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Abstract

We describe a segmentation algorithm that is able to identify defects

(cracks, holes and breakages) in particle systems. This information is used

to segment image data into individual particles, where each particle and

its defects are identified accordingly. We apply the method to particle

systems that appear in Li-ion battery electrodes. First, the algorithm is

validated using simulated data from a stochastic 3D microstructure model,

where we have full information about defects. This allows us to quantify

the accuracy of the segmentation result. Then we show that the algorithm

can successfully be applied to tomographic image data from real battery

anodes and cathodes, which are composed of particle systems with very

different morpohological properties. Finally, we show how the results of

the segmentation algorithm can be used for structural analysis.
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1 Introduction

In many applications investigated in materials science, the microstructure of

the considered material is of great interest, as it significiantly influences its

properties, see, e.g., Torquato (2013) and Gaiselmann et al. (2014). Moreover, in

many cases, defects of the materials under consideration can occur under various

conditions, see, e.g., Antonyuk et al. (2006). A typical example where this

phenomena occurs are electrodes in lithium-ion batteries that undergo thermal

runaway, see, e.g., Finegan et al. (2015). During this process, which can occur

as a result of extreme conditions such as high temperature or overcharging,

the temperature in the cell increases dramatically, leading to deformation of

the particles in the electrodes, which can be observed in tomographic images,

see Finegan et al. (2016). Moreover, cracks in particles do not only occur due

to failure, but, e.g., due to the heterogenous nature of materials. A typical

example are electrodes made from natural graphite. Regardless of their origin,

cracks, holes and breakages in the particles can strongly influence the underlying

electrochemical and kinetic processes, as they lead to a higher surface area

of the active material. The nature of these particle morphologies will affect

the operation of the cell, as well as the nucleation and propagation of failure.

Moreover the post-mortem particle morphology can provide valuable forensic

information regarding the thermal failure process.

Therefore, it is of high interest to analyse the occurrence of such defects

by investigating which kind of particles are prone to be damaged or what kind

of shapes the defects have. This makes it necessary to perform a structural

segmentation of tomographic image data. A widely used algorithm for the seg-

mentation of a system into individual particles is the watershed approach, see

Roerdink and Meijster (2001) for an overview. Particles are identified based

on watershed seeds, which are chosen as the local maxima of the distance map

of the binary image. It is assumed that for each particle there is exactly one

local maximum of the distance map. However, this is not necessarily true for
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defective particle systems. In Gillibert and Jeulin (2013), an approach for the

3D reconstruction of fragmented grains is proposed, which is based on a mor-

phological closing and so-called h-maxima. It reduces the number of watershed

seeds. Furthermore, a second variant using a cluster algorithm is considered

in Gillibert and Jeulin (2013). Both methods reconstruct the original particle

from a system of multiple fragments. In Petrich et al. (2017), an approach for

detection of breakages using machine learning is proposed, which is trained us-

ing hand-labelled data and is then able to automatically detect broken particles

in systems similar to the training data.

In the present paper, a different approach for segmenting defective particle

systems is considered, which not only detects broken particles, but also detects

cracks (which do not separate the particle into multiple pieces) and holes. First,

possible voxels in the image that could be part of a defect (either a crack, hole

or complete breakage of a particle) are found. Then, those voxels are temporar-

ily added to the particle phase and a segmentation into individual particles

is performed using watershed techniques. Finally, the list of ‘defect voxels’ is

‘thinned’ again according to some characteristic criteria of holes, breakages and

cracks. The output is a system of individual particles with their corresponding

defects marked accordingly. Note that the whole algorithm is performed in 3D,

while some figures in the present paper show 2D slices of the 3D data sets to

enhance visibility of details.

To show the broad applicability of the algorithm, we use it for the segmen-

tation of various different data sets. First, for validation purposes, we gener-

ate simulated data describing the microstructure of a battery anode using the

stochastic microstructure model described by Westhoff et al. (2017). By artifi-

cially inserting cracks, holes and breakages, we can validate the accuracy of the

segmentation algorithm. Finally, we apply the algorithm to two different to-

mographic data sets of anode and cathode material from a lithium-ion battery,

which exhibit very different particle shapes. The first data set was extracted

from the cathode of a commercial Li-ion pouch cell that underwent overcharge-
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induced thermal runaway. The second data set was extracted from a commercial

Li-ion anode in its fresh state. We show that the algorithm described in the

present paper is able to detect both, defects induced by overcharging as well as

cracks that stem from the heterogenous nature of graphite.

The outline of the paper is as follows. In Section 2, we provide a detailed

description of the segmentation algorithm. Then, in Section 3, we validate the

algorithm on simulated data. In Section 4, we show an application to real

electrode data from tomographic images. Finaly, we conclude the paper in

Section 5.

2 Description of the algorithm

The idea of the algorithm is as follows. We assume that the tomographic

image data is already preprocessed in a way that we have a binary image

I : W → {0, 1}, where W ⊂ Z3 is the observation window with Z being the set

of integers. For each voxel v = (x, y, z) ∈ W belonging to a particle, we have

I(v) = 1, whereas for the remaining voxels we have I(v) = 0. Note that the

remaining voxels include the pore space as well as further additives. We will

call this part the background phase in the following. An example is shown in

Figure 1, where particles are shown in grey and the background phase is shown

in white. Note that some cracks and holes in the particles are visible in the

image, which appear in white, i.e., they are assigned to the background phase.

The aim is to identify those background voxels where a defect of a particle is

present. An overview of the corresponding algorithm is shown in Figure 2, and

an example of application of each step is visualized in Figure 3. The basic

idea is as follows. After closing holes using a cluster detection algorithm and

marking them as defect voxels (red voxels in Figure 3(a)), further candidates

for those defect voxels are identified based on the distance map (red voxels in

Figure 3(b)). All candidates are initially added to the particle phase, and a

further cluster detection is performed to identify possible new resulting holes
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Figure 1: 2D slice of a binarized 3D image of a lithium-ion battery cathode,
where many defects (cracks, holes and breakages) of particles are visible.

(red voxels in Figure 3(c)). Given all candidates for defect voxels, the system

of particle voxels and defect voxels is considered as one phase (blue and white

voxels in Figure 3(d)) and segmented into individual particles using watershed

techniques (Figure 3(e)). Then, all candidates for defect voxels that belong to a

watershed separator are removed (red voxels in Figure 3(f)). This however still

leaves some wrongly chosen candidates for defect voxels, which are also deleted

using a criterion that considers their local neighbourhood (red voxels in Figure

3(g)). Finally, small clusters of defect voxels, which might result from small

inaccuracies, are deleted (red voxels in Figure 3(h)). Due to the deletion of can-

didates, some particles together with their defects identified by the watershed

algorithm might not be connected any more, so the final set of particles is iden-

tified using a cluster detection algorithm, where small particles are considered

as noise in the greyscale image and removed. An example of the output of the

algorithm is shown in Figure 3(i), where particles are shown in different colours

and defects are marked in blue.

The algorithm is implemented in the software framework GeoStoch, see

Mayer et al. (2004). In the next subsections, each step is explained in detail.
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Input: Binary image

1. Identification of candidates for defect voxels

Detection of candidates
based on distance map

Closing of
holes in particles

Closing of
new holes

2. Identification of individual particles

Watershed algorithm

3. Thinning of candidate list

Iterative removal
of candidates

Delete candidates on
watershed separators

Removal of
small clusters

4. Postprocessing

Removal of very
small particles

Relabeling

Output: Labelled image

Figure 2: Overview of the four stages involved in the segmentation algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Application of the algorithm to an example data set. Candidates for
defect voxels are always shown in blue, while red voxels show those candidates
that are added or removed in the corresponding step. Note that the algorithm
is performed in 3D, but only 2D slices are shown here. (a) Holes that are
completely contained in the particles are closed. (b) Candidates are added
based on the distance map. (c) If all candidates found so far are added to
the particle phase, new holes occur, which are closed in this step. (d) All
candidates are temporarily added to the particle phase and the image is used
for segmentation into individual particles using the watershed algorithm. (e)
The result of the watershed algorithm. (f) Candidates for defect voxels that
are located on watershed separators are removed. (g) Candidates are removed
based on their local neighbourhood. (h) Small clusters of candidate voxels are
identified and added to the corresponding particle. (i) Final output of the
segmentation algorithm, with particles labelled in different colours and defects
shown in blue.
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2.1 Identification of candidates for defect voxels

In the following, the identification of candidates for defect voxels is explained

(Stage 1 in Figure 2). We add all candidates to a list L. Whenever a candidate

v is added to L, we put I ′(v) = 1 in a copy I ′ of I, i.e., we assign the defect

voxel candidates to the particle phase. This copy will be needed for technical

reasons, e.g., when identifying the individual particles in Section 2.2.

2.1.1 Closing of holes in particles

To begin with, small holes in the particles that have no contact to the remaining

background phase are closed. This is done using a cluster detection algorithm

on the background phase, see Hoshen and Kopelman (1976) for details. Then,

every cluster with a size less than some parameter hmax is added to L, see the

red voxels in Figure 3(a).

2.1.2 Detection of candidates based on distance map

In the next step, further candidates are identified based on the distance map

D : W → [0,∞), which is constructed as follows. For each voxel v ∈W , we put

D(v) = min
v′:I′(v′)=1

|v − v′|,

i.e., D(v) is the shortest distance from v to a voxel that belongs to the particle

phase. An example is shown in Figure 4 (top), where the blue parts indicate

particle voxels, and the numbers in the voxels correspond to the values of the

distance map. The particle on the top has no defects, whereas the two particles

on the bottom show a breakage (left) and a crack (right). We can observe that

the values of the distance map at and around voxels that belong to a defect are

very small compared to other background voxels. This is exemplarily indicated

for three voxels by the circles containing the numbers coloured in orange in the

top of Figure 4. In the case of the two voxels that belong to a defect (center

of circle on the bottom left and right), almost all values within the circle are 0
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(particle voxels) or 1, whereas in the case of the voxel on the top, which does not

belong to a defect, also much larger numbers occur within the corresponding

circle. Therefore, for each background voxel v ∈W with I ′(v) = 0, we sum up all

the values of D(v′) with |v−v′| ≤ r for some parameter r and save the result in a

new image S : W → [0,∞). The radius r is determined by visual inspection for

the sketch. Throughout this paper, parameters are chosen by visual inspection

of the resulting segmentation, where it was always unproblematic to determine

parameters leading to good results. As the runtime of the algorithm depends

on the size of the image under consideration, a good strategy for exploring the

parameter space is to apply the algorithm to a small, representative cutout

of the data set with different parameters and to analyse the quality of the

segmentation. Further methods for parameter choice are discussed in Section

5. The result is shown at the bottom of Figure 4 (with r = 3 in this example).

Now we add all voxels v with S(v) < dmax for some parameter dmax to the

list of defect voxel candidates L. At the bottom of Figure 4, all voxels v with

S(v) < 27 are marked in orange colour, where again, the number 27 has been

chosen by visual inspection. Note that this includes all voxels that belong to

defects, however, also some voxels between the particle on the top and the one

on the bottom left. Those will be removed from L in a later step, see Section

2.3.2 for details.

For voxels with a distance of less than r to the boundary, we only sum up

all the available values, and scale the threshold dmax by the ratio of voxel that

are available and the number of voxel that are in a sphere with radius r.

In Figure 3(b) (red voxels), an example of defect candidate voxels that are

found in this step is shown.

2.1.3 Further closing of holes

When assigning defect voxel candidates to the particle phase in I ′, this might

lead to new holes, i.e., clusters of background voxels that are completely con-

tained within the particle phase. We proceed like in Section 2.1.1 to identify
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Figure 4: Top: 2D sketch showing the distance map (numbers in the voxels) for
a system of 3 particles (blue voxels). For each voxel, the values of the distance
map of all voxels within a certain region (green circles shown exemplarily for
three voxels) are considered for identifying defect voxel candidates. Bottom:
Sum of all distance map values in a circle with radius r = 3. Smaller numbers
(orange) indicate defect voxel candidates.
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these holes, add them to L and assign them to the particle phase in I ′. An

example is shown in Figure 3(c), red voxels.

2.2 Segmentation into individual particles

As already mentioned, the problem of segmenting defective particle systems

using watershed techniques is that this procedure would result in an overseg-

mentation, as the defects have an influence on the local maxima of the distance

map. However, by identifying candidates for defect voxels and assigning them

to the particle phase in I ′, it is possible to successfully apply watershed segmen-

tation to I ′. This is illustrated in Figure 5, where in Figure 5(a) the defects of

the particles induce many local maxima of the distance map, which is why the

segmentation results in a system of highly fragmented particles. By first adding

defect voxel candidates to the binary image, the distance map is smoothed and

therefore the number of local maxima is reduced, so the segmentation results in

a more reasonable set of particles, see Figure 5(b).

Depending on the data set, different variations of the standard watershed

algorithm are useful in order to get a reasonable segmentation into individual

particles. In many cases, the standard approach leads to oversegmentation, so

many extensions have been proposed, which, e.g., join several local maxima of

the distance map to a single watershed seed, see, e.g., Spettl et al. (2015). For a

detailed analysis of a data set, a suitable methodology for watershed separation

has to be found. In order to achieve comparable results, throughout this paper,

we use the watershed algorithm implemented in Avizo, see VSG - Visualization

Sciences Group - Avizo Standard (2017). Avizo’s watershed algorithm provides

reasonable results for all the data sets under consideration, however, there are

some particles that are not well detected. We note that for a more detailed

analysis of defective particle systems, special attention has to be paid to this

step.

The watershed segmentation (Stage 2 in Figure 2) results in an image A :

W → N, where N is the set of all non-negative integers including zero. Each
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(a) Watershed algorithm applied to binary
data with defects.

(b) Watershed algorithm applied to the same
binary data, where defect voxel candidates
are added to the particle phase.

Figure 5: 2D slices showing the effect of defects on the watershed algorithm.
While particles are highly fragmented when using the original binary image as
input (a), particles are much better identified when first assigning defect voxel
candidates to the particle phase (b).

number has the role of a label, i.e., if two voxels have the same number, they

both belong to the same particle. The background phase is labelled with zero.

We add a further label d ∈ N (that is not given to any particle yet) and set all

voxel v ∈ L to d in A. An example can be seen in Figure 3(e), where the colours

represent the labels of the particles, and blue voxels correspond to candidates

for defect voxels.

2.3 Thinning of candidate list

As can be observed in Figure 3(e), so far, too many candidates for defect voxels

are detected, expecially at the boundary of particles. Thus, candidates have to

be removed from the list L (Stage 3 in Figure 2). The procedure is described in

the following subsections in detail.

2.3.1 Removing of candidates on watershed separators

Wherever the watershed algorithm separates two particles, we assume a bound-

ary between two neighbouring particles, which does not belong to a defect. This

is why in the first place, all candidates from L that are located on a watershed

seperator are removed, see Figure 3(f), red voxels. The corresponding voxels

are assigned to the background phase in A.
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Note that, as already seen in Section 2.1.2 and Figure 4, there might be

some wrong candidates between two neighbouring particles. This leads to the

particles growing together in I ′, however, they are split again by the watershed

algorithm. A part of the corresponding wrong candidates is therefore deleted

in this step. The remaining wrong defect voxels are located at the boundary of

particles and will be removed in the next step.

2.3.2 Further iterative removal

At this point, there are still some wrong defect voxel candidates, which mainly

occur at the boundary of particles (as here the corresponding values of the dis-

tance map considered in Section 2.1.2 are small). These wrong candidates will

be identified in this step based on their local neighbourhood. Each voxel has 26

neighbours. Typically, voxels on positions with defects will be surrounded by

further defect or particle voxels, whereas wrong candidates on the boundary of

particles are surrounded by many void (background) voxels. This is also illus-

trated in Figure 6, where on the left-hand side, an example of a wrong candidate

(grey) at the surface of a particle (blue voxels) is shown. It is surrounded by 14

void neighbours. On the right-hand side, the two grey voxels belong to a crack in

the particle. The considered grey voxel is only surrounded by 8 void neighbours.

Thus, we iteratively remove voxels from L with more than or equal to nmax void

neighbours in the labelled image A. To be more precise, for each voxel in L, we

compute the number of its void neighbours in A. If this number is larger than

or equal to nmax, we save the voxel in a list L′. When all voxels from L have

been considered and L′ is not empty, we delete every voxel v ∈ L′ from L and

set A(v) = 0. Then, a new list L′ is built as described above, until there are no

more candidates with more than or equal to nmax void neighbours. An example

can be found in Figure 3(g), where the red voxels show those candidates found

in this step.
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Figure 6: Sketch showing different neighbourhoods of defect voxel candidates.
Blue: Particle voxels; Grey: Defect voxel candidates.

2.3.3 Removal of too small clusters

Finally, we consider all the connected components of defect voxel candidates.

We only keep those connected components the size of which is greater than some

parameter cmin. This removes some small artefacts, see the red voxels in Figure

3(h). Those voxels are assigned to the corresponding particle.

2.4 Relabelling and removal of very small particles

Due to the removal of defect voxel candidates, it might be that a particle identi-

fied by the watershed algorithm in the step described in Section 2.2 is separated

again. This is why a cluster detection algorithm on the particle- and defect

phase is performed, and particles are relabelled such that each particle and its

corresponding defects is composed of only one connected component. Moreover,

very small particles are considered as a result of noise in the greyscale image

and, therefore, are removed. These two steps correspond to Stage 4 in Figure

2. Throughout this paper, we remove every particle that consists of less than

27 voxels, which is equivalent to a cube of 3 voxels side length.

The final result of the algorithm can be found in Figure 3(i). The particles

are labelled with different colours, and the final set of defect voxels is shown in

blue.
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3 Validation

In this section, we validate the segmentation algorithm using a simulated data

set, where we have full information about defects. This allows us to quantify

the accuracy of the algorithm, i.e., we can compare which of the (known) defect

voxels are actually found by the algorithm. We generate the data sets using a

similar procedure as it has also been successfully done for validation purposes

in Petrich et al. (2017).

3.1 Generation of simulated data

We use the model described in Westhoff et al. (2017) to generate a completely

connected system of particles. The algorithm is based on a decomposition of

space into convex polytopes using a so-called Laguerre tessellation, and a sub-

sequent simulation of particles using so-called spherical harmonics. For further

details, we refer to Westhoff et al. (2017) and Kuchler et al. (2017) regarding

stochastic modeling of active particle systems in anodes and cathodes, respec-

tively. Note that the model parameters have been slightly adjusted to achieve

a structure with larger particles and higher volume fraction.

The procedure described above results in a system of pristine particles that

can be discretized in a voxel image. In a next step, we add defects to the

particles, namely cracks, breakages and holes. The algorithm is as follows.

First, we choose 70% of the particles to which a defect will be added, where

very small particles (less than 100 voxels in the discretized image) are ignored.

Then, for each particle, we decide if a crack in the particle will be simulated

(80%), the particle will be broken (10%) or holes will be added to the particle

(10%). Those three scenarios are described in the next subsections.

3.1.1 Simulation of cracks

For the simulation of a crack in a particle, we randomly choose two uniformly

distributed points q1 and q2 at the particle surface, and one point p uniformly
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(a) 2D sketch of how the po-
sition of a crack is simulated
as a cone.

(b) Cutout of a 2D
slice of the simulated
3D particle system with
defects. Blue: Cracks;
Yellow: Holes; Orange:
Breakage.

Figure 7: Simulation of a particle system with defects for validation purposes.

distributed in the inner part of the particle. Then the two vectors v1 = #   »pq1 and

v2 = #   »pq2 describe a convex cone c = λ1v1 + λ2v2, λ1, λ2 > 0, see Figure 7(a)

for a 2D sketch. All the particle voxels that intersect with this cone are added

to the list of crack voxels. However, this only gives cracks that are exactly one

voxel thick, which is not realistic considering e.g. Figure 1. This is why we

consider a Poisson point process (for details we refer to Chiu et al. (2013)) on

the crack with some intensity η1 > 0, where η1 = 0.02 led to reasonable results.

For each point of the Poisson point process, we consider a sphere with radius

ρ ∼ U(1, 2), i.e., the radius is uniformly distributed between one and two. Each

voxel the center of which is contained in such a sphere is added to the list of

crack voxels.

3.1.2 Simulation of breakage

Broken particles are generated exactly like cracks, with the only difference that

we do not consider a convex cone, but the linear combination c = λ1v1 +

λ2v2, λ1, λ2 ∈ R, i.e., c describes not a cone but a plane in R3. Thus, the

particle is split into two parts. Exactly as in the case of cracks, additionally

spheres are generated on the plane such that the simulated breakage has a more

realistic structure.
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3.1.3 Simulation of holes

As it can be observed in Figure 1, holes in particles seem to occur as clusters, i.e.,

there is usually not only one hole in a particle, but several holes are scattered

over the whole particle. This is why we simulate holes in particles using a so-

called Boolean model. We consider a Poisson point process with some intensity

η2 > 0 within the particle, where η2 = 0.02 led to reasonable results. Then, a

radius, which is uniformly distributed in the interval (1, 2.5) is attached to each

point. This results in a system of spheres. Every voxel that is covered by such

a sphere is added to the list of hole voxels.

Note that the model for generating defective particle systems is not sup-

posed to represent physical results regarding defects in particle systems, but is

only used to produce reasonable input for the segmentation algorithm. A for-

mal validation of the algorithm for simulation of cracks, breakages and holes is

not possible as we do not have information about their real shapes a priori (as

gaining this information is the goal of the algorithm proposed in the present pa-

per). However, a qualitative validation for tomographic image data is possible,

see Figure 7(b) compared to Figure 1. Moreover, the segmentation algorithm is

voxel-based and does not depend on the actual shape of cracks / breakages, i.e.,

it does not assume a specific structure of the defects. Due to the randomness

of the simulation algorithm, we make sure that a variety of differently shaped

cracks and breakages are generated.

3.2 Results

We apply the segmentation algorithm to a structure generated as described in

the previous section. The sampling window consists of 440 × 440 × 240 voxels

containing 1338 particles which altogether exhibit 918 different defects, where we

only evaluate the results in a window eroded by 20 voxels on each side, because

the algorithm might be less precise at the boundary of the sampling window

due to missing information. The cubic voxels have a side length of 440 nm. The
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Segmented \ Real Defect voxel Background voxel
Defect voxel 482 258 (81.84%) 68 545 (00.41%)
Background voxel 107 040 (18.16%) 16 560 502 (99.59%)
Total 589 298 (100%) 16 629 047 (100%)

Table 1: Overview of number of correctly and wrongly identified defect voxels
for simulated data set.

parameters are chosen as hmax = 10000, r = 4, dmax = 200, nmax = 10 and

cmin = 9. The marker extent parameter for segmentation in Avizo is chosen to

be 1.

In Figure 8, the result of the defect detection algorithm is visualized for a 2D

slice of the image stack. Dark-blue voxels show correctly identified defects, light-

blue voxels indicate background voxels which are wrongly identified as defects,

and orange voxels show defect voxels that are not found by the algorithm. In

general, it can be observed that most of the defect voxels are correctly identified,

whereas only very few background voxels are wrongly identified as defect voxels.

As can be seen in Table 1, the overall amount of correctly identified defect voxels

is more than 80%. However, we note that this does not mean that only about

80% of the defects are found. As can be seen in Figure 8, orange voxels (defect

voxels that are not found) occur mostly close to dark-blue voxels (correctly

identified voxels). This means that most of the defects are detected, but not all

the voxels that belong to this defect are found. Thus, we compute the number

of defects from which at least one voxel is found. The results are shown in Table

2, where we see that roughly 97% of defects are detected, whereas on average

75% of the voxels per defect are found for cracks and holes, and 68% of voxels

per breakage. Finally, we can conclude that the algorithm performs very well

on the simulated data set, detecting almost all defects and more than 80% of

the overall amount of defect voxels, where only a small amount of background

voxels is wrongly identified as defect voxels.

In the next section, the algorithm is applied to tomographic image data of

real particle systems from battery electrodes to show that also for real data a

reasonable segmentation result regarding visual inspection can be achieved.
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Figure 8: 2D slice of the validation data set. Dark-blue: Correctly identified
defect voxels; Orange: Defect voxels that are not found; Light-blue: Background
voxels that are wrongly identified as defect voxel.

Defect Detected at all Detected voxels on average
Crack 98.15% 76.77%
Breakage 96.25% 68.42%
Holes 97.56% 74.46%

Table 2: Overview of number of detected cracks, breakages and holes as well as
on average correctly identified voxels per defect.

4 Application to tomographic image data

In this section, we show how the algorithm works for tomographic image data of

real electrodes, where one of the data sets comes from a battery cathode made

from LiCoO2 and the other one from a graphite anode. Note that for these

data sets no formal validation is possible, as the defects are unknown, however,

we present a comparison of greyscale images and corresponding segmentation

to show that defects visible in the greyscale images are recognised in the seg-

mentation. Subsequently, we perform a statistical analysis of the segmented

data sets. Note that the surface area calculated in this section is calculated

from the segmented tomographic reconstructions which is inherently limited by

the resolution of the utilised X-ray CT systems. For this reason, surface area

comparisons provide a qualitative insight into the role of microstructural defects

and, due to the limited surface texture details that can be captured, should not
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be considered to be actual specific surface areas of the material.

4.1 Results for LiCoO2

The LiCoO2 sample was extracted from a commercial Li-ion pouch cell that

underwent overcharge-induced thermal runaway, as described in Finegan et al.

(2016). The particle size distribution of the LiCoO2 electrode showed a signifi-

cant reduction in the mean particle diameter following thermal runaway which

is evidently caused by the decrepitation of particles (cracking and breakage)

when exposed to the rapid increase in temperature (up to > 1000◦C). The sam-

ple was removed from the cell packaging and imaged in a lab-based CT system

(Zeiss Xradia Ultra 810, Carl Zeiss XRM, Pleasanton, CA, USA) with a quasi-

monochromatic beam energy of 5.4keV, a pixel size of 63.1 nm, and a field of

view of 65µm × 65µm. The radiographs were reconstructed using a commercial

software package (Zeiss XMReconstructor), which uses an algorithm based on

the standard filtered back-projection.

The 3D greyscale image is binarized using the automatic thresholding method

from ImageJ, see Schindelin et al. (2012), without any filtering, because this

might remove some of the very fine defects. Then the algorithm described in

Section 2 is applied, where the parameters are chosen as hmax = 10,000, r =

4, dmax = 200, nmax = 10 and cmin = 9. The marker extent parameter for

segmentation in Avizo is chosen to be 1.

In Figure 9 the result of the algorithm is shown. First, a 2D slice of the

3D greyscale image (Figure 9(a)) is compared to the corresponding 2D slice of

the segmentation (Figure 9(b)). The different colours in Figure 9(b) indicate

different particles, grey voxels indicate defects. Comparing the result to the

greyscale image, we find that defects visible in the greyscale slice are recognised

in the segmented data set and the segmentation into individual particles mostly

matches how one would label particles manually by visual inspection. In Figure

9(c) a 3D view of the segmented structure is shown together with a view of an

individual particle and its defects.
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(a) (b)

(c)

Figure 9: Results for LiCoO2 data set. (a) Slice of the greyscale image. (b)
Corresponding segmentation. Particles are shown in different colours and grey
voxels indicate defects. (c) Left: 3D view of the segmented LiCoO2 data set.
Particles are shown in different colours, defects are marked in light grey. Note
that several slices at the front have been removed to allow a view “inside” the
structure. Right: Solid particle phase (blue) and its defects (red).
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Characteristic Result
Percentage of particles with defect 49.91%
Specific surface area of particle system with defects 1.31µm−1

Specific surface area of particle system without defects 1.09µm−1

Additional specific surface area induced by cracks 20.77%

Table 3: Analysis of segmented cathode data.

To give a first outlook to possible applications of the algorithm and the in-

formation that can be gained, we perform a structural analysis of the segmented

image. The results are given in Table 3. First, we find that roughly 50% of the

particles exhibit a defect, which is in good accordance with the visual impres-

sion. In electrodes, the active surface area of the particles is of high interest,

because it significantly influences the ongoing processes. Therefore, we compute

the surface area (a) for the 3D image where all defects are added to the particles,

i.e., no defects are present, and (b) for the defective particle system, where we

only close holes, as they are not reachable from the pore space. The results are

also given in Table 3. We found that the defects increase the specific surface

area by more than 20%, which would significantly affect the rate capability of

the lithium ion cells as well as the reaction rate of the LiCoO2 during thermal

runaway.

4.2 Results for graphite

The graphite sample was extracted from a commercial Li-ion cell in its fresh

state. A full ‘separator-to-current collector’ pillar was prepared using a micro-

machining laser (A-Series Compact Laser Micromachining System, Oxford Lasers

Ltd., UK) as described in Bailey et al. (2017). For this analysis a section mid-

way between the surface of the electrode and the current collector was imaged

and analysed. The graphite electrode was imaged using both Zernike phase and

absorption contrast imaging modes in a lab-based CT system (Zeiss Xradia Ul-

tra 810, Carl Zeiss XRM, Pleasanton, CA, USA) with a quasi-monochromatic

beam energy of 5.4keV, a pixel size of 126.2nm, and a field of view of 65µm

× 65µm. The phase and absorption contrast images were reconstructed using
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a commercial software package (Zeiss XMReconstructor) and were thereafter

blended to give enhanced image quality, as described in Taiwo et al. (2016). A

non-local means filter (Buades et al. (2005)) was applied to the resulting image

to reduce noise whilst preserving edges.

The filtered 3D greyscale image is then binarized in the same way as stated in

the previous section. Then the algorithm described in Section 2 is applied, where

the parameters are chosen as hmax = 10,000, r = 6, dmax = 1000, nmax = 10

and cmin = 9. The marker extent parameter for segmentation in Avizo is chosen

to be 4.

In Figure 10, the result of the segmentation algorithm is shown. First,

2D greyscale slices are compared to the corresponding segmentations. As the

graphite particles are not spherical, but have rather the form of flakes, a top

view (Figure 10(a) and 10(b)) and a side view (Figure 10(c) and 10(d)) is shown.

Again, we find that the defects visible in the greyscale slice are recognised by

the algorithm. In Figure 10(e) a 3D view of the segmented structure is shown

together with a view of an individual particle and its defects.

Also for the graphite particle system, we perform a statistical analysis of the

segmented data set, investigating the same characteristics as in Section 4.1. The

results are given in Table 4. The percentage of defective particles is about 18%

here, which at first view looks different from the visual impression of Figure 10.

However, there are many very small particles which do not exhibit cracks, and

rather the larger graphite flakes predominantly have cracks. The influence of

cracks on the active surface area of the graphite is much greater than in the case

of the LiCoO2 due to its flake-like microstructure, contributing to more than a

70% increase in surface area when compared to the equivalent microstructure

without cracks.
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(a) (b)

(c) (d)

(e)

Figure 10: Results for graphite data set. (a) Top view on a slice of the greyscale
image. (b) Segmentation corresponding to (a). Particles are shown in differ-
ent colours and white voxels indicate defects. (c) Side view on a slice of the
greyscale image. (d) Segmentation corresponding to (c). (e) Left: 3D view of
the segmented graphite data set. Particles are shown in different colours, de-
fects are marked in light grey. Note that several slices on each side have been
removed to exclude boundary effects. Right: Solid particle phase (blue) and its
defects (red).
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Characteristic Result
Percentage of particles with defect 18.31%
Specific surface area of particle system with defects 1.14µm−1

Specific surface area of particle system without defects 0.66µm−1

Additional specific surface area induced by cracks 71.69%

Table 4: Analysis of segmented graphite data.

5 Conclusions

We have developed a structural segmentation algorithm for image data that de-

tects cracks, breakages and holes in particulate systems and performs a segmen-

tation into individual particles, where fragments of one and the same particle

are recognised accordingly. The algorithm has been validated using simulated

data from a stochastic 3D microstructure model, where positions of defects are

known. This allows a quantification of the accuracy of the algorithm. Finally,

the method has been applied to tomographic image data from a battery anode

and cathode, which exhibits its broad applicability for data sets with different

defects with a reasonable range of sizes. If very fine and much bigger defects

occur in one and the same structure, the algorithm might have problems and it

could be helpful to consider both scales individually.

A crucial point of the algorithm presented, as with most advanced segmenta-

tion algorithms, is the choice of parameters. Usually, there is no obvious decision

rule and good parameters are found using rather a trial-and-error method and

visual inspection. However, a possible improvement could be using stochastic

3D microstructure models like described in Section 3.1 and generating virtual

particle systems with similar properties like the data under consideration. Then,

it is possible to choose appropriate parameters of the segmentation algorithm

by optimizing with respect to the (evaluable) accuracy on simulated data. This

is one possibility to further develop the methodology described in the present

paper. Moreover, the structural segmentation algorithm allows for a comprehen-

sive analysis of defects in particle systems. In particular, the spatial frequency

of defects is of high interest. Furthermore, defects in lithium-ion battery elec-
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trodes do not only occur during operation, but already during the production

process, especially the calendering process. A corresponding analysis is subject

of further research.
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