thist

I Simulation is performed separately for each storm class

I Synthetic storms are modeled as polygonal lines, where each line
segment represents movement of the storm during 6 hours

I Stochastic simulation model includes the following components:

I model for points of storm genesis
I track propagation (including maximum sustained wind speeds)
I termination of cyclone tracks
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Poisson point processes in R

I Let µ : B → [0,∞] be an arbitrary locally finite and diffuse measure

I The family of random variables Φ = {ΦB,B ∈ B} is called a Poisson
process with intensity measure µ if (Stoyan et al. (1995))

I ΦB1 ,ΦB2 , . . . are independent random variables for all B1,B2, . . . ∈ B0(Rd )
pairwise disjoint

I ΦB ∼ Poi(µ(B)) for each B ∈ B0(Rd )

I Assumption: µ is absolutely continuous, i.e. Φ has an intensity function
λ : R→ [0,∞) such that

µ(B) =

∫
B
λ(x) dx for all B ∈ B

→ λ completely determines the distribution of Φ

I Φ can be considered as random counting measure→ there is a sequence
of random vectors S1,S2, . . . in R such that ΦB = #{i : Si ∈ B}, B ∈ B
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Points of genesis

I The estimator λ̂ for the intensity function λ is given by a generalized
nearest-neighbor estimator, i.e.

λ̂(x) =
1

rk (x)2

n∑
i=1

K
(

Si − x
rk (x)

)
for x ∈ R2,

where

I S1, . . . ,Sn: starting points of historical cyclone observations

I kernel function K : Epanechnikov kernel

K (x) =

{
2
π

(1− x>x) if x>x < 1,
0 else

I rk (x): distance from x to k -th nearest starting point

I k = b
√

nc
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Points of genesis - WNP

Starting points of historical storm tracks for class 0 in the WNP together with the estimated
intensity function



Page 39 Stochastic Geometry - a toolbox for analysis, modeling and simulation | 2D patterns on geographical scales

Points of genesis - NA

Starting points of historical storm tracks for class 2 in the NA together with the estimated intensity
function
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Track propagation

I Appropriate cyclone track model needs to include the direction of
movement X and the translational speed Y

I Assume both characteristics to be constant for intervals of 6 hours and
update (X ,Y )> after each of these intervals
→ the cyclone’s location can be calculated in 6-hour steps
→ connecting these storm points yields a polygonal line

I Additionally, for risk assessment purposes at each storm point the
maximum wind speed Z is considered

I The characteristics Xi , Yi and Zi after the i-th track segment are
considered to be sums of initial values and the changes in these values
after each step Xi

Yi
Zi

 =

 X0
Y0
Z0

+
i∑

j=1

 ∆Xj
∆Yj
∆Zj
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Track propagation
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Comparison of cyclone tracks - NA

Historical cyclone tracks of class 0

Historical cyclone tracks of class 1

Simulated cyclone tracks of class 0

Simulated cyclone tracks of class 1
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Comparison of cyclone tracks - NA

Historical cyclone tracks of class 2

Historical cyclone tracks of class 3

Simulated cyclone tracks of class 2

Simulated cyclone tracks of class 3
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Comparison of cyclone tracks - NA

Historical cyclone tracks of class 4

Historical cyclone tracks of class 5

Simulated cyclone tracks of class 4

Simulated cyclone tracks of class 5
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Validation - NA - hazard maps

Historical Simulated

Estimated hazard maps for storm event sets representing a time span of Thist = 111 years
return period 5 years
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Validation - NA - hazard maps

Historical Simulated

Estimated hazard maps for storm event sets representing a time span of Thist = 111 years
return period 25 years
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Validation - NA - hazard maps

Historical Simulated

Estimated hazard maps for storm event sets representing a time span of Thist = 111 years
return period 100 years
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Validation - NA - hazard maps

Historical Simulated

Estimated hazard maps for storm event sets representing a time span of Thist = 111 years
return period 500 years
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3D patterns on microscopic scales
I Li-ion batteries
I organic solar cells
I fuel cells
I polycristalline alloys
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Synchrotron tomography image data

I 3D image of uncompressed graphite electrode used in Li-ion batteries
I tomography: Helmholtz Center Berlin, material: ZSW

Baden-Württemberg
I yellow: graphite phase
I transparent: pore phase, volume fraction ca. 56%
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Goal: stochastic simulation model

I Modeling of the 3D morphology of graphite electrodes
I Size: 100× 100× 100 voxels
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Functionality

I 3D microstructure⇔ functionality
I Detect improved microstructures by virtual materials design
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Simulated annealing for generation of microstructures

I Start with random allocation of voxels given volume fraction α
I Coarsening of morphology by interchanging voxels.

I T temperature, c(·) cost function to be reduced (e.g. surface area)
I Pick a pair of voxels at random
I Swap voxels if cost function decreases, otherwise accept swap with

probability exp
(

c(no change)−c(change)
T

)
I Decrease T with time

I Stop if desired value of c(·) is reached.
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Our approach: graph-based simulated annealing

I Simulated annealing: simple but computational expensive, limited control
of microstructure

I Hybrid approach: combining spatial stochastic graph modeling with
simulated annealing

I simulate random geometric graph
I start configuration of voxels by project voxels onto the graph
I run simulated annealing on new start configurations
I voxels of graph fixed

I spatial graph serves as backbone of microstructure
I fast, good control on microstructure
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Stochastic graph model

I Extract spatial graph (V ,E) from experimental data by skeletonization
I V set of vertices
I E set of edges

I Stochastic modeling by
I Point process model for the set of vertices
I a stochastic model for setting edges
I Fitting of model parameters to corresponding experimental data
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Point process model: modulated hardcore point process

(1) Simulation of homogeneous Poisson process

(2) Simulation of Boolean Model
(3) Simulation of Poisson hardcore model inside the Boolean Model
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Point process model: modulated hardcore point process

(1) Simulation of homogeneous Poisson process
(2) Simulation of Boolean Model

(3) Simulation of Poisson hardcore model inside the Boolean Model
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Point process model: modulated hardcore point process

(1) Simulation of homogeneous Poisson process
(2) Simulation of Boolean Model
(3) Simulation of Poisson hardcore model inside the Boolean Model
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Stochastic model for setting edges

Cut-out of experimental graph (left) and simulated graph (right)

I Connecting nearest neighbors
I Connect each point Si with its n nearest neighbors.
I Start with nearest neighbor
I Connection is rejected if angle to previous edges undercuts a threshold γ1

I Postprocessing of edges
I If angles undercut threshold γ2: deletion with probability p ∈ (0, 1).
I Control of angles
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Model validation

Cut-out of experimental (left) and simulated (right) microstructure

Spherical contact distribution from pore phase to graphite (left) and vice versa (right).
Red curve displays experimental data and black curve simulated data.
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3D patterns on microscopic scales
I Li-ion batteries
I organic solar cells
I fuel cells
I polycristalline alloys
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Tomographic solar cell data

5000 rpm ∼ 57 nm 1500 rpm ∼ 100 nm 1000 rpm ∼ 167 nm

I 3D TEM images of P3HT-ZnO solar cells with different thicknesses
I TEM: Technical University Eindhoven
I P3HT-phase: transparent
I ZnO-phase: yellow, volume fraction 13.3% – 21.1%
I Morphology is anisotropic



Page 69 Stochastic Geometry - a toolbox for analysis, modeling and simulation | 3D patterns on microscopic scales

Goal: stochastic simulation model

I same model type for all layer thicknesses
I different model parameters for different layer thicknesses
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Functionality

I Device architecture: bulk heterojunction
I Light acitivates the polymer phase of the solar cell

I Excitons are generated
I Diffusion of excitons in the polymer phase
I Excitons reaching the ZnO phase generate charges: quenching
I Transportation of charges to the electrodes
I 3D microstructure⇔ functionality
I Detect improved microstructures by virtual materials design
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Modeling idea: ‘smart’ system of spheres

I Representation of the ZnO phase as a complex system of spheres
I Contrast to compressed battery modeling: anisotropic point pattern
I Anisotropy by Markov chain of 2D point processes
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Multi-scale approach
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3D Representation of the macro-scale by unions of spheres

=⇒

=
⋃n

i=1 b (si , ri )

I Macro-scale represented by marked point process
I Transformation of solar cells into mathematical language
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Modeling in 2 steps:
I 2D point patterns: elliptical Matérn cluster process
I 3D stack of 2D point patterns: spatial birth-and-death process
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Inversion of morphological smoothing by stochastic
modeling

Real data (unsmoothed)

m

⇒

Real data (smoothed)

m

Simulated data (smoothing inverted)

⇐

Simulated data (smoothed)
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Result: stochastic simulation model

I Good visual agreement
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Important structural characteristics for the morphology
I Spherical contact distribution function (probability of a random polymer

voxel to find the ZnO phase within a given distance)

Distribution functions; solid lines: simulations; dashed lines: lower & upper
bounds from original data.
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Important structural characteristics for the morphology
I Volume fraction
I Connectivity (existence of percolation pathways to electrodes)

Volume Connectivity
fraction (monotonous)

57 nm model 0.115 0.887
data 0.133 0.928

100 nm model 0.216 0.888
data 0.211 0.910

167 nm model 0.210 0.809
data 0.210 0.851
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Physical characteristic for model validation

Quenching probability ηQ (probability of a random exciton to reach the
ZnO-phase)

I ηQ obtained from the field {n(x), x ∈ Bc} of local exciton densities in the
polymer phase

I {n(x), x ∈ Bc} computed by solving the steady-state diffusion equation

0 =
dn(x)

dt
= −n(x)

τ
+ D∇2n(x) + g, x ∈ Bc ,

D: diffusion constant, τ : exciton life time, g: rate of exciton generation
I boundary condition: n(x) = 0 for all x ∈ ∂Bc \ ∂W .
I ηQ = 1− n̄/(τg)
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Physical characteristic for model validation

Real data Simulated data
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Virtual material design

Model⇐⇒

Stochastic simulation model
⇒ 3D morphology represented by parameter vector

→
λ
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Spin coating speed determines morphology
I Regression of parameter vector

→
λ allows prediction of morphologies

which were not fabricated
I Manufacturing process can be realized virtually
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Regression of model parameters

Spin coating speed determines morphology
I Regression models of type
λi (ω) = ai + bi exp(ciω) + εi or λi (ω) = ai + biω + εi

I ⇒ analytical formulae for ~λ in dependence of ω.
I Prediction of morphologies which were not fabricated
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Scenario analysis

Model for layer thickness
I layer thickness = cωα, α = −0.5
I estimation of c by least squares
I simulation of virtual morphologies with ‘correct’ layer thickness
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Scenario analysis

I Simulation of virtual morphologies for ω = 500,750, . . . ,5250
I Estimation of structural and physical characteristics
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Scenario analysis - results

left: connectivity, right: mean spherical contact distance (in nm);
experimental data added by filled symbols
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Scenario analysis - results

left: quenching efficiency by bulk, right: quenched by electrodes;
experimental data added by filled symbols
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3D patterns on microscopic scales
I Li-ion batteries
I organic solar cells
I fuel cells
I polycristalline alloys
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Modeling of non-woven GDL

2D SEM image 3D synchrotron data

Two different modeling approaches
I Multi-layer model

I Direct 3D modeling
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Model assumptions

Cross section of non-woven GDL

I Horizontally oriented curved fibers

I GDL can be decomposed into independent thin horizontal layers
I Mutually penetrating fibers
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Model assumptions

Cross section of non-woven GDL

I Horizontally oriented curved fibers
I GDL can be decomposed into independent thin horizontal layers
I Mutually penetrating fibers
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Construction of 3D multi-layer model

2D fiber model

Multi-Layer model
I Fiber model
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Construction of 3D multi-layer model

3D–dilation

Multi-Layer model
I Fiber model
I 3D–dilation
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Construction of 3D multi-layer model

2 layers

Multi-Layer model
I Fiber model
I 3D–dilation
I More layers ...
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Validation of 3D multi-layer model

3D synchrotron data Realization of multi-layer model

Goodness of fit
I Visual inspection

I Formal model validation
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Discussion – multi-layer model

Cross section of GDL

Advantage
I Model fitting based on 2D SEM images

I Short run times

Disadvantage
I Fibers mutually penetrate
I Fibers have no gradient in z-direction
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Goals
I Extraction of single fibers from 3D image data

I Stochastic modeling of single fibers
I Construction of stochastic 3D model
I Validation of stochastic 3D model
I Modeling of PTFE
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Stochastic connection algorithm

Left: original fibers Right: extracted fibers
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Validation by visual inspection

Extracted single fibers Realizations of single fiber model
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Formal validation of vectorial time series model

Basic idea
I Monte-Carlo simulation of time series

I Transformation into polygonal tracks
I Comparison of geometric properties of extracted and simulated polygonal

tracks
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Basic idea
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Formal validation of vectorial time series model

Measure for the amount of
curvature: Volume of red area /

(length of blue line)2
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Formal validation of vectorial time series model

Curvature properties of single fibers

First row: Extracted polygonal tracks
Second row: Simulated polygonal tracks
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Idea of 3D GDL model

Cut-out of 3D synchrotron data Basic idea of bar/channel modeling
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Stochastic 3D GDL model
I A priori information

I Radius of fibers: r = 4.75µm
I Fiber length: l = 50mm
I Volume fraction of fibers: 0.235
I fiber-channel width c = 500µm
I fiber-bar width b = 70µm

I 3D GDL model
1. U ∼ U[0, 570]
2. Boolean model: Ξ =

⋃∞
n=1 (Bn + Sn),

I {Sn} is a 3D Poisson process with intensity λ
I Bn is the single bundle model of length l if Sn ∈ fiber-channel, i.e.,

Sn ∈ [u + i(b + c)− c, u + i(b + c)), i ∈ Z,
I Bn is a line segment of length l parallel to the x-axis if Sn ∈ fiber-bar, i.e.,

Sn ∈ [u + i(b + c), u + i(b + c) + b), i ∈ Z

3. Dilate fibers with a 3D sphere: Ξ⊕ B(0, r)



Page 104 Stochastic Geometry - a toolbox for analysis, modeling and simulation | 3D patterns on microscopic scales

Stochastic 3D GDL model
I A priori information

I Radius of fibers: r = 4.75µm
I Fiber length: l = 50mm
I Volume fraction of fibers: 0.235
I fiber-channel width c = 500µm
I fiber-bar width b = 70µm

I 3D GDL model
1. U ∼ U[0, 570]

2. Boolean model: Ξ =
⋃∞

n=1 (Bn + Sn),
I {Sn} is a 3D Poisson process with intensity λ
I Bn is the single bundle model of length l if Sn ∈ fiber-channel, i.e.,

Sn ∈ [u + i(b + c)− c, u + i(b + c)), i ∈ Z,
I Bn is a line segment of length l parallel to the x-axis if Sn ∈ fiber-bar, i.e.,

Sn ∈ [u + i(b + c), u + i(b + c) + b), i ∈ Z

3. Dilate fibers with a 3D sphere: Ξ⊕ B(0, r)



Page 104 Stochastic Geometry - a toolbox for analysis, modeling and simulation | 3D patterns on microscopic scales

Stochastic 3D GDL model
I A priori information

I Radius of fibers: r = 4.75µm
I Fiber length: l = 50mm
I Volume fraction of fibers: 0.235
I fiber-channel width c = 500µm
I fiber-bar width b = 70µm

I 3D GDL model
1. U ∼ U[0, 570]
2. Boolean model: Ξ =

⋃∞
n=1 (Bn + Sn),

I {Sn} is a 3D Poisson process with intensity λ
I Bn is the single bundle model of length l if Sn ∈ fiber-channel, i.e.,

Sn ∈ [u + i(b + c)− c, u + i(b + c)), i ∈ Z,
I Bn is a line segment of length l parallel to the x-axis if Sn ∈ fiber-bar, i.e.,

Sn ∈ [u + i(b + c), u + i(b + c) + b), i ∈ Z

3. Dilate fibers with a 3D sphere: Ξ⊕ B(0, r)



Page 104 Stochastic Geometry - a toolbox for analysis, modeling and simulation | 3D patterns on microscopic scales

Stochastic 3D GDL model
I A priori information

I Radius of fibers: r = 4.75µm
I Fiber length: l = 50mm
I Volume fraction of fibers: 0.235
I fiber-channel width c = 500µm
I fiber-bar width b = 70µm

I 3D GDL model
1. U ∼ U[0, 570]
2. Boolean model: Ξ =

⋃∞
n=1 (Bn + Sn),

I {Sn} is a 3D Poisson process with intensity λ
I Bn is the single bundle model of length l if Sn ∈ fiber-channel, i.e.,

Sn ∈ [u + i(b + c)− c, u + i(b + c)), i ∈ Z,
I Bn is a line segment of length l parallel to the x-axis if Sn ∈ fiber-bar, i.e.,

Sn ∈ [u + i(b + c), u + i(b + c) + b), i ∈ Z

3. Dilate fibers with a 3D sphere: Ξ⊕ B(0, r)



Page 105 Stochastic Geometry - a toolbox for analysis, modeling and simulation | 3D patterns on microscopic scales

Visual inspection of 3D GDL model

3D synchrotron data

Simulated non-woven GDL
drawn from the GDL model
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Visual inspection of 3D GDL model

Alternative visualisation (with different choice of colors)

3D synchrotron data

Simulated non-woven GDL
drawn from the GDL model
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Visual inspection of 3D GDL model

Alternative visualisation (with different choice of colors)

3D synchrotron data Simulated non-woven GDL
drawn from the GDL model
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Validation of 3D GDL model

Model validation using structural characteristics
I spherical contact distribution function (probability of a random pore voxel

to reach the fiber phase within a given distance)

black: real GDL
red: simulated GDL
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Validation of 3D GDL model

Model validation using structural characteristics
I spherical contact distribution function (probability of a random pore voxel

to reach the fiber phase within a given distance)
I directional distribution of line segments

real GDL simulated GDL
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Validation of 3D GDL model

Model validation using physical characteristics
I effective tortuosity (distribution of path lengths through a porous material)

path lengths through real GDL path lengths through simulated GDL

blue colored: short paths
red colored: long paths
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Validation of 3D GDL model

Model validation using physical characteristics
I effective tortuosity (distribution of path lengths through a porous material)

mean = 1.19 (real GDL) resp. mean = 1.15 (sim.
GDL)



Page 111 Stochastic Geometry - a toolbox for analysis, modeling and simulation | 3D patterns on microscopic scales

3D patterns on microscopic scales
I Li-ion batteries
I organic solar cells
I fuel cells
I polycristalline alloys
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Alloys
I 3D morphology of eutectic Si corals in an Al matrix (left) and

corresponding skeletonization (right)

image size is 548× 761× 357 voxel with voxel size of 46nm
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Alloys
I 3D skeletonization of Si corals (left) and corresponding stems (right)
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Alloys

Modeling idea of single coral:
I First the main stem is described by a random polygonal track where the

endpoints of these line segments are numbered serially (0)
I Branches are added to the stem and numbered serially ((1), (2)) and
I finally branches are deleted ((3), red colored) which are too close to each

other
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Alloys
I 3D graph structure of Si corals in an Al matrix (left) and realization of the

stochastic model for aggregates of corals (right)



Page 116 Stochastic Geometry - a toolbox for analysis, modeling and simulation | 3D patterns on microscopic scales

Alloys
I spherical contact distribution function (left), distribution of edge lengths

(center) and distribution of maximum stem length (right)
I black: computed for the graph structure of experimental Si corals, red:

drawn from the multi-coral model
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Alloys
I 3D morphology of experimental Si corals in an Al matrix (left) and

corresponding simulation of stochastic model (right)

image size is 761× 548× 357 voxel with voxel size of 46nm



Page 118 Stochastic Geometry - a toolbox for analysis, modeling and simulation | 3D patterns on microscopic scales

Alloys
I Distribution of spherical contact distances from Al to Si particles (left),

and vice versa (right) for the experimental image data (black curve) and
realization drawn from the stochastic model (red curve)
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