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Abstract

The interplay between structure and mechanical properties of fine and cohesive granular matter is of wide interest and far from
being well understood. Even though the discrete element method (DEM) supplies a powerful and extensively applied tool for
modeling granular matter, the complexity in contact mechanics of micron-sized particles demands a complex contact model. In
order to validate DEM simulations, a direct comparison to experiments is desirable. However, the simulation of a full-scale shear-
tester with micron-sized particles remains a great challenge. We address this validation problem by scaling the experiment down:
For this purpose, a fully functional micro shear-tester was developed and implemented into an X-ray tomography device (XMT).
This combination allows the visualization of all particles within small bulk volumes of the order of a few µl under well-defined
consolidation conditions. Using spherical micron-sized particles (∼ 30 µm), torsional shear tests with a number of particles which is
practicable for simulations can be performed. Moreover, an analysis on particle level allows for a direct comparison of the structural
evolution to numerical results. In this study, we present methods to localize and track particles in the experimental 3D image data.
This is possible even for large angle increments of up to 5° between tomographic measurements. The processing of time-resolved
tomographic data makes it possible to analyze the behavior of particles, which is then compared to DEM simulations of a similar
experiment. We focus on density inhomogeneity and shear induced heterogeneity and observe very good agreement of shear band
location and shape in the steady state.
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1. Introduction

Shear flow of granular media is ubiquitous in nature and of
industrial importance when it comes to handling and process-
ing of bulk solids (e.g., flow through hoppers [1], bunkers and
silos [2, 3]). In the physics of granular matter [4], among many
other interesting phenomena, understanding the flow properties,
i.e., the stress response to an applied strain rate, has been in
the focus of research [5]. In addition, a strain rate independent
creep regime arises at slow, quasi-static deformation [6, 7]. The
localization of strain within the bulk, often referred to as failure
zone or shear band, represents another unique feature of this
quasi-static regime, which was addressed by many researchers
in the past [8, 9, 10, 11] and can be observed, e.g., in glassy sys-
tems [12] and solidifying metals [13] as well. However, the in-
terplay of structure and mechanical properties of the bulk solid
is not deciphered sufficiently, especially when it comes to co-
hesive granular matter.

Modern technology offers a variety of powerful tools to pur-
sue this task: On the one hand, numerical simulations in terms
of the discrete element method (DEM) provide valuable insight
into the mechanical behavior of granular matter [14, 15, 16],
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and allow to study the influence of microscopic contact and
particle properties on the macroscopic bulk behavior system-
atically [17, 18]. However, despite of Moore’s law, the simu-
lation of full-scale quasi-static shear experiments with realistic
particle interactions remains a challenge. Since scaling of par-
ticle size can be problematic [19], most numerical studies are
limited to a small sample size. On the other hand, sophisti-
cated experimental setups are capable of determining the prop-
erties of micron-sized particles [20] and of imaging the inner
structure of a bulk solid nondestructively via computer tomog-
raphy [21, 22]. Using this methodology, we explore the poten-
tial of DEM simulations and micro-sized experiments by per-
forming a direct comparison. For this task, a fully functional
micro-sized shear tester was developed [21], which can be fit-
ted into an X-ray tomography device. As will be shown, this
setup allows an in-situ shear band detection during an exper-
iment at constant normal load with only a few µl of sample
volume. Other experiments which explore the inner structure
of a bulk solid do not focus on a constant normal load (e.g.
using confocal-microscopy [23]), or use simply a flexible tube
to execute a triaxial-like shear experiment [24]. Besides the
promising possibility to examine the structure of the bulk solid
at mesoscale, the micro shear-tester is also well suited for deter-
mining shear flow properties of powders which are only avail-
able in small quantities.
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With regard to DEM simulations, this micro-sized experi-
ment offers a unique chance of an increased validation depth
via a direct comparison of the bulk structure and its dynam-
ics. Describing the contact mechanics of micron-sized parti-
cles correctly is often accompanied by a cumbersome amount
of parameters which are not easily accessed in the experiment.
Therefore, a conventional approach is to calibrate undeter-
mined parameters, which may also compensate other idealiza-
tions [25]. Sometimes even guessing parameters seems reason-
able, but a desirable objective would be a simple model without
superfluous parameters, which describes the system of interest
and can be utilized for quantitatively correct predictions. To
which extent simple contact models can predict the bulk’s inner
structure correctly will be explored within this study.

The paper is structured as follows: Sections 2.1 and 2.2 are
devoted to the experimental setup as well as the model material.
The methodology of image segmentation and particle tracking
is described in Section 2.3, while the numerical calculations in-
cluding the contact model and simulation setup are explained
in Section 2.4. Results will be presented in Section 3 and dis-
cussed in Section 4.

2. Material and methods

2.1. Material

In this study we use a fine and slightly cohesive pow-
der which consists of solid borosilicate glass microspheres
(BSGMS 27-32 µm, CoSpheric LLC, USA; BSGMS in the fol-
lowing). An image of several microsphere particles taken on a
scanning electron microscope (SEM) is presented in Figure 1
(inset). The figure emphasizes the almost uniform spherical
shape and similar size of the particles, but also shows a non-
negligible surface roughness. We measured the particle size
distribution using laser diffraction (Helos, Sympatec GmbH,
Germany) after dispersing the particles with ultrasound for 30 s
in an aqueous environment. The results, which are shown in
Figure 1, indicate a narrow mono-disperse size distribution of
the glass particles with median value x50,3 ≈ 30 µm.

Particle stiffness and adhesion forces were determined in [26]
using nanoindentation and atomic force microscopy, respec-
tively. The reported mean values and standard deviations are
E ≈ 15 ± 7 GPa for the elastic modulus and 82 nN ± 60 nN for
adhesion forces.

2.2. Experiment

2.2.1. X-ray microtomography (XMT)
The fundamental component for a detailed microstructural

investigation is the nondestructive examination with the XMT,
which enables an image-based analysis. We use a high-
resolution tomography device (MicroXCT-400, Zeiss (Xradia),
Germany). For this study an acceleration voltage of 50 kV and
a current intensity of 200 µA were applied at the X-ray source.
These parameters result in the best outcome for high-contrast
images. According to the sample diameter of 2 mm a ten-fold
optical magnification is used to ensure a reproduction of the en-
tire sample diameter with a resolution of 2.2 µm (1.1 µm before
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Figure 1: Particle size distribution (mass distribution, density and cumulative
distribution function) and SEM picture (inset) of BSGMS glass particles.

binning). A single detector collected the X-rays which were
emitted from the source and passed through the sample which
results in an intensity grayscale image. In order to get an accu-
rate 3D reconstruction afterwards, we measured 2000 of these
projections for various angles of rotation around an axis inside
the sample. The reconstructed data is stored in stacks of 2D
images for later analysis with regard to structure and dynamics.
Depending on the device resolution and the particle size, inves-
tigations on mesoscale as well as on particle scale are possible.
Thus, the detailed data on particle scale qualifies for finding re-
lations between particle parameters (e.g., size, shape and aspect
ratio) and mesoscale or bulk behavior (e.g., shear zone charac-
teristics).

2.2.2. Micro shear-tester
The torsional micro shear-tester with cylindrical shear cell

was developed to handle very small sample volumes in the
range of 6-15 µl [26]. In combination with the XMT, the sam-
ples can easily be manipulated in terms of compression and
shear deformation on the one hand, and imaged in 3D at a very
high resolution on the other hand. A cylindrical sample cham-
ber with a radius of R = 1 mm allows for an (in principle) in-
finite torsional shear movement. The sample chamber is a very
fine borosilicate glass capillary with a side wall thickness of
50 µm and is confined by an upper and lower piston in vertical
direction. The pistons can be flat for simple compression tests
or structured with six vanes arranged in a regular star shape for
shear tests like presented in this work. A schematic image of
the shear cell can be found in Figure 2. During shear, the upper
piston and outer wall move whereas the lower piston detects the
normal force and torque. For vertical force transmission a mag-
netic spring was included at the lower piston as well as a fric-
tionless air suspension to prevent or at least minimize friction.
A major advantage of this system is the decoupled determina-
tion of force and torque. Loads in the range of 0.1-20 kPa can
be applied by the micro shear-tester.

The sample is prepared by sieving the particles into the glass
capillary in order to avoid agglomeration. The normal load is
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Figure 2: Schematic view of the shear cell of the micro shear-tester.

increased up to 0.5 kPa and kept constant in the following shear
process. During shear, the upper piston and wall are rotated in
steps of 0.5° up to 9.5°. After 9.5° the angle increment is in-
creased to 5° until an entire rotation of 39.5° is achieved. The
experiment is carried out quasi-statically with an angular ve-
locity of ω = 0.1 °/s. Directly after compaction and after each
step of shearing an XMT measurement of the entire shear cell
is recorded. The resulting 3D image stacks are aligned and cut
to the size of the sample chamber, so that they have the same
dimension in x- and y-direction but different sizes in z-direction
(depending on dilation/compaction during shear). The maxi-
mum z-coordinate of the image stack recorded at time t is de-
noted by zt

max, where t is the time of shearing — i.e., we neglect
the pauses necessary for XMT measurements.

2.3. Analysis

2.3.1. Image-based local shear deformation
A first approximation of the local shear deformation is com-

puted directly from the image data in a similar way as proposed
in [26]. The idea of this approach is to compare the image slices
at two successive points in time and a fixed height z. The local
shear angle at height z is the angle by which the first slice has
to be rotated so that it best matches the second slice. This ap-
proach relies on a strong similarity between the particle struc-
tures at two consecutive points in time. Thus, it requires a suf-
ficiently high spatial and temporal resolution.

The quality criterion used in this study to determine how
closely the two slices match is the image cross-correlation,

corr(I, J) =

∑
x,y(I(x, y) − Ī)(J(x, y) − J̄)

σI · σJ
, (1)

where I = {I(x, y)} and J = {J(x, y)} are digital 2D images, Ī and
J̄ are the mean values, andσI andσJ are the standard deviations
of gray values taken over all pixels in I and J, respectively. For

a time step (t1, t2) the local angle of shear deformation at height
z is estimated by computing

∆t1→t2
ϕ (z) = arg max

α∈[−1°, ∆ϕs(t1,t2)+1°]

{
corr

(
rotα(Iz

t1 ), Iz
t2

)}
, (2)

where Iz
t denotes the slice at height z and time t, rotα denotes the

rotation around the image center by the angle α, and ∆ϕs(t1, t2)
is the angle increment used in time step (t1, t2). Theoretically,
optimization over the full range α ∈ [0, 360) would be de-
sirable. For computational reasons we restrict it to a realistic
range in Equation (2). The image rotations are carried out us-
ing bilinear interpolation and the maximization is implemented
in discrete steps of 0.1°. Applying the same procedure for all
available z-coordinates yields a spatially resolved local shear
deformation over the full height of the sample.

The same methodology can be used to measure the rotation
of the upper and lower piston in the image data. This is neces-
sary because there may be differences between the targeted and
actual movements of the pistons, which will be discussed in
more detail later (cf. Section 3.2). We simply average ∆

t1→t2
ϕ (z)

over the range of z-coordinates in which the upper and lower
piston, respectively, are visible. Since an exact measurement of
these movements is crucial for a correct normalization of parti-
cle velocities later on (and less computationally expensive than
estimating ∆

t1→t2
ϕ (z) over the full height of the sample), opti-

mization is carried out in steps of 0.01°.
The idea of estimating shear deformation locally from the

image data can be extended further to capture radial variations
of the local deformation and to estimate local compression or
dilation along with the rotational deformation. For this pur-
pose, each image slice is subdivided into k disjoint and concen-
tric rings of equal area, R1, . . . ,Rk, and a rotational and transla-
tional deformation are applied simultaneously. This means that
instead of rotating the image slice as a whole, each ring is ro-
tated independently and shifted vertically so that it best matches
the corresponding region of the next image stack. We then ob-
tain the 2D maximization problem(
∆t1→t2
ϕ (z, ri), ∆t1→t2

z (z, ri)
)

= arg max
h∈[hmin,...,hmax]

α∈[−1°, ∆ϕs(t1,t2)+1°]

{
corr

(
rotα(Iz,Ri

t1 ), Iz+h,Ri
t2

)}
,

(3)
where ri is the central radius of Ri, Iz,Ri

t denotes the ring Ri of the
image slice at height z and time t, and i ∈ {1, . . . , k}. The result
is a local angle of shear and a local vertical deformation for each
z-coordinate and ring, Ri. Using bilinear interpolation we can
calculate values for the deformation at arbitrary locations in the
sample. In this study k = 10 rings are used and the range for the
vertical shift is chosen based on the stack sizes in z-direction,
zt1

max and zt2
max, as

[hmin, . . . , hmax] =
[
min{zt2

max − zt1
max, 0}, . . . ,max{zt2

max − zt1
max, 0}

]
.

In the following, we will refer to the left-hand sides of Equa-
tions (2) and (3) as 1D and 2D image-based local shear defor-
mation, respectively. Both methods are applied and discussed
in this paper.
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Figure 3: Visualization of the main steps of the segmentation process based
on a small cutout of an image slice. Grayscale image obtained by XMT (A),
binary image (B), convolution of grayscale image and particle mask used for
marker selection (C) and final segmentation result after applying the marker-
based watershed transform (D). Note that though the visualization is in 2D, all
operations are carried out in 3D.

2.3.2. Image segmentation
In order to extract information on single particles from the

image data, 3D images are segmented using a marker-based
watershed transformation [27]. First, the grayscale images are
smoothed using a Gaussian filter with a small standard devi-
ation of 1 voxel side length, and binarized using the IsoData
algorithm implemented in ImageJ [28]. Subsequently, small
disconnected pores are filled with solid. This step is needed
because a small percentage of the particles is hollow. The nega-
tive of the Euclidean distance transform (distances from particle
voxels to the pore phase) forms the relief on which the water-
shed transformation is run.

A common choice for the markers is to select the local max-
ima of the Euclidean distance transform [27]. However, this
choice tends to promote over-segmentation since minor surface
roughnesses can lead to multiple local maxima within one par-
ticle. In the present study this problem is avoided by using an
approach presented in [23], where the original grayscale images
are convolved with a mask resembling the appearance of a par-
ticle. After convolution, the particle centers appear as smooth
and isolated local intensity maxima. These maxima are ex-
tracted from the convolved images and used as markers for the
watershed transformation. The convolution technique is ideal
for spherical particles with a narrow size distribution as used
in this study, although it can be adapted for broader size distri-
butions as shown in [23]. The main steps of the segmentation
process are visualized in Figure 3.

2.3.3. Particle tracking
Based on the centers of mass of the particles in the segmented

binary images, a particle tracking is performed. The tracking
algorithm used in this study for time steps with an angle incre-
ment of 0.5° has been proposed in [29] and aims to minimize
the sum of squared displacements in each time step. For com-

putational reasons the optimization is not carried out directly
in [29], but on a reduced problem. Assignments between parti-
cles of two consecutive points in time are discarded if the dis-
tance between the particles exceeds a certain threshold, s. This
simplification typically leads to a decomposition of the opti-
mization problem into a number of smaller problems, which
can be solved independently and much faster. The threshold
value has been set to s = 19.8 µm in the current study.

Minimizing the sum of squared displacements is feasible as
long as very little movement occurs within a time step. In par-
ticular, particle movements in one step have to be less than the
threshold value, s. This is most likely true for shearing steps of
0.5° since a particle will be displaced by at most 8.72 µm the-
oretically (arc length at the upper, outer edge of the cylinder).
However, when shearing in steps of 5°, particle displacements
of ten times the size, i.e., of up to 87.2 µm, have to be expected.
In this case a tracking computed by minimizing displacements
will clearly be wrong and it is impossible to obtain satisfying
results without prior information on the dynamics in the parti-
cle system.

The 2D image-based local shear deformation (cf. Sec-
tion 2.3.1) essentially describes the average movement of par-
ticles depending on their location in the sample — and this is
used as prior information for tracking particles in steps with an
angle increment of 5°. For every particle at time t1, a hypo-
thetical position for where it is expected to be at time t2 is cal-
culated based on the 2D image-based local shear deformation,
(∆t1→t2

ϕ ,∆t1→t2
z ). This is done by rotating each particle center

(rp, ϕp, zp) around the central axis of the cylinder by the angle
∆

t1→t2
ϕ (zp, rp) and shifting it vertically by ∆

t1→t2
z (zp, rp). Then,

the sum of squared distances between the hypothetical and ac-
tual particle positions at time t2 is minimized, where now all
assignments leading to a larger distance between hypothetical
and actual position than some threshold, s̃, are discarded. Here
we obtained good results for s̃ = 17.6 µm.

This approach for tracking in steps of 1° or more is validated
using the data from 3.5° to 9.5° of shearing, which is available
in steps of 0.5° and where no more major compression occurs.
For this whole period, a particle tracking has been computed
based on all available data and the original method described
in [29]. This will be referred to as reference tracking in the fol-
lowing. In order to validate the tracking method based on the
local shear deformation, it has been applied to each of the inter-
vals from 3.5° to 4°, from 3.5° to 4.5°, ..., and from 3.5° to 9.5°
of shearing, taking into account only the first and last point in
time, respectively. In particular, no information on intermedi-
ate time steps is used. The resulting tracks have been compared
to the ground truth, i.e., each track is considered correct if its
starting and end point belong to the same track in the reference
tracking. The fraction of correct tracks decreases slowly with
increasing angle increment. For an angle increment of 5° (or
smaller) more than 98.5 % of the computed tracks agree with
the reference tracking. Even with an angle increment of 6°,
more than 98 % of the tracks are correct.
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Figure 4: Slice of the binary image at two different points in time. Each particle
is colored according to the distance it travels in the subsequent time step, blue
indicates small and red indicates large values. In the first time step (left) the
center of rotation is slightly above and in the second time step (right) it is below
and left of the center of the sample. The image centers are marked with a red
cross.

2.3.4. Estimating the axis of rotation
When analyzing the tracked particle data it becomes apparent

that the empirical axis of rotation does not necessarily coincide
with the central axis of the cylindrical sample (see Figure 4).
The deviations can be caused by small inaccuracies in the align-
ment of the glass capillary and the upper and lower piston in the
experiment, cf. Section 2.2.2, and lead to an overestimation of
angular velocities on the one side and to an underestimation on
the other side of the cylinder. In order to adjust for these effects,
the axis of rotation is estimated from the data.

If rotation around a roughly vertical axis occurs, particles
with the same height and horizontal distance from the axis of
rotation will have approximately the same velocity. This means
that the center of rotation at a given height can be estimated by
fitting a circle to the particles at this height which have simi-
lar velocities. Note that the velocity of a particle is measured
as the distance it travels per degree of shearing, i.e., it has the
unit µm/°. For a grid of heights and velocities the correspond-
ing particles are collected and a circle parallel to the xy-plane
is fitted to their centers using weighted least squares, where the
weight of each particle is determined by how closely it matches
the velocity and z-coordinate of interest. More precisely, the
weight of a particle p in the circle fitting for height z and veloc-
ity v is given by

wp(z, v) = exp
(
−

(z − zp)2

2h2
z
−

(v − vp)2

2h2
v

)
, (4)

where zp and vp are the z-coordinate and velocity of p, and
hz and hv are smoothing parameters. The center of rotation at
height z is then determined by calculating the average of the
circle centers fitted for height z, i.e., over all velocities in the
grid. Note that the axis of rotation estimated in this way does
not necessarily need to be a straight line but can be curved. In
addition, the (curved) axis depends on the time step for which
velocities have been computed, so it can change over time.

The smoothing parameters hz and hv control how many par-
ticles are relevant for each circle fitting. They should be large
enough so that the circle fitting yields stable results, and small

enough to allow the estimated circle centers to vary with height
and velocity. In the present study they have been set to hz =

11 µm and hv = 0.66 µm/°. For these parameters, the resulting
axis is a smooth but flexible 3D curve.

Note that no rotation occurs at the bottom of the sample.
Here, all particles have a velocity close to zero and therefore
approximately the same weight in the circle fitting. Due to the
cylindrical shape of the domain, the estimated axis of rotation
will automatically be dragged towards the center of the sample
in these regions.

2.4. Simulations

2.4.1. Contact model
A soft particle DEM approach is utilized to simulate the sys-

tem of interest, i.e., trajectories are calculated by numerically
solving Newton’s equations of motion. Particles interact via
pairwise forces ( ~Fi j) and torques, which, in general, depend on
their relative position (~ri j = ~ri − ~r j), velocity, angular veloc-
ity, diameter (di, d j) and the contact history to account for fric-
tion. The functional form of how forces and torques depend
on the listed properties is generally referred to as the “con-
tact model”. It is convenient to distinguish between the nor-
mal part of the contact force, which describes the particles’ re-
sponse to a head-on impact as a function of the their overlap,
ξ = |~ri j| − 1/2 (di + d j), and the tangential part, which, together
with contact torques, complements the interaction on oblique
impacts and accounts for friction.

Contact mechanics is a research field of continuous, intense
study and today’s literature offers a vast variety of sophisticated
contact models (e.g. [30, 31, 32]), which are believed to pro-
vide an accurate interaction of micron-sized, spherical particles.
However, this gain of accuracy is accompanied by an increasing
complexity and many input parameters, which demand an elab-
orate experimental characterization [20]. Including such micro-
scopic details in the model may not be beneficial for a deeper
understanding of the bulk’s behavior. Therefore, we employ
a more phenomenological approach and intentionally keep the
contact model and the parameter choice as simple as possible,
exploring its predictive power as well as its limitations.

As a normal part for the contact model, we choose a damped
Hertz model [33] and subtract, in accordance with DMT the-
ory [34], a (positive) cohesion force (Fc) as a normal force

Fn(ξ, ξ̇) =
4Eeff

√
reff

3
ξ

3
2 + γn

√
ξξ̇ − Fc(reff). (5)

Here, Eeff = E/(2(1 − ν2)) is the effective elastic modulus, γn a
viscous constant and reff = did j/(2(di + d j)) the reduced radius
of the particles i and j. Consistently, a linear dependence of Fc

on reff is employed, although we expect a minor influence due
to the narrow particle size distribution.

The micromechanical description of the tangential forces
(based on Cattaneo-Mindlin-Deresiewicz [35]) is reduced to the
essence of friction [36], as is common practice in DEM sim-
ulations (see e.g. [37]). To implement Coulomb friction, to-
gether with rolling and torsional friction, we use the approach
presented in [37]. Each contact mobilization mode (sliding,
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rolling and twisting) is suppressed individually by using a linear
spring-dashpot, until a threshold is exceeded. This threshold, as
well as the resisting force (or torque) in case of mobilization, is
proportional to |Fn + Fc|. For simplicity, the same friction coef-
ficients are used in the static and dynamic case.

2.4.2. Parameters and calibration
A proper choice of contact model parameters is essential to

describe the material’s flow behavior correctly. As already dis-
cussed above, this statement can only hold true within certain
limitations, which will be explored as a secondary objective.
Nevertheless, microscopically undetermined parameters can be
utilized to calibrate a contact model, and they enable a correct
description of the bulk’s macro-scale behavior [25], e.g., stress
response to applied strain.

The normal part of the contact model (Equation (5)) em-
ploys parameters which affect the elastic, viscous and adhesive
behavior. Particle stiffness and adhesion force are measured
experimentally (cf. Section 2.1), γn is undetermined a priori.
In this study, the bulk’s response to a quasi-static deformation
is analyzed, hence, viscous parameters should have a negligi-
ble influence. For computational convenience, a high damping
coefficient is used to optimize energy dissipation, well aware
of the detachment effect [38]. In order to avoid overdamped
dynamics, damping is coupled to the elastic modulus, i.e., we
choose γn =

√
4/3 Eeffmeff , where meff is the reduced mass of

the colliding particles. Parameters for the tangential part of the
contact model are experimentally undetermined, leaving room
for calibration. A typical choice for the tangential stiffness is
kt = 2/7 kn [39], where kn is ∂

∂ξ
F(el)

n with F(el)
n being the elastic

part of Equation (5). Here we use kn = 4/3 Eeff x50,3/2, ap-
proximating the contact radius with the median particle radius
and therefore overestimating the stiffness. Since the underlying
friction model provides accurate results [36], the exact choice
of kt plays only a minor role [40]. All springs utilized for fric-
tion are damped, using a viscoelastic constant of 2

√
kt meff . As

twisting and sliding are closely related frictional modes, we set
the torsion friction coefficient, µtor/reff , equal to the Coulomb
friction coefficient µ (overestimating friction effects [41]). As
proposed in [30], we employ a load dependent rolling friction
coefficient and set µrol =

√
2reffξ. This choice of parameters

leaves the Coulomb friction coefficient, µ, as a free parameter
to calibrate the contact model.

The chosen particle size distribution is based on the exper-
imental characterization by laser diffraction (cf. Section 2.1,
Figure 1), using the following procedure: We model the distri-
bution with a log-normal distribution and draw particle diame-
ters according to the corresponding probability function. Only
diameters between 25 µm and 50 µm are accepted, resulting in
a slightly sharper cut-off at small particle sizes and an interquar-
tile distance of x75,3 − x25,3 ≈ 5 µm.

Calibration of the contact model is done by executing plane
shear simulations under variation of µ at a fixed normal stress,
σ = 15 kPa, and comparing the steady state macroscopic fric-
tion coefficient µmacro to the experimental findings. These cali-
bration simulations are done with N = 10 000 particles, confin-
ing walls moving in shear direction and periodic boundary con-

ditions in all other directions (see [21, 25] for details). The char-
acteristic dependence µmacro(µ) as found in many other studies
(e.g. [5]) can be reproduced. Fitting an exponential saturating
function as suggested in [42] results in µ ≈ 0.58.

2.4.3. Setup and preparation
The simulation setup mimics the experimental micro shear-

tester explained in Section 2.2.2: A cylinder with diameter of
1.78 mm is used to confine the sample in horizontal direction,
while two pistons (one movable, one fixed) close the simulation
cell in vertical direction. Both pistons are structured similar to
the experiment, i.e., with six vanes arranged in a star shape. The
shear cell diameter is chosen slightly smaller than in the exper-
iment in order to reduce the number of particles in the simu-
lation. Wall-wall interaction can be turned off in simulations,
hence the bottom piston, as well as the vanes, can in princi-
ple be extended to the outer capillary without a gap. As there
is a small gap in the experiment (≈ 0.025 mm), we introduce
a finite distance between the outer edge of the piston and the
cylinder wall of ≈ 0.1 mm. This slight gap enlargement is re-
quired to avoid jamming of single particles between the piston
and capillary since we neglect plastic deformation of particles.
Particle-wall interaction is described by the visco-elastic part
of the contact model (Equation (5)), using the same material
parameters.

The preparation procedure includes the following steps: A
random, porous particle configuration with volume fraction
≈ 0.2 is created. Potential overlaps are removed in a relaxation
run that uses a viscous background friction. After relaxation,
this omnipresent viscous term is removed and a normal load of
0.5 kPa is applied to the lower piston, compressing the material.
Following compression, a constant angular velocity ω is added
in order to shear the sample. To achieve a quasi-static deforma-

tion, we use the criterion ω
√
ρs x2

50,3/σ ≈ 10−4, similar to [5].

3. Results

In order to analyze the shear induced structural hetero-
geneity of cohesive granular matter, we conducted a torsional
shear experiment under constant normal load and implemented
DEM simulations mimicking the experiment on the same scale
(cf. Sections 2.2 and 2.4). As the ratio of cohesion force to nor-
mal stress is η = Fc/(σx2

50,3) ≈ 0.2, only a minor influence of
cohesion is expected [16]. Starting from a consolidated con-
figuration, a total shear strain of ωt ≈ 39.5◦ is analyzed and
compared. In Section 3.1 we compare the spatially-resolved
number density of particle centers in experiment and simula-
tion. Different methods for the detection and analysis of shear
bands are presented in Sections 3.2 and 3.3, based on tomo-
graphic images and particle tracking, respectively. Finally, the
shear band location and shape are compared in experiment and
simulation.

3.1. Segmentation and structural analysis
To extract particle positions from the experimental configu-

ration, tomographic data was segmented as explained in Sec-
tion 2.3.2. Particle positions and radii have been determined by
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Figure 5: Axial and radial density profiles (w = 8.8 µm) of the initial and the final configuration (left). 2D density profiles (w = 14.9 µm) of the experimental
(center) and numerical (right) final configurations. In all plots z = 0 marks the upper edge of the vanes on the bottom piston.

calculating the center of mass and the volume-equivalent radius
(i.e., the radius of a ball with the same volume) of the voxel rep-
resentation of each particle. Particles with a diameter smaller
than 13.2 µm or larger than 53.0 µm have been excluded from
the analysis. Very small particles cannot be segmented reliably,
while unrealistically large particles may occur due to bright,
star-like artifacts, which seem to be caused by single particles
of a different material present in the sample. Note that the ex-
cluded particles correspond to less than 0.1 % of the whole par-
ticle volume at each point in time.

The distribution of particle diameters extracted from the seg-
mented image data is unimodal and slightly skewed to the left
with a median of x50,3 = 30.7 µm and an interquartile dis-
tance of x75,3 − x25,3 = 3.7 µm. The size distribution has
also been measured using laser diffraction (cf. Section 2.1),
where a very similar median of x50,3 = 29.8 µm was ob-
served. The interquartile distance obtained from laser diffrac-
tion is x75,3 − x25,3 = 11.0 µm, i.e., considerably larger than the
value based on the image data. This is most likely due to the
back calculation algorithm used for laser diffraction measure-
ments, which is known to overestimate the width of extremely
narrow particle size distributions [43]. Importantly, the particle
size distribution estimated based on the image data is almost
identical for all XMT measurements, indicating consistent seg-
mentation results.

Based on the centers of the segmented particles, we compare
the number density n(r, z), i.e., the number of particles per cubic
millimeter, as a function of height (z) and distance to the central
axis of the cylindrical sample chamber (r). Furthermore, rota-
tional invariance is assumed, hence all data is averaged over
ϕ. To obtain continuous fields, we coarse-grain the data with a
Gaussian kernel (with standard deviation w).

Axial and radial density profiles of the initial and final con-

figurations are shown in Figure 5, together with 2D snapshots
of the final configurations. Experimental and numerical results
are aligned so that the outer cylinder walls coincide. Segmen-
tation of the image data reveals that the number of particles in
experiment exceeds the simulation by roughly a factor of 2.5,
resulting in a greater filling height. Hence, only a compara-
ble region 0 mm ≤ z ≤ 0.7 mm was considered for the ra-
dial density profile and only the portion between the pistons is
displayed in the axial density profile (z = 0 marks the upper
edge of the lower piston). While densities in experiment and
simulation are of the same order of magnitude, the densities
in the simulation are systematically higher. A coarse-graining
length of w = 8.8 µm nicely reveals wall-induced layering, as
shown in all radial density profiles (r − R > −0.1 mm, recall
that R is the shear cell radius) for both experiment and simula-
tion (Figure 5 (left)). This signature of granular microstructure
is known from shear experiments [8]. However, the increasing
density in the wall’s vicinity, which can be seen in the radial
and in the 2D density profiles in Figure 5, suggests an even
larger wall influence of roughly 1/4 mm ≈ 8 x50,3, which is
not surprising, as long-range wall perturbations can be present
with quasi-static deformations [44]. Besides these dense zones
close to the wall, a slight gradient in radial direction can be de-
tected in the bulk as well. While the density increases with r
in the numerical data, the shear cell’s center is more densely
packed in the experiment. This deviation can already be spot-
ted in the initial configuration and may therefore be a relict of
the different preparation procedure, as discussed later. Judged
by the radial density profiles, shearing leads to dilation in sim-
ulations, whereas the experimental packing compacts/densifies
during shear. This misconception can be cleared up by the axial
density distribution. Comparing the initial and final configu-
rations, a dilation (0 ≤ z ≤ 0.2 mm) as well as a compaction
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zone (z > 0.2 mm) can be identified in both simulation and
experiment. Densification is much more pronounced in the ex-
periment and the ratio of compacting to dilating volume part
is close to unity in simulation leading to the illusion of dila-
tion. Despite these quantitative differences, the axial density
profiles are in qualitative agreement. Even quantitative agree-
ment is achieved when looking at the unique/specific features
of the axial density profiles: The omnipresent density gradient
(z < 1 mm) in z-direction, which can be quantified by a linear
fit (indicated in the plot), just differs by less than 5 %. Shear-
ing leads to a decrease of the gradient’s absolute value from
approximately 4.4 · 103 1/mm4 to 3.5 · 103 1/mm4. This gra-
dient is probably caused by wall friction and can be interpreted
as a consequence of the Janssen effect [45], which will be dis-
cussed later (Sections 4.1). Another unique feature of the final
axial density profile is the dilating zone, where the experimental
and the numerical data collapse, suggesting a shear localization
close to the lower piston with the same critical density. Further
analysis of the shear localization is part of Section 3.2 and 3.3.

The 2D number density plots (Figure 5; center and right)
emphasize the spatial inhomogeneity of the density distribu-
tion, which was already revealed by the 1D profiles. As seen,
e.g., in the experimental data, from bottom to top, a dilation
zone is located directly above the lower piston, followed by a
more densely packed zone above which a homogeneous zone
is located. A higher number density close to the wall can be
observed as well. Ignoring the inhomogeneity induced by the
capillary wall, the 2D density plots suggest a cone like densi-
fication zone on top of the lower piston. This feature is not
prominent in the simulation data, where the dense region close
to the outer wall is more pronounced.
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Figure 6: Comparison of the mean volume fraction over time.

By estimating the total particle volume based on the binary
images and normalizing with the volume of the sample cham-
ber, we are also capable of tracking the experimental solids
volume fraction over time and of comparing the results with
the simulation data, shown in Figure 6. As already observed
in the local number density, the shear induced compaction is
more pronounced in the experiment (ω t ≤ 5◦). This differ-
ence is probably caused by the dense initial configuration in the
simulation. The initial densification is followed by a dilation
in experiment and simulation until a steady state volume frac-
tion is reached at a shear strain of ω t ≈ 10◦ in experiment and
ω t ≈ 20◦ in the simulation run. We notice, however, that the
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Figure 7: Image-based local shear deformation in 1D and 2D in the steady state
of the experiment. The 1D case (top) shows the shear deformation as a function
of the height in the sample with almost congruent states. The 2D deformation,
which is shown for the last time step as an example (bottom), reveals that the
shear band geometry is curved close to the wall.

fluctuations in the experimental data do not support a final state-
ment on when exactly the steady state is reached. The analysis
on shear localization will lead to further insight.

3.2. Image-based local shear deformation
The image-based local shear deformation was determined

in 1D and 2D for the experimental data as described in Sec-
tion 2.3.1, based on the tomographic grayscale image stacks.
Results for the final four time steps are shown in Figure 7. We
obtain an angle of local deformation as a function of the height
in the sample (z) in 1D, and as a function of the height (z) and
the distance from the central axis of the cylinder (r) in 2D. Note
that based on the image data we only obtain a coarse radial res-
olution: The number of radial coordinates for which the local
shear deformation is evaluated corresponds to the number of
rings rotated independently (cf. Section 2.3.1). This number
cannot be very large, because we need a certain number of vox-
els on each ring in order to get reliable results.

Shear strain localizes close to the lower piston, as already
suggested by the density profiles. The 1D deformation shows
that the extension of the shear band still varies after ωt ≈ 10°,
although the volume fraction already remains constant after this
point (see Figure 6). Starting at ωt ≈ 25◦ no significant changes
in the deformation behavior can be observed. In 2D we obtain
more details about the geometric shape of the shear band. In
addition to its location and width, the 2D deformation reveals
that the shear band is curved downwards where the vanes on
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the lower piston meet the cylinder wall. This means that di-
rectly above the lower piston particles close to the wall have a
higher angular velocity than particles in the center of the sam-
ple. Again, the effect can be explained by the influence of
the outer rotating wall because outer particles are more easily
dragged along than particles in the center of the sample. We
observe a vertical extension of the shear band of up to 250 µm
after ωt ≈ 25°, which corresponds to approximately 8 median
particle diameters. This agrees well with data from literature,
where ratios between 7 and 18 have been found [10, 13, 26, 46].
The 2D deformation additionally suggests that the shear band is
broader towards the center of the sample than close to the outer
wall.

The 1D image-based local shear deformation can also be
used to measure the rotation of the upper and lower piston (see
Section 2.3.1). In principle, the movement of the pistons should
be known from the setup of the experiment: the upper piston
should rotate in steps of 0.5° and later 5°, while the lower pis-
ton should be held perfectly still. However, we observe that the
actual movement of the pistons deviates from this ideal. The
mean absolute difference between the actual and target angle
of rotation is 0.02° for the upper and 0.19° for the lower pis-
ton, respectively. Taking into account both, the mean absolute
difference between the actual and target angle of shear is 0.20°.

This imperfection in the rotational movement is likely caused
by the compensation unit, which is supposed to keep the con-
tactless mounted lower piston in place while tracking shear
stress. However, interlocking of particles between piston and
wall may counteract this mechanism, dragging the lower piston
partially during shear deformation and resulting in implausible
high peaks in the shear stress. A solution for this problem can
be obtained by decreasing the piston diameter (and thus increas-
ing the gap) to reduce the effects of interlocking. However, this
is accompanied by the more disadvantageous effect of loosing
sample material, which may be pushed through the gap and out
of the sample chamber during shear. Moreover, we can only
control the rotation of the upper piston and hence of the glass
capillary in this shear-tester setup. Unfortunately, it is not pos-
sible to observe the rotation of the lower piston in the range of
≈ 0.01° during shear deformation to achieve the desired relative
rotation.

3.3. Tracking and shear bands
Particle tracking allows for an even more detailed analysis

of strain localization in the experiment compared to the image-
based analysis of Section 3.2.

Particle tracks were computed for all steps of shearing start-
ing at ωt = 3.5° using the methods described in Section 2.3.3.
Before this point we observe a considerable decrease in the
distance between upper and lower piston, from 2.12 mm to
1.93 mm, which leads to considerably high vertical displace-
ments of particles in the upper part of the cylinder. This shear-
induced densification, which is even spatially inhomogeneous,
renders the identification of reliable tracks in the first time steps
impossible. After ωt = 3.5° we obtained very good tracking
results. The tracking efficiency (measured as the number of
particles assigned to valid tracks divided by the total number of

particles) is larger than 97 % in each step of 5°, and even larger
than 99.5 % in each step with an angle increment of 0.5°.

On the basis of particle tracks, it is possible to calculate ve-
locities of single particles in the experiment and compare them
to the simulation. For reasons of comparability, all particle ve-
locities are described as angular velocities with respect to the
axis of rotation (cf. Section 2.3.4), and normalized to the inter-
val [0, 1] using the movements of upper and lower piston, which
are estimated as described in Section 2.3.1. All movements are
described relative to the upper piston and wall.

We compare the 2D profiles of average normalized angu-
lar velocity, vϕ̃(r̃, z), as a function of height (z) and (horizon-
tal) distance to the axis of rotation (r̃), where the average is
in ϕ̃-direction and (r̃, ϕ̃, z) denote cylindrical coordinates with
respect to the axis of rotation. Note that in case of the exper-
iment, the axis of rotation has been estimated from the data
as described in Section 2.3.4 and rotational velocities are cal-
culated with respect to this estimated axis. In the simulation,
however, we did not observe severe deviations of the axis of
rotation from the central axis of the cylinder, so the two are
considered equivalent. This change of the coordinate system is
necessary because the dynamics in the sample clearly depend
on the distance from the axis of rotation rather than the dis-
tance from the central axis of the cylinder. Without adjusting
the cylindrical coordinates, the experimental particle velocities
would not be independent of ϕ and averaging in azimuthal di-
rection would not be feasible. For coarse-graining we used the
same bandwidth as for the 2D density profiles in Section 3.1,
w = 14.9 µm.

In order to compare the shear bands visible in experiment
and simulation quantitatively, we fitted a parametric function to
the velocity profiles. For a fixed radial distance, r̃, the velocity
profile is described well by the function

vϕ̃(z) =
1
2
−

1
2

erf
(

z − zsb

wsb

)
, (6)

where erf denotes the error function, and zsb and wsb are the
fitted parameters describing the local height and (semi) width
of the shear band, respectively. This function is attractive be-
cause of its simplicity with only two parameters and has also
been used in [9] to describe symmetric shear zones. Discretiz-
ing r̃ with a bin size of 0.03 mm and fitting this function to
the z-coordinates and (normalized) velocities of the particles in
each bin, we obtain estimates of zsb = zsb(r̃) and wsb = wsb(r̃)
as functions of the radial distance r̃, leading to a r̃-dependent
velocity profile vϕ̃(z) = vϕ̃(r̃, z). Here, we define the shear band
as the interval zsb±wsb, which covers approximately the central
84 % of the velocity range in the data. Of course, any other rea-
sonably large percentage could be chosen to separate shear band
and homogeneous zones in principle. Since the main purpose of
the fit is to quantitatively compare experiment and simulation,
we stick to this simple choice.

An example of actual and fitted velocity profiles in the simu-
lation as well as the time-averaged velocity profile obtained for
the experimental data after ωt ≈ 10° is reached are shown in
the upper part of Figure 8. The fitted shear band is indicated as
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Figure 8: Example of actual and fitted velocity profiles in the simulation for one snapshot and different distances from the axis of rotation (top left), experimental
2D velocity profile in the steady state with the fitted shear band indicated in black (top right), comparison of the fitted shear bands after reaching the steady state
in experiment and simulation (bottom left), and development of the fitted shear band width and location in simulation and experiment over time, averaged over r̃
(bottom right). The shear bands are indicated as zsb ± wsb.

zsb ± wsb in the graph on the right-hand side. The graphs show
a very good agreement of the fitted profiles with simulated and
experimental data, respectively. The bottom left part of Figure 8
shows a direct comparison of the fitting results for simulation
and experiment, where the alignment is chosen such that the
outer cylinder walls coincide. The experimental and simulated
shear bands are in almost perfect agreement. In both cases the
shear band is close to the lower piston, on average its center is
located at z = 0.12 mm. The shear band width is also very com-
parable, it is 2wsb = 0.23 mm on average, which corresponds
to roughly 8 median particle diameters. Both shear bands are
slightly curved downwards where they come close to the outer
wall of the cylinder. While they coincide almost perfectly for
r−R ≤ 0.2 mm, the curvature close to the wall is stronger in the
simulation, which can be explained by the larger gap between
piston and wall (cf. Section 2.4.3).

The bottom right part of Figure 8 shows the development of
zsb and wsb in experiment and simulation over time, averaged
over r̃. It seems that a steady state is reached at ωt ≈ 10° in the
experiment and at ωt ≈ 20° in the simulation, as already indi-
cated by the solids volume fraction shown in Figure 6. Before
ωt ≈ 10° the experimental shear band width and height are (on
average) larger, and both values fluctuate much more strongly.
The shear band rises from zsb ≈ 0.15 mm to zsb ≈ 0.37 mm
in this period and drops back to its lower position at a shear
strain of ωt ≈ 9°. However, even after ωt ≈ 10° the shear band
width fluctuates perceptibly, wsb takes values between 0.08 and
0.16 mm here. Smaller fluctuations have to be expected since
we consider (and implicitly average over) much larger time in-

tervals in each step here. There seems to be a second drop in
the variability of zsb and wsb at ωt ≈ 25°. Whether this is a co-
incidence or the steady state is actually only reached in the last
three steps of the experiment is unclear and cannot be judged
based on the present data. Therefore, we assume that the steady
state is reached at ωt ≈ 10° in our analysis. In the simulation
the initial shear band width and location are also higher than in
the steady state, but the difference is smaller and the transition
much smoother than in the experiment. This might either be due
to the difference in the initial configurations (cf. Section 3.1)
or due to stopping the process of shearing for XMT measure-
ments in the experiment. As the experiment is conducted quasi-
statically, no influence of inertia is expected. However, the en-
tire shear cell has to be slowly rotated in the course of an XMT
measurement, which might slightly alter particle positions and
perturb the smooth transition into the steady state.

4. Discussion

4.1. Segmentation and structural analysis

Analysis of the static configurations revealed a systemati-
cally higher number density in the simulation data. The rela-
tive deviation of just 2.5 % is probably due to a very narrow
particle size distribution in reality as determined based on the
XMT measurements. Due to the back calculation algorithm
of the laser diffraction device, a wider distribution was mea-
sured. Segmentation underlines this reasoning as the interquar-
tile distance is indeed slightly larger in the simulation (5 µm
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compared to 3.7 µm). However, other possible reasons why the
packing fraction is overestimated in the simulation can be iden-
tified: While either a higher Fc [16], or a higher rolling fric-
tion coefficient [18] can lead to a decrease in volume fraction,
an additive contribution of both effects is unlikely (e.g., dust
or surface roughness in general would increase contact friction
while decreasing the contact area and therefore van-der-Waals
forces [20]). Since the adhesion force was measured experi-
mentally, rolling friction might simply be underestimated by
theory (cf. Section 2.4.2 and [26, 30]).

However, the mm-sized shear cell suggests also a great wall
influence. Indeed, a more drastic influence should be expected
in the simulations since the shear cell radius is roughly 0.1 mm
smaller than in the experiment. Assuming a densification zone
close to the wall with equal extent (≈ 0.25 mm) and density,
the increase in the number density due to a smaller shear cell
radius can be approximated and should amount to about 1 %,
accounting for half of the deviation in principle. However, the
density in the wall’s vicinity also differs, as the radial density
profile revealed (Figure 5).

The simulation shows a more pronounced densification zone
at the wall, while an almost cone-like densification zone is
present in the center of the experimental shear cell. Because
wall friction can have a drastic impact on the transfer of shear
strain [47], the deviation might be caused by a combination of
the approximated particle-wall interaction in the simulation (es-
pecially friction) and the different preparation procedure. Dur-
ing preparation in simulation, the lower piston is raised slowly
by almost 2.5 mm, compacting the initial random packing (vol-
ume fraction ≤ 0.2) to the desired stress. This process already
contains a shear strain at the capillary wall, i.e., wall friction
leads to a continuous excitation in the outer region during com-
paction, which might induce a tapping like densification [7, 48].
As the relative motion of capillary and lower stamp is present in
the experiment as well, the cone-like densification zone seems
puzzling. Here, however, the preparation process is different,
namely a gravitation driven deposition. The first portion of
dumped particles piles onto the structured bottom piston (e.g.
vanes arranged in a star shape), which quite likely dictates the
densification zone’s shape. In addition, the resulting configura-
tion is more dense, requires less strain for compression and is
therefore exposed to less excitation. Of course this interpreta-
tion needs further investigation. Given all these possible influ-
ences, a deviation in density of a few percent (volume fraction
only 0.7 %) is more than satisfying.

Even better agreement is found in the axial density distri-
bution. Although neither the exact particle-wall friction, nor
adhesion is known, the same density gradient in z-direction is
observed in both experiment and simulation. This gradient is
caused by wall friction, demonstrating the stress-flux between
piston and capillary. As the characteristic length scale in the
Janssen effect grows with the ratio of cylinder radius and fric-
tion coefficient, we have to assume that both approximations
cancel out, resulting in this quantitative agreement.

With respect to the different number densities in the com-
paction zone, it seems like a coincidence that the experimental
and numerical curves collapse in the dilation zone (axial num-

ber density in Figure 5). A more optimistic interpretation would
imply the same critical number density, since the dilation zone
coincides with the shear band. While density inhomogeneity
due to preparation remains in the resting part of the bulk, the
active shear zone is history independent. The minor differences
in particle size distribution seem not to affect this result.

4.2. Tracking and shear bands
In Sections 3.2 and 3.3 we presented the results of differ-

ent methods to analyze shear bands in the experiment. Though
they are in good agreement in principle, the methods vary in
computational efficiency, flexibility and the level of detail of
the information they provide. The 1D image-based local shear
deformation is relatively fast to compute and provides a good
first overview over the deformation as a function of the height
in the sample. An extension of this method is the 2D image-
based local shear deformation. Here, each image slice is not ro-
tated as a whole — instead, the disk-shaped cross section of the
cylinder is subdivided into disjoint rings, which are rotated in-
dependently (see Section 2.3.1). This extension is more compu-
tationally expensive (depending on the number of rings used),
but in return provides 2D information: the local angle of shear
deformation as a function of height and radial coordinate in the
sample. In particular, it reveals that the shear band in our data
is slightly curved and not exactly parallel to the xy-plane. We
believe that the curved shape of the shear band is predominantly
provoked by the influence of the outer glass wall. Such effects
are concealed by the 1D deformation, which is similar to an av-
erage over r. If the shear band properties depend strongly on the
radial coordinate, the 1D information might even be mislead-
ing. For example, a shear band which is actually narrow and
strongly curved (which might, e.g., be caused by a strong sam-
ple heterogeneity) would seem like a wide shear band in the 1D
deformation. In our case the shear band is only slightly curved
and we obtain similar shear band widths with both methods. On
that account the observed shear band width in our experiment
agrees well with data in literature for noncohesive granular mat-
ter. With the ratio Fc/(σx2

50,3) ≈ 0.2, this is expected [49].
The results presented in Section 3.3 were computed based on

a particle tracking. Obtaining this particle tracking requires sig-
nificant additional effort during the experiment as well as from
a computational and analytic perspective. First, the XMT mea-
surements are time consuming and a good temporal resolution
is needed. Although we present a method to track the particles
even in steps with an angle increment of 5°, much smaller angle
increments are needed at least for part of the experiment to val-
idate the method (see Section 2.3.3). Furthermore, the tracking
itself requires a preceding segmentation of good quality and the
2D image-based local shear deformation discussed in the previ-
ous paragraph. In return, it provides information on the motion
of single particles in the experiment, which is the most accurate
basis for a shear band analysis. It is much more precise than the
image-based method and revealed, for example, that the axis
of rotation varies in the experiment. Such effects cannot be
captured and accounted for by the image-based local shear de-
formation. Moreover, particle tracking bridges the gap between
experimental data and discrete element simulations and makes

11



the two comparable. It enables the estimation of continuous ve-
locity fields and a parametric fit of the shear band parameters
in a very fine radial resolution. Our comparison to simulations
shows a very good agreement of experimental and simulated
shear band shape and location. Though not performed in this
study, the particle tracking additionally allows for the compar-
ison of single particle trajectories and their properties, which
will be subject of future work.

The Gaussian function given in Equation (6), which we used
for fitting the shear bands, proved to provide very good fits for
shear bands in a modified Couette shear cell [9]. These shear
bands develop distant from a wall, resulting in a symmetric
shape. When shear bands develop close to a wall, such perfectly
symmetric shapes are not typical. For example, a mixture of a
Gaussian and an exponential component in the velocity profile
was observed in a study of shear bands localized close to the
side wall in a similar shear cell geometry [7, 8]. The expo-
nential decay was attributed to slippage between layers of the
monodisperse particles used in [8]. In our data, the velocity pro-
files appeared approximately symmetric, thus we consider only
the purely Gaussian fitting function. If an exponential compo-
nent is present in our data, it is very small. This is plausible
because we cannot have layers of particles at the bottom of the
cylinder due to the structured pistons. A wider particle size dis-
tribution might be another reason why we do not observe layers
of particles slipping over each other at the bottom of the shear
cell in this study.

5. Conclusion and outlook

In this study we demonstrated that an experiment and a DEM
simulation of particles under torsional shear can be realized on
the same scale. We used spherical particles made of borosilicate
glass. Even with a comparatively simple contact model, which
does not include plastic deformations, we obtained a very good
agreement of the dynamics in simulation and experiment. This
direct comparison suggests, however, that effects caused by the
initial structure of the particle system do not vanish completely
during the observed strain deformation and, therefore, caution
has to be taken at preparation stage.

Using the micro shear-tester implemented in an XMT device
we can image the evolution of the sample during the experiment
in a series of high-resolution 3D images. Particle positions
and radii can be extracted consistently from the image data and
have been used to compute spatially resolved density profiles of
the particle centers, which were in good qualitative agreement
for experiment and simulation. We presented methods to as-
sess the local shear deformation in the sample based directly on
the image data as a function of height and radial coordinate in
the cylindrical sample chamber. Furthermore, we demonstrated
how this information can be used to identify tracks of single
particles even when a large angle increment of up to 5° is used
for shearing between XMT measurements. This even more de-
tailed data on the movements of particles can be used to directly
compare the dynamics in experiment and simulation. Although
the slightly different preparation and the unsteady experimental

procedure complicate a direct comparison of the temporal evo-
lution, we obtained an extremely good agreement of the shear
bands in the steady state. The shear band developed close to
the lower piston and is slightly curved downwards at the outer
wall of the cylinder. Using a Gaussian function to fit the pro-
file of rotational velocities for a series of radial coordinates, we
obtained quantitative agreement of the shear band width and lo-
cation in experiment and simulation over almost the full radius
of the shear cell.

This paper presents a toolbox of methods to analyze a shear
experiment based on tomographic image data. Naturally, the
methods can also be used to compare multiple experiments with
varied parameters or multiple types of particles. Further work
has to be done to address some more questions regarding parti-
cle trajectories in order to resolve single particle profiles during
shear. Another raising question deals with the effect of the sam-
ple preparation process on the initial packing behavior which is
not worked on in detail in the current study. Moreover, an ex-
tension of the considered parameters is possible. Here, a shear
stress logging during deformation and an investigation of the
effect of larger stress levels on the packing and deformation be-
havior is desirable. Additional scenarios should be addressed to
describe structural and dynamic effects in fine granular matter.
These include variation of particle parameters such as particle
surface forces as a modification of particle cohesion, investiga-
tion of particle shapes far away from ideal spherical shape, e.g.,
rods and irregular shaped glass particles, or a variation of parti-
cle size distribution and its effect on mesoscopic deformation.
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