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Stochastic 3D Modeling of the GDL Structure in PEMFCs
Based on Thin Section Detection
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We propose a mathematical model to describe the microstructure of the gas diffusion layer �GDL� in proton exchange membrane
fuel cells �PEMFCs� based on tools from stochastic geometry. The GDL is considered as a stack of thin sections. This assumption
is motivated by the production process and the visual appearance of relevant microscopic images. The thin sections are modeled
as planar �two-dimensional �2D�� random line tessellations which are dilated with respect to three dimensions. Our 3D model for
the GDL consists of several layers of these dilated line tessellations. We also describe a method to fit the proposed model to given
GDL data provided by scanning electron microscopy images which can be seen as 2D projections of the 3D morphology. In
connection with this, we develop an algorithm for the segmentation of such images which is necessary to obtain the required
structural information from the given grayscale images.
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In order to use hydrogen as an energy carrier, an effective way to
convert hydrogen into electricity is necessary, with the fuel cell tech-
nology being an appropriate means due to its high efficiency. A key
component of a fuel cell is the gas diffusion layer �GDL�; see Fig. 1.
The GDL is responsible for the transport of hydrogen and oxygen to
the electrodes where the electrochemical reaction takes place.1 Also,
its task is to remove the water produced. In this context it is impor-
tant that just the right water content is achieved, because water is
essential for the conductivity of the membrane, whereas excess wa-
ter in the GDL leads to flooding of the pores, which in turn limits
current density. Hence, the balance between water drainage and wa-
ter storage is the key to high performance. Additionally, the GDL
acts as a conductor for the electricity produced.

For a better understanding of the physical processes within the
GDL and for an optimization of its design, a well-fitted structural
model is needed. In the present paper we propose a model of the
GDL using tools from stochastic geometry, in particular, random
tessellations. Note that the advantage of this type of stochastic
model is that the complex morphology of the GDL can be described
by few parameters. In our case, the morphology of the GDL is
formed by a large number of irregularly located long fibers with
negligible curvatures. The fundamental idea of our structural model
arises from the production process of the GDL considered, where
fibers are disposed �almost� horizontally. This leads to the assump-
tion that a GDL can be seen as a stack of thin sections, i.e., thin
�separated� sublayers of fibers, which fits the structure shown in Fig.
1 quite well. Furthermore, Fig. 1 shows that the individual fibers can
be approximated by straight cylinders. Therefore, in a first step the
thin sections of the GDL are represented by planar random line
tessellations, which are built by intersecting lines located at random
in the Euclidean plane. Then, these lines are “blown up” to three-
dimensional �3D� objects, i.e., they are dilated in 3D. Each 3D-
dilated line tessellation represents a thin section, i.e., a separated
�sub�layer of the GDL. Finally, a certain number of such dilated line
tessellations are stacked together and, in this way, a 3D model for
the whole GDL is obtained.

At present, the process of obtaining 3D images of GDL, e.g., by
means of synchrotron tomography,2 is a complex and expensive task
and therefore not always practicable. 2D electron microscopy im-
ages can be obtained much more easily. They can be used, for ex-
ample, in the production control of the GDL. Therefore, it is a re-
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search approach to describe the morphology of the GDL by a
multilayer model on the basis of 2D projection data. Another sto-
chastic model for the GDL was recently considered in Ref. 3 and 4.
This model originally stems from Ref. 5, where it was applied to the
morphological structure of nonwoven porous materials. In these pa-
pers, a 3D dilated Poisson line process is used to model the fibers of
the GDL. The anisotropy in the z direction is modeled with an
anisotropy parameter � which has to be estimated from thin section
images of the GDL. In contrast to this model, our model assumes
that the orientation in the z direction is negligible for this kind of
GDL material. Therefore, an anisotropy parameter need not be de-
termined, and with the segmentation algorithms proposed in the
present paper, all required information for the fiber modeling can be
gained from only 2D scanning electron microscopy �SEM� images.
In addition to the structural model for the fibers of the GDL, we
have introduced a modeling component for binder material.

An important aspect of constructing a suitable model is the pos-
sibility of fitting it to real data. In our case, data are given as 2D
projection images from electron microscopy �see Fig. 1a�. To get
structural information from such images, it is necessary to apply
suitable segmentation algorithms. Thus, the development of such an
algorithm is another main part of the present paper, where we addi-
tionally consider a 3D control image of a GDL �see Fig. 1b�, which
is used to validate the quality of our segmentation techniques and
model fit.

This paper is organized as follows. In the next section, the pro-
posed multilayer model for the GDL diffusion layer is explained.
Next, the segmentation of the image data, as illustrated in Fig. 1, is
described. Then, a method for the identification of single thin sec-

Figure 1. Visualization of a GDL: �a� 2D projection image and �b� 3D
thin-section image.
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tions is discussed. This is a first step toward a statistical model
fitting algorithm explained in the Statistical Model Fitting section.
Here, some first results of our statistical analysis of the GDL and a
validation of our multilayer model are also presented.

Stochastic Multilayer Model

In this section we introduce a mathematical model for the micro-
structure of the GDL in proton exchange membrane fuel cells �PEM-
FCs� which is based on tools from stochastic geometry �see, e.g.,
Ref. 6-8�. A closer look at the structure of the GDL shown in Fig. 1
leads to the impression that the single fibers can be approximated by
dilated straight lines. Therefore, it seems appropriate to use a model
which incorporates straight lines, at least for the material considered
in the present paper.

The location of the fibers, visible in Fig. 1, and the production
technique for this type of GDL, suggest that the fibers are mainly
horizontally oriented. Additionally, we assume that the GDL is a
stack of several thin sections which all contain horizontally oriented
fibers. We are aware that this assumption is a simplification in com-
parison to the real GDL, because the fibers in one thin section are
crossing each other to a small extent, which is neglected in our
model. Here, the fibers within a given thin section are seen as mu-
tually penetrating cylinders.

Random line tessellations.— We use planar random line tessella-
tions as a modeling element for the fibers within the individual thin
sections, in particular, so-called Poisson line tessellations �PLT�. A
planar line tessellation is built by the cells �1,�2,. . . which arise from
intersecting lines l1,l2,. . . scattered in the plane. Examples of such
cells can be seen in Fig. 2 and 3b. Note that the lines can be given
as follows: Each line ln can be described in its normal form, i.e., its
�orthogonal� signed distance xn from the origin and a direction mn
�given as the angle to a predetermined direction; see Fig. 3a�. Then
these distances xn and directions mn are understood as realizations of
certain random variables Xn and Mn, respectively. The values of the
random signed distances Xn can be arbitrary real numbers, whereas

Figure 2. Cell 
n of a planar line tessellation.

Figure 3. Line tessellations: �a� normal form of a line in R2 and �b� realiza-
tion of a PLT.
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the random directions Mn take values between 0 and � �see also Fig.
3a�. The family of cells �1,�2,. . . formed by all the intersecting
random lines �X1,M1�,�X2,M2�, . . . then forms a random line tessel-
lation.

In the proposed model for the individual thin sections of the
GDL, a special class of planar random tessellations, PLTs, is con-
sidered, where the sequence �X1,M1�,�X2,M2�, . . . is an indepen-
dently marked Poisson process. This means that the random dis-
tances X1,X2,. . . form a homogeneous Poisson point process on the
real line with some intensity � � 0, where � is the expected number
of points per unit length, i.e., � = E # �n:Xn � �0,1��. Furthermore,
the random directions M1,M2,. . . are independent and identically
distributed random variables whose values are uniformly distributed
in the interval �0,��. Moreover, the sequences �Xn�n�1 and �Mn�n�1
are independent.

Note that the cells �1,�2,. . . of a PLT form a stationary and
isotropic sequence of random polygons, which are bounded and con-
vex with probability 1. Here, stationarity and isotropy mean that the
distribution of ��n�n�1 does not change under translations and rota-
tions around the origin, respectively. This model can be fully de-
scribed by a single parameter, the intensity � of the underlying Pois-
son process �Xn�n�1. It can be shown that � is equal to the mean
total length of the �random� set �n=1

� � �n of edges per unit area, i.e.

� = E��
n=1

�

� �n � �0,1�2� �1�

This means that in an arbitrary fixed sampling window there are on
average more lines �and cells, respectively� for larger values of �, as
can be seen in Fig. 3b, than for smaller values of �, as in the
realization shown in Fig. 2.

We also note that there are analytical formulas for different char-
acteristics of PLT. In particular, denoting the mean number of verti-
ces by 	1, the mean number of edges by 	2, and the mean number of
cells by 	3, all referring to the unit area, it can be shown that the
model characteristics 	1 = 	1���, 	2 = 	2���, and 	3 = 	3��� de-
pend via simple formulas on the model parameter �. Besides this,
denoting the mean total edge length per unit area by 	4, in Eq. 1 it
is stated that 	4��� = �. Furthermore, simple formulas are known
for the mean area A��� and the mean boundary length L��� of the
“typical cell” of a PLT with intensity � �see Table I�. Here, math-
ematically, the notion of typical cell means a cell chosen at random
among all cells available in an unboundedly large sampling window.
These mean values are used in the Statistical Model Fitting section.

Above, the PLT is only described in 2D. But the fibers are 3D
objects. To get real 3D objects we “blow up” the lines of the tessel-
lation. More formally, we dilate each line, which is explained in
detail in the next sections.

Morphological operators.— For the 3D multilayer model of the
GDL, which is introduced in the next section, and for the segmen-
tation algorithm developed in a later section, two morphological
operators are used. The first one is the so-called dilation in the
d-dimensional Euclidean space Rd, where d � 1 is an arbitrary in-
teger. Simplified, one can imagine a dilation of a set as blowing it
up. Note, however, that for purposes of statistical image analysis the
cases d = 2 and d = 3 are most relevant.

Mathematically, the dilation of a set A � Rd with a set B � Rd

can be described by the Minkowski sum A � B of A and B, where

Table I. Mean value formulas for PLTs.
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A � B = �a + b:a � A,b � B� �2�
Furthermore, the so-called erosion is considered, where the erosion
of a set A � Rd with a set B � Rd can be described by the
Minkowski difference A � B of A and B, which is given by

A � B = �
b�B

A + b �3�

where A + b denotes the shifted set A + b = �a + b:a � A�. Simpli-
fied, one can image erosion as shrinking of a set. Note that the two
morphological operators of dilation and erosion are not inverse to
each other, i.e., in general we have �A � B� � B � A. For more
details, see, e.g., Ref. 9.

3D dilation of PLT.— In order to model a single thin section of
fibers, the edge set �n=1

� � �n of the underlying PLT ��n�n�1 is
dilated with respect to 3D, i.e., the Minkowski sum

��
n=1

�

� �n	 � B = �
n=1

�

� �n � B �4�

is considered for some set B � R3, leading to an object in 3D. Thus,
the stack of these 3D-dilated PLTs also represents a 3D model.

For the dilation of the edges of a PLT, set B in Eq. 4 can be
chosen, e.g., as a ball or a cube in 3D, which is called a structuring
element by some authors. It models the profile of the fibers. Further-
more, for practical computations, a discretization of the structuring
element B is necessary. Figure 4 shows three possible versions of
discretizations. In all three cases, five pixels are considered along
both the x and the y axis. This choice is motivated by the fact that
the diameter 2r of the fibers is approximately 7 �m, whereas the
length of a pixel is 1.5 �m.

In the proposed multilayer model, the 3D-dilated PLTs represent-
ing the individual thin sections are assumed to be independent and
identically distributed. This assumption can be �at least partly� jus-
tified by considering the production process and the visual appear-
ance of GDLs in images like in Fig. 1. A schematic display of the
multilayer model can be seen in Fig. 5.

Modeling of the binder.— The fibers of the GDL are adhered by
means of a binder, which is introduced in the manufacturing process
and can be recognized in the images as thin films. To incorporate the
binder into the 3D model, the following approach is considered.
Each cell of the 3D-dilated PLT in any given thin section is filled
with a certain probability p � �0,1�, whether or not the other cells
of the PLT are filled �see Fig. 6a�. This approach can be justified by
looking at Fig. 1, where the binder looks like a thin, horizontally
orientated set of material. For the binder, various other modeling
approaches are possible. For example, 3D spheres could be consid-
ered with some �deterministic or random� radius r0 � 0. These

Figure 4. Different possibile ways to discretize the profiles of fibers: �a�
lozenge, �b� square without corners, and �c� square.
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spheres could be located at some subset of vertices of the PLT which
are chosen at random with some probability b � �0,1� �see Fig. 6b�.
This also seems to be a realistic model for the binder, because some-
times there are clusters of binder in the GDL �see, e.g., the left side
of Fig. 1a�. However, in the following we focus on the Bernoulli-
filling approach as a model for the binder.

Segmentation of 2D Images

The segmentation of 2D electron microscopy images of GDL, as
shown in Fig. 1a, and the identification of thin sections out of the
segmented images is another important issue of the present paper. To
achieve satisfactory results, different methods of image processing
have to be combined.

The segmentation algorithm can be divided into two parts. First,
a preprocessing step is performed which smooths the data, i.e., re-
moves noise, while emphasizing the edges in the image. In the next
step, vector data are created, i.e., line segments which follow the
fibers are determined. Afterward, a method for the identification of
individual thin sections is presented. The detection of these sections
is necessary to fit the 3D model introduced above to real data as
described in the Statistical Model Fitting section.

The goal is to gain a fully noninteractive segmentation and thin
section detection algorithm for 2D SEM images. This leads finally to
a fully noninteractive model-fitting procedure for the proposed
multilayer model of the GDL. Therefore, techniques which are as
general as possible are considered.

Anisotropic diffusion.— A closer look at the 2D SEM images
�see Fig. 1a� indicates that the observed structures are not smooth,
which makes segmentation more difficult. Therefore, the data have
to be smoothed in advance of a further segmentation step. A global
smoothing with, e.g., a Gaussian filter �see Ref. 9� has the disadvan-
tage that the edges are blurred, too. In contrast to this, anisotropic
diffusion10 is a technique which smooths the data without losing
information at the edges, i.e., the edges remain sharp.

The idea of anisotropic diffusion is quite simple. Before smooth-
ing, edges are detected and smoothing is not performed across them.
In other words, only the data within cells, bordered by the already
detected edges, are smoothed. The result is a smoothed image with
additionally emphasized edges, i.e., the noise is removed but the
structure is preserved. The detailed algorithm can be found in Ref.
10.

Figure 5. Schematic display of the
multilayer model: �a� one, �b� two, and �c�
three layers.

Figure 6. �Color online� Realizations of the 3D multilayer model with
binder: �a� binder modeled with Bernoulli filling and �b� binder modeled
with spheres.
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The result of anisotropic diffusion applied to the data, which are
visualized in Fig. 1, can be seen in Fig. 7. The regions between
edges are smoothed, whereas edges themselves are still sharp.

Convolution and binarization.— In the next step, edges are em-
phasized by a convolution of the image, which leads to an image as
displayed in Fig. 8a. For applying the skeletonization method de-
scribed below, a binary image, i.e., an image where every pixel has
either the value 0 or 1, is necessary. To keep this binarization as
universal as possible, the isodata algorithm, described, e.g., in Ref.
11, is used. This is an iterative algorithm which works as follows.
The image is divided into two parts, object and background, by
taking an initial threshold ti. Then, the averages of pixels belonging
to the object and the background are computed separately. With

tc =
1

2
�average background + average objects�

we get a value tc which is compared with ti, i.e., we check if tc
� ti holds. If the inequality does not hold, the initial threshold ti is
increased until the �final� threshold is found and the image is bina-
rized by applying ti. This iterative method stops when the inequality
tc � ti holds for the first time. The result can be seen in Fig. 8b.
Note that in order to enhance clarity of presentation the picture is
inverted, i.e., black and white pixels are interchanged in comparison
to Fig. 8a.

Skeletonization.— For the transformation of the binary image
into vector data, a skeletonization is necessary. This means that pix-
els belonging to the object are changed to background pixels in a
way that the remaining �pixel given� lines have a thickness of one
pixel, and the connectivity, or homotopy, is thereby not changed. For
the skeletonization which is performed by morphological thinning,9

the same algorithms as described in Ref. 12 are used. There the
binary image is compared with a 3 
 3 matrix at each pixel, i.e., if
the matrix fits the image, the currently considered pixel is removed
from the object. This is repeated for a cycle of rotated matrices until
in a whole cycle no pixel is further removed.

After skeletonization, a classification of the remaining pixels is
necessary. Here we are especially interested in the nodes of the
remaining structure, because we want to create a graph consisting of
line segments with the nodes as start point or end point, respectively.
This classification is done by counting the number of neighbors. A
pixel with only one neighbor is considered an end point, a pixel with
exactly two neighbors is classified as a line point, and all other
pixels are considered cross points.

A problem that occurs is that by such a classification too many
pixels are classified as cross points �see Fig. 9a and b�. In other
words, at the crossings there is typically not a unique pixel marked
as a cross point but two or more pixels. Therefore, the classification

Figure 7. Cutout of a 2D SEM image of the GDL: �a� the original image and
�b� after applying anisotropic diffusion, where noise is removed but the
edges remain sharp.

Figure 8. Convolution and binarization: �a� cutout after convolution and �b�
cutout of the binary image.
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has to be improved with respect to homotopy, i.e., the number of
cross points have to be reduced while the connectivity has to be
preserved. But, the reduction of cross points is not unique. There-
fore, an additional criterion to decide between different possible
solutions has to be found. In this case the angles to the x axis, i.e.,
the directions of the line segments, are considered. Differences of
angles for the connections of a pixel to its neighbors are considered,
where angles close to � are preferred.

In the next step, nearby cross points which have a distance
smaller than a given value dmax of pixels �in our case dmax = 3
pixels� are joined together to one cross point �see Fig. 10�. This is
done because such closely located cross points result from crossings
of fibers with quite similar orientations.

The skeletonized image is transformed into a graph structure,
i.e., a data set which is no longer based on pixel values but on vector
data. In our case we get a data set of line segments, i.e., we have
start and end points, for which we assume that they are connected by
a straight line. The start or end points, respectively, are the cross
points. Two cross points are connected by a line segment if they
have a connection consisting only of line points with regard to the
pixel-based image. The result of skeletonization and subsequent
transformation into a graph structure can be seen in Fig. 11a.

Reconstruction of single fibers.— The skeletonized image con-
tains mostly short line segments. But the fibers in the original GDL
can be seen as lines or at least as long line segments �see Fig. 1a�.
Therefore, we connect the short line segments to get longer polygo-
nal tracks. This is done by a modified technique of simulated an-
nealing.

The idea is to connect line segments if they have a similar ori-
entation and if the other segment has an end point in the polytope at
the end of the currently considered line segment �see Fig. 11b�.
Then, a new line segment which connects the two line segments is
added. Afterward, the next line segment at the new end point of the
current polygonal track is searched in the same way as before. The
procedure is repeated until no further line segments can be found in

Figure 9. Classification after skeletonization. Crosspoints are denoted by C
and line points are denoted by L: �a� original skeleton, �b� classification by
number of neighbors, and �c� improved classification.

Figure 10. Transformation into graph structure and merging of nearby cross-
ings: �a� nearby crossings, �b� after transformation of �a� into a graph, and �c�
merging of nearby crossings.

Figure 11. Skeletonization and connection of the line segments: �a� cutout
after skeletonization and �b� polytope in which line segments are considered.
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this way. The result is an almost straight polygonal track which is
quite long, i.e., which runs �in the ideal case� across the whole
sampling window.

The decision of which line segment of all possible line segments
with an end point in the considered polytope is chosen as the next
line segment is made as follows. All line segments to which a con-
nection is possible are weighted. The weights are normalized such
that the sum of the normalized weights equals 1. In more detail, each
line segment is associated with an �sub�interval in �0,1�, the length
of which depends on its weight. Then, the realization of a random
variable which is uniformly distributed in �0,1� determines the next
line segment. For the weights, the following two criteria are consid-
ered.

1. The angle between the direction of the currently last line seg-
ment and the direction of the line segment which has to be included
to connect the new potential line segment is considered. The weight
is increased if the directions get more similar.

2. The shape of the already found polygonal track is considered.
If the currently considered polygonal track is right-curved, the prob-
ability for line segments which keep the polygonal track right-
curved is higher than for other line segments. The same is done for
left-curved polygonal tracks. This criteria is neglected if the current
polygonal track is nearly straight.

Because the polygonal tracks are constructed according to ran-
dom selection rules, it is obvious that the result of a first trial cannot
be assured to be optimal. To find nearly optimal solutions, the simu-
lation is repeated several times until results of a similar good quality
are found for a certain number of subsequent runs. Therefore, we
use a stopping rule which takes into account the following two
cases.

1. The end of the polygonal track is close to the boundary of the
sampling window. In this case a better polygonal track is found if
the polygonal track is straighter, where straighter means that the
minimum distance between two bounding parallel lines is smaller
�see Fig. 12�.

2. The polygonal track ends are not close to the boundary of the
sampling window. In this case the better polygonal track is the
longer one. But to ensure that a polygonal track which follows a
zig-zag is not preferred to a straighter one, which is in fact better,
the length is measured as the �Euclidean� distance of the two end
points.

Note that not all line segments of the skeletonized image are
used as initial line segments for a polygonal track, but only seg-
ments which are longer than a certain threshold. This is done be-
cause for short line segments, the direction can be quite different
from the direction of the original fiber. Note that for initial line
segments which have no point close to the boundary of the sampling
window, the search for polygonal tracks is started in both directions.

Figure 12. Measure for straightness: �a� wide-scattered polygonal track and
�b� nearly straight polygonal track.
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Identification of Thin Sections

In reality �see Fig. 1a� the fibers are not directly separated into
�sub�layers, but they overlap each other to a certain extent. How-
ever, in our model, we assume that the fibers interpenetrate, i.e., we
suppose that the fibers of the GDL form a stack of thin horizontally
oriented sections. This assumption leads to the need to detect these
sections from the segmented graph, which is obtained by the image
processing discussed in the previous section. This identification of
thin sections delivers the necessary information for our 3D
multilayer model presented previously. In particular, it suffices to
identify only the top section of the GDL because, due to the produc-
tion process and the visual impression of the 2D SEM images, all
sections can be assumed to be identically distributed. Additionally,
the top section can be determined most reliably. As a justification of
these assumptions, we compare a structural characteristic of the fit-
ted model and a 3D data set in the Spherical contact distribution
function section.

A certain problem in detecting the individual thin sections is that
they cannot be determined uniquely. Nevertheless, the approach pre-
sented in this section leads to plausible results for all 2D electron
microscopy images considered in this paper �see also Fig. 14�.

Overlay factor.— The general idea for separating the fibers into
different sections is to regard their overlay factor. An attempt to
detect different sections by visual inspection leads to the assumption
that the fibers of the first section have an overlay factor of about 5%,
i.e., at most 5% of their length is covered by other fibers.

The horizontal length of our 2D images is about 1750 �m. Fur-
thermore, a fiber of the material considered in the present paper has
a diameter of about 7 �m and, therefore, a horizontally oriented
fiber in our images can be overlaid by about 13 other fibers and still
be seen as a fiber of the first �i.e., top� section. The second section is
then defined by an overlay factor between 5 and 10%, and so on.
Note that for a fixed overlay factor the number of overlaying fibers
is proportional to the possible maximal length. This criterion is now
used for automatic detection of the different thin sections.

Ranking of polygonal tracks.— In order to determine the over-
lay factor for any given polygonal track, a ranking of all polygonal
tracks is introduced, which has been extracted from the original
�grayscale� image. The motivation for such a ranking is to describe
how close a polygonal track is to the surface of the considered GDL.
Therefore, two characterizing values of polygonal tracks are consid-
ered.

1. The first value is the percentage of that part of the track length
which coincides with line segments from the skeletonized image
�see Fig. 11a�. This is based on the fact that fibers which are close to
the surface lead to more and longer line segments in the skeleton-
ization process than fibers which are overlain by more other fibers.

2. The second value is computed with the help of the smoothed
image considered in the Anistropic diffusion section. For this pur-
pose, the polygonal track is discretized and compared with the
smoothed image. Then, the variance of the grayscale values at the
pixels of the discretized polygonal track and its neighbor pixels is
estimated. The smaller this variance, the larger the chance that the
polygonal track belongs to the top section of the GDL. The idea for
this criterion is that a fiber at the surface consists of pixels with
almost the same grayscale values, whereas the fibers in the back-
ground have darker pixels in general but brighter pixels where they
are crossed by fibers which are more near the surface. Therefore, the
variance of the grayscale values is smaller for fibers at the surface
than for fibers in the background. Then, a multiplicative linkage of
these two characterizing values leads to a ranking of all polygonal
tracks.

Replacement of polygonal tracks by line segments.— The po-
lygonal tracks are considered to belong to the first section using the
criterion based on the overlay factor introduced in the Overlay factor
S license or copyright; see http://www.ecsdl.org/terms_use.jsp



B396 Journal of The Electrochemical Society, 155 �4� B391-B399 �2008�B396
section. This overlay factor is determined by means of the ranking
of all polygonal tracks as described in the Ranking polygonal tracks
section.

In order to determine the overlay factor, the polygonal tracks are
transformed into line segments which connect the end points of the
polygon tracks �see Fig. 13a�. In a further step, these line segments
are prolongated until they run from boundary to boundary of the
sampling window �see Fig. 13b�. The ranking of the polygonal
tracks is identified with the ranking of the corresponding line seg-
ments.

Now all those polygonal tracks which are not crossed by too
many polygon tracks with a better ranking belong to the first section.
To ensure that short polygonal tracks, which are obviously not
crossed by many other polygonal tracks, are not added to the first
section, we only take into account those polygonal tracks with a
relative length larger than a certain threshold. The relative length is
computed as the ratio of the length of the line segment which re-
places the polygonal track and the maximal possible length of this
line segment, i.e., the length of the line segment prolongated to the
boundaries of the sampling window. Note that the prolongated line
segments are used in the Statistical Model Fitting section below in
order to estimate the intensity � of the underlying PLT.

Finally, the top section of our multilayer model is defined as
follows. At first the line segment with the highest ranking is consid-
ered to belong to the top section. Then the next line segment in the
ranking is regarded and so on. The currently considered line seg-
ment is added to the top section if it is not covered by too many line
segments already belonging to the top section. Note that the absolute
number of admissible overlappings depends on the length of the
extended line segment, e.g., a line segment with extended length of
2000 �m can be overlaid by more fibers than a segment with ex-
tended length of 150 �m to have the same overlay factor.

The correctness of this technique of thin section detection was
tested by a visual comparison of the detected top layer with the
original 2D SEM image. Examples can be seen in the following
section.

Examples.— In Fig. 14, three further examples of 2D electron
microscopy images are shown, where it is clearly visible that in all
three cases the segmentation and identification algorithm developed
in previous sections leads to plausible results.

Statistical Model Fitting

For simulation purposes, it is necessary to develop a method by
means of which the proposed multilayer model can be fitted to given
GDL data provided by SEM images. In other words, a method has to
be developed to estimate the parameters of the model.

As mentioned above, our multilayer model has four parameters:
�, 2r, p, and n, where � � 0 is the intensity of the underlying PLT
modeling the fibers of the first sublayer, 2r � 0 is the diameter of
the fibers, p � �0,1� is the filling probability which describes the
amount of binder, and n is the number of sublayers in the 3D model
for the whole GDL.

The parameter 2r can be easily obtained from data. The thickness
of a GDL is also a well-known or at least easy to measure charac-
teristic. Then, the number n of sublayers is just the ratio of the
thickness of the GDL and the diameter 2r of the fibers. Furthermore,
a natural estimator for � is based on counting the lines which are
detected in the first section, according to the procedure described in
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the Identification of Thin Sections section. In order to determine the
filling probability p, the following formulas for the volume fraction
of fibers and binder, respectively, are useful.

Formulas for the volume fractions of fibers and binder.— It is
not difficult to show that the volume fraction Vfiber��� of the set of
all �interpenetrating� dilated lines of the first section is a function of
the intensity � of the underlying PLT, which is given by

Vfiber��� = 1 − exp�− 2r�� �5�

if the profile of the fibers is given as in Fig. 4c �see, e.g., Ref. 13 and
14�. The volume fraction Vbinder��,p� of binder in the GDL is a
function of � and p, which can be approximated by

Vbinder��,p� 
 p� �

�2 − r
2�

�
+ 2�r2	�2

�
�6�

Note that

Vbinder��,p� = pA��,r�	3��� �7�

Here A��,r� is the expected area of the typical cell of a PLT with
intensity � and with dilated lines, where the structuring element is a
ball with radius r �see Fig. 15�, and 	3��� denotes the mean number
of cells per unit area. Furthermore, the expected area A��,r� in Eq.
7 can be computed as the mean area A��� of the typical cell of the
�undilated� PLT minus the mean area which belongs to the dilated
lines �see Fig. 15�. The latter area can be approximated by rL���
− corr�r�, where L��� is the mean boundary length of the typical
cell and corr�r� is a correction term because, in the expression
rL���, the area at the vertices is considered twice. Using a well-
known formula for the distribution of the angles between two �arbi-
trarily chosen� intersecting lines of a PLT �see Ref. 15�, the correc-
tion term corr�r� can be approximatively determined as

Figure 13. Transformation of polygonal
tracks into line segments: �a� polygonal
tracks, �b� line segments prolongated to
the boundaries of the sampling window,
and �c� original image of the GDL.

Figure 14. Sample images for segmentation and identification of the first
section: �a� original images, �b� segmented images, and �c� detected first thin
section.
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corr�r� 
 2�r2 �8�
Note, however, that this formula is not fully exact because it pro-
duces a �small� inaccuracy if the distance between two neighboring
vertices is smaller than 2r, but this is neglected in Eq. 8. Thus,
altogether, Eq. 7 leads to the approximation formula

Vbinder��,p� 
 p�A��� − rL��� + 2�r2�	3���

and, inserting the mean-value formulas for A���, L���, and 	3���
given in Table I, we get that Eq. 6 holds.

Finally, the porosity � of the GDL, i.e., the volume fraction of
the empty space of the GDL �not filled by fibers nor binder�, is given
by

� = 1 − �Vfiber��� + Vbinder��,p�� �9�

Estimation of model parameters.— In order to determine the in-
tensity � from the SEM images, we consider the following estimator

�̂ =
�

�� W�
# �n:�Xn,Mn� � W � � � �10�

where #�n:�Xn,Mn� � W � � � is the number of lines detected in
the first section of the GDL and ��W� denotes the length of the
boundary of the sampling window W. In Ref. 16 it is shown that the
estimator �̂ given in Eq. 10 has various useful properties. In particu-
lar, �̂ is unbiased for �, i.e., E�̂ = �.

To determine the filling probability p we proceed in the follow-
ing way. First, we compute �̂ according to Eq. 10. Next, we insert
the expressions for Vfiber��̂� and Vbinder��̂,p� given in Eq. 5 and 6,
respectively, into the right side of Eq. 9. We then can solve Eq. 9 for
p and, in this way, get an estimator p̂ for p, provided that estimators

2r̂ and �̂ for 2r and �, respectively, are at hand. As we mentioned
previously, the diameter 2r of the fibers is 5 pixels and the length of
a pixel is 1.5 �m.

For the porosity of the GDL we use the value �̂ = 0.78, which is
given in the literature and by the manufacturer �Toray� �see, e.g.,
Ref. 17�. We are aware that this �general� porosity must not neces-
sarily coincide with the porosity of the concrete 3D sample consid-
ered here. However, because we used this 3D synchrotron tomogra-
phic image �see Fig. 16� for the validation of our �fitted� multilayer
model, we estimated the porosity �̂� of the segmented 3D image
with

�̂� =
#�black voxels in the sampling window�

#�all voxels in the sampling window�
�11�

In this case, the segmentation is done interactively. At first a thresh-
old is chosen by hand in such a way that in the binary image the
fibers are well represented. Single voxels which belong to neither
fibers nor binder and can therefore be seen as noise are removed by
morphological opening, i.e., dilation and subsequent erosion. From
this segmented 3D sample, the value �̂ = 0.78 has been obtained,

Figure 15. Cell of a dilated PLT.
�
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which coincides with the value given in the literature. Because of
this good fit, the sample can be seen as a typical sample and is
appropriate to use as a reference image for the validation. Moreover,
we estimated the intensity � for 10 SEM images of a GDL material
�see Table II� which leads to an average �̂ = 0.025.

Solving Eq. 9 with �̂ = 0.025 and �̂ = 0.78, we get that p̂
= 0.059, i.e., the parameters �̂ and p̂ of the multilayer model are
specified. Moreover, inserting the values �̂ = 0.025, p̂ = 0.059, and
2r = 7.5 into Eq. 5 and 6, we get that

Vfiber��̂� = 0.17 and Vbinder��̂, p̂� = 0.049 �12�
In other words, 17% of the considered GDL material consists of
fibers and 5% of binder, which is in line with experimental findings.

We note that there are advantages in estimating parameter values
from 2D SEM images instead of using measured/literature given
values. With estimated parameter values a model can also be fitted
to, e.g., a damaged GDL where the parameters are different from
values given in the literature.

Spherical contact distribution function.— An important step in
statistical model fitting is to check whether the fitted model suffi-
ciently reflects the structural properties of image data obtained by
real measurements. In particular, 3D synchroton-tomographic data
and realizations of the model are compared. Those characteristics
which are relevant in estimating the performance of the GDL should
match sufficiently for both data sets.

An example of such an image characteristic is the distribution
function of the spherical contact distance to the �white� foreground
phase of binary images, i.e., the distribution of the nearest distance
from an arbitrary point of the �black� background phase to the
�white� foreground phase. This characteristic is closely related to the
microstructure of the pore space of the GDL �see Fig. 16b�. Math-
ematically, this spherical contact distribution function H:�0, � �
→ �0,1� is defined for any stationary random closed set � � R3 by
the formula

H�r� = P�� � B�o,r� � � �o � �� r � 0 �13�

where B�o,r� = �x � R3:�x� � r� denotes the ball in R3 around the
origin with radius r � 0. This means that H�r� is the �conditional�
probability that the distance to the boundary �� of the random set
�, seen from an arbitrarily chosen point outside of �, is smaller
than or equal to r. In our case, � is a model for the complement of
pore space of the GDL, i.e., for the space filled by fibers or binder.

The following �edge corrected� estimator

ĤW�r� =
p̂W�r� − p̂W�0�

1 − p̂W�0�
�14�

of H�r� is considered in the literature, where

Figure 16. Thin slice of a GDL �from a 3D image generated by synchrotron
tomography�: �a� original image and �b� segmented image.

Table II. Estimated intensities of 10 2D SEM images of GDLs.

0.02166 0.02839 0.02839 0.02748 0.02656
0.02565 0.02015 0.02473 0.02107 0.02565
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p̂W�r� =
�W

r
* � �� � B�o,r���

�W
r
*�

with W
r
* = W � B�o,r�

�15�

is an �edge corrected� estimator of the area fraction p�r� of the
dilated random set � � B�o,r�. In order to efficiently compute the

estimator ĤW�r� of H�r� given in Eq. 14 for a sufficiently large
number of distances r � �0,rmax�, one can proceed as follows. The
numerator p̂W�r� − p̂W�0� in Eq. 14 has to be computed for a suffi-
ciently large number of distances r � �0,rmax�, where the following
algorithm is used.

1. For each black pixel in the eroded window W
r
*

= W � B�o,r�, i.e., pixels which are not covered by �, the distance
to the closest pixel in � � W is computed.

2. The number of those pixels in W
r
*/� with a distance value

smaller than or equal to r � 0 is determined.
3. The quotient of this number divided by the number of all

pixels in W
r
* provides a �discretized� approximation of p̂W�r�

− p̂W�0�.

The denominator 1 − p̂W�0� in Eq. 14 is approximated by the
quotient of the number of all pixels in W/� divided by the number

of all pixels in W. Finally, the estimator ĤW�r� of H�r� is computed
as the relative frequency of those pixels in W

r
*/� whose distance

value is smaller than or equal to r � 0.
In order to assess the structural resemblance of the multilayer

model where the binder is modeled with the Bernoulli-filling ap-
proach, we simulated this model in a cubic window W of 1250

 1250 
 100 voxels. As parameters we used �̂ = 0.025, p̂
= 0.059, and 2r = 5, which have been obtained from 2D SEM im-
ages as described in a previous section. Then, using the algorithm

described above, we computed the values ĤW�r� of the �estimated�
spherical contact distribution function for several r � �0,40�, both
for the simulated data and for a 3D image of the GDL material
shown in Fig. 16 which has been obtained by means of synchrotron
tomography.

The result can be seen in Fig. 17, which shows that both spheri-
cal contact distribution functions are similar. Moreover, the porosity
� has been estimated according to Eq. 11 for the simulated data and
the measured �synchrotron� data. The obtained values of �̂ also
agree very well, giving �̂ = 77.3% for the simulated data and �̂
= 78.2% for the synchrotron data. This indicates that the stochastic
multilayer model is a suitable description of the microstructure of
the GDL material considered in the present paper.

Conclusions

In this paper we propose a stochastic multilayer model in order
to describe the microstructure of porous material for the GDL in
PEMFCs. The model, based on stochastic geometry, offers at least
two advantages.

First, the model is easy to handle because it depends on only four
parameters, the intensity � of a �planar� PLT, the probability of
binder filling p, the diameter 2r of the fibers, and the number n of
thin sections. Note that n and 2r are either known material param-
eters or can be easily determined. Furthermore, n and 2r are
uniquely linked because 2rn is the thickness of the whole GDL.

Second, the statistical fitting of our multilayer model to real data
is based on 2D SEM images, which can be obtained much easier by
microscopic measurements than 3D �synchrotron-tomographic� im-
ages of the GDL.

For purposes of model fitting, we developed an algorithm for the
segmentation of 2D SEM images of the GDL. Moreover, a proce-
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dure is proposed to detect thin sections from the segmented SEM
images. In this way, estimators for the remaining two parameters �
and p of the multilayer model can be constructed.

The quality of our structural model has been assessed by simu-
lating the fitted model in a cubic window. Then, applying the algo-
rithm mentioned above, the distribution function of the spherical
contact distance to fibers and binder has been determined, seen from
an arbitrarily chosen point of the pore space. This has been done for
the simulated data and for a 3D synchrotron-tomographic image of
the GDL material. It turns out that both spherical contact distribution
functions are similar. This indicates that our model describes the
microstructure of the considered GDL material in an appropriate
way.
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