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Abstract. The microstructure of lithium-ion battery electrodes has a
major influence on the performance and durability of lithium-ion batter-
ies. In this paper, an overview of a general framework for the simulation
of battery electrode microstructures is presented. A multistep approach
is used for the generation of such particle-based materials. First, a ‘host
lattice’ for the coarse structure of the material and the placement of par-
ticles is generated. Then, several application-specific rules, which, e.g.,
influence connectivity are implemented. Finally, the particles are simu-
lated using Gaussian random fields on the sphere. To show the broad
applicability of this approach, three different applications of the general
framework are discussed, which allow to model the microstructure of
anodes of energy and power cells as well as of cathodes of energy cells.
Finally, the validation of such models as well as applications together
with electrochemical transport simulation are presented.
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1 Introduction

The usage of lithium-ion battery cells is steadily growing in various fields of daily
life. This implies the necessity for further improvement of battery materials. As
laboratory experiments are expensive in time and costs, model-based simulations
of electrochemical processes in battery cells have become an important part of
battery research. Simulations are also necessary for the optimization of charging
strategies and control systems [24].

Electrochemical simulation models go back to the famous work of Newman
and co-workers [21]. However, these models neglect detailed geometry informa-
tion of the cell and its 3D microstructure by using averaged characteristics.
Recently, spatially resolved transport models have been developed to simulate
the charge transport in lithium-ion battery cells [16, 17].

In this work, the focus is on stochastic 3D microstructure models. Such mod-
els can be used as spatial input information for spatially resolved transport mod-
els, where highly resolved image data of 3D microstructures of battery electrodes



are necessary for model calibration. The major advantage of the combination of
stochastic microstructure models with spatially resolved transport models is that
this approach can be used for realistic simulations of local effects. This includes
lithium-plating and further aging mechanisms which are influenced by local po-
tentials. Furthermore, the computational complexity of this approach can be
minimized for specific applications like cycle-life simulations by reduced basis
methods [8]. An example of a structure generated by such a 3D microstructure
model is shown in Fig. 1.

Fig. 1. Comparison of experimental and simulated anode structures. Experimental
data (left), simulated data (right).

2 Simulation of lithium-ion cell electrodes

2.1 General approach

Methods of stochastic geometry and spatial statistics have been proven to be a
viable tool for the simulation of 3D microstructures of energy materials like those
used in fuel cells or solar cells [9, 10, 25]. The general idea of these methods is to
provide microstructure models based on a few parameters that are able to gener-
ate 3D microstructures which are similar in a statistical sense to those observed
in experimental data. This means that averaged characteristics like volume frac-
tions or specific surface areas but also more refined descriptors of microstructures
like tortuosity of transportation paths or the pore size distribution are in good
agreement, see [20] and [26] for more details.

Furthermore, these models and the corresponding simulation algorithms are
off-grid meaning that they can be used to generate structures on arbitrary length
scales. The computation time it takes to generate a realization of such a mi-
crostructure model is usually very small. Thus, the usual problems of tomo-
graphic imaging related with the generation of a sufficiently large amount of



highly resolved 3D images in sufficiently large regions of interest can be solved
once such a model is developed and fitted to experimental data.

2.2 Modeling framework

The microstructures of different types of lithium-ion battery electrodes vary
from each other, however, they share some common structural properties. In
general, electrodes consist of systems of connected particles that can have com-
plex shapes. For the electrode models it is very important to fit fundamental mi-
crostructure characteristics like porosity and specific surface area exactly [23].
Another important characteristic of the electrodes is the high connectivity of
particles. This means that each particle is connected to many neighboring par-
ticles. Thus, the model of individual particle sizes and shapes has to be flexible
enough to meet all these conditions.

A general framework based on a stochastic particle model which possesses
these properties has been developed. It is based on the representation of particles
as linear combinations of spherical harmonics which can then be seen as realiza-
tions of Gaussian random fields (GRFs) on the sphere. Particles with random
sizes and shapes can be simulated using GRFs on the sphere whose parameters
are fitted to the coefficients of the spherical harmonics expansions of particles
extracted from experimental data [7]. The whole framework consists of several
steps, which are described in more detail in the following subsections:

– approximation of particles
– particle model
– host lattice, particle arrangement
– connectivity of particles
– particle placement and boundary conditions
– simulation of individual particles

Approximation of particles. As our aim is to develop a stochastic model for
irregularly shaped particles of electrode materials, a first step is to find a suit-
able (analytical) representation of the particles observed in tomographic images.
Thus, each particle is approximated by an analytical function using an expansion
in spherical harmonic functions.

The spherical harmonic functions form a basis of the family of square-integrable
functions defined on the unit sphere. This means that every square-integrable
function can be written as an expansion in spherical harmonics. This is pretty
similar to the well-known Fourier series expansion that is frequently used in
signal processing.

In such an expansion the spherical harmonics have a natural ordering by their
degree l and their order m. Regarding our application this means that spherical
harmonic functions with higher order l represent smaller features of the particle
surfaces. This motivates the truncation of the series of spherical harmonic func-
tions at a certain cutoff degree L which leads to a good approximation of the
particles.



On the one hand, this is necessary for numerical calculations and it makes fur-
ther modeling easier. But, on the other hand, this is a natural way to smooth the
particles, e.g, to minimize artifacts resulting from measurements, binarization or
(particle) segmentation. This smoothing is similar to the theory used in signal
processing with Fourier methods. Of course, a good choice of the parameter L
is crucial and thus has been investigated in detail in [7].

Images showing the experimental microstructure before and after the smooth-
ing of particles by the usage of spherical harmonics are given in Fig. 2. A more
detailed comparison for an individual particle can be found in Fig. 3.

(a) (b)

Fig. 2. Comparison of the result of structural segmentation and approximation of par-
ticles by spherical harmonics. Particle system before (a), and after approximation by
spherical harmonics (b). Reprinted from [7] with permission from Elsevier.

(a) (b)

Fig. 3. Example of a particle from an energy cell anode. Segmented particle from
tomographic image (a) and approximation of the particle with a truncated series of
spherical harmonics for L = 10 (b). Reprinted from [7] with permission from Elsevier.

Particle model. As described above, particles in electrode materials are often
complex shaped and no perfect spheres, see Fig. 3(a). Thus, simple approaches
where particle models are based on spheres, like, e.g., in [11] are not sufficiently



precise, especially since the volume fraction as well as the surface area of particles
plays an important role for the functionality of the material, see, e.g., [2, 4]. Thus,
an alternative method which allows great flexibility, namely Gaussian random
fields on the sphere, lead to a better accuracy of the model.

Gaussian random fields on the sphere are a model to describe the surface
of randomly shaped objects. The idea is to generate a random radius function
(in spherical coordinates) that assigns a radius value to each point (or angle)
on the sphere. Of course, these values are not totally independent but have a
spatial correlation. The exact spatial correlation can be controlled by the so-
called angular power spectrum (APS) which is related to the Fourier spectrum
in the 1D analogy. Thus, for a given material the APS has to be calculated
for particles from experimental data and can then be used to generate random
particles. An example of the APS for random particles from an energy cell is
shown in Fig. 4.
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Fig. 4. Example of an angular power spectrum. Reprinted from [6] with permission
from Elsevier.

It turns out that this approach works well and that the simulated particles
are in good accordance with the particles from the experimental samples, even
for very differently shaped particles. Formally, this can be seen by comparing
shape characteristics like volume, surface area or sphericity for two large sets
of simulated particles and particles from experimental data, see [6, 7] for more
details.

Host lattice, particle arrangement. As electrode materials can have high volume
fractions of active materials (up to 73%, see e.g., [7]) one major challenge is to
create a dense packing of irregularly shaped particles. There exist several ap-



proaches to generate dense particle structures directly from a set of particles,
e.g., by using packing algorithms like the force-biased algorithm [19]. However,
a huge drawback is that this approach is very time-consuming and for large
observation windows it takes up to days on modern hardware. Furthermore,
dense packing algorithms are usually applied to packings of spheres. In a situa-
tion where particles are not spherical or even not convex they often cannot be
applied or at least are way more complex.

Moreover, the particles (that will be generated later with the model described
above) have high connectivity. Thus, an indirect approach for the placement of
particles is used. First, a ‘host lattice’ is generated consisting of single polytopes
where particles will be placed inside in the next step.

Fig. 5. 2D intersection of a Laguerre tesselation. Reprinted from [6] with permission
from Elsevier.

A Laguerre tessellation is used as ‘host lattice’, which is a division of the
space into disjoint convex polytopes. In more detail, a random tessellation [18]
is used as this gives great flexibility but can also be generated efficiently as La-
guerre diagram of a random marked point pattern, see Fig. 5. The generation of
a ‘host lattice’ for particle placement has to be adopted for different materials.
This means that the random point pattern for the generation of the Laguerre tes-
sellation has to be fitted to each case, and in some applications not all polytopes
are used as particle hosts but some are left empty.

Connectivity of the particles. As emphasized before, the high connectivity of
particles is very important for electrode materials. Thus, this property has to be
incorporated in the model. This is done by using a random graph which contains
the corresponding information, the so-called connectivity graph. The nodes of
this graph correspond to the polytopes of the tessellation and an edge in the



graph indicates that the particles, that will be placed in two polytopes later on,
have to be in contact with each other.

Two polytopes are said to be neighboring if they share a common facet.
Thus, facets of the tessellation can be seen as edges of the connectivity graph.
An example of such a graph is shown in Fig. 6.

Fig. 6. Example of a connectivity graph (blue) and the underlying tessellation (black).
Reprinted from [6] with permission from Elsevier.

One important side condition is, as stated above, that there are no particles
or clusters of particles that have no connection to the rest of the system. This
means that for each particle there has to be a path of connections to every other
particle in the bulk. This can be achieved by a special construction algorithm
of the graph as follows. After the generation of the tessellation, first the graph
of full connectivity is generated. This means the polytopes in the observation
window are taken as vertices and for the edges, every facet is turned into an edge
that connects the two polytopes that share this facet. Thus, in this graph each
node is connected to all its neighbors. Depending on the application a weighting
of the edges can be applied.

Then, the minimum spanning tree (MST) of the graph of full connectivity is
calculated. The MST is the minimal subgraph which fulfills the condition that
there exists a path from every node to every other node in the graph [13].

The MST forms the basis for the connectivity graph. This final connectivity
graph is then generated by adding edges between neighboring nodes based on a
Bernoulli experiment, where the edge-putting probability is given by variations
of the following different model types:

– The probability is fixed and independent of the polytope / particle.



– The probability is given as a function of characteristics (like the surface area)
of the common facet.

– The probability depends on the angle of the connection of the centroids of
the two neighboring polytopes.

– The probability depends on the distance between the centroids of the two
polytopes.

The latter option is especially necessary if the electrode microstructure is
anisotropic. More details can be found in [28].

Particle placement and boundary conditions. Given the model for the particle
shapes based on the GRFs on the sphere, particles are placed inside polytopes
of the tessellation.

(a) (b)

Fig. 7. (a) 2D schema of the boundary conditions. Particle (red) and surrounding poly-
tope (black). The boundary conditions are that the particle touches the facet at specific
points (blue). These conditions are also generated for the neighboring particles, thus it
is ensured that both particles touch each other. (b) Boundary conditions on the facet
(red dots). Both neighboring particles have to touch several points on their common
facet and thus are connected. Reprinted from [6] with permission from Elsevier.

Furthermore, the following two rules are used for the particle placement:

– A particle’s shape should roughly follow the shape of the polytope.
– A particle has to touch its neighbors according to the edges of the connec-

tivity graph.

Generally, the particles should have shapes that are characteristic for the
material. This is ensured by using realizations of the particle model explained
above. As the particles are placed inside the Laguerre polytopes, their barycen-
ters are used as origins of spherical coordinate systems. The particles are then



represented as an expansion in spherical harmonic functions whose coefficients
are generated from the GRF model described above.

Simulation of individual particles. The last step for the generation of a simulated
microstructure is the generation of particles. On the one hand, they need to be
generated from the (stochastic) model described above and on the other hand
they need to fulfill the boundary conditions explained previously.

This is indeed possible due to the special nature of the particle model. To be
more precise, because the particle model is based on an expansion in spherical
harmonics, the rules stated above translate into linear boundary conditions.
As the coefficients are then sampled from a GRF model, the problem can be
translated to drawing coefficients from a multivariate Gaussian distribution with
boundary conditions. To make the simulation more efficient the distribution
is transformed to a distribution whose realizations always fulfill the boundary
conditions. Further details are given in [6].

3 Simulation of particulate materials.

Using the method for modeling and simulation of individual particles described
above, it is possible to build models for different kinds of electrode materials.
Electrodes in so-called energy cells like the ones used in electric vehicles have
high particle densities and relatively small porosities.

The simulated 3D microstructures are then used for spatially resolved trans-
port simulations [14] where the focus is put on the electrochemical validation of
the simulated microstructures. Moreover, in [8], the electrochemical simulations
performed on simulated 3D microstructures are combined with model order re-
duction methods to accelerate the whole procedure which enables the simulation
of multiple cycles, e.g., for virtual aging tests.

In lithium-ion cells designed for power applications like the ones used in
plugin hybrid vehicles, the volume fraction of active material is lower but the
specific surface area is higher to allow for higher charge and discharge currents.
For a detailed comparison for different electrode and cell types see [5, Table 2].
Such 3D microstructures have been simulated with an extended version of the
modeling approach described above for energy cells, where a refined tessellation
model is used and some polytopes are left empty when placing the particles [28].

The counterpart of the anode in a lithium-ion battery cell is the positive elec-
trode, also called cathode. The considered cathodes of plugin hybrid energy cells
exhibit low volume fractions of active material, a different particle connectivity
and especially nearly spherical particle shapes. By adaptions and enhancements
of the above two modeling approaches for anodes, it is possible to use the general
framework also for simulation of 3D cathode microstructures.

In the following the different applications of the general framework described
above and the adaptions are discussed in more detail.



3.1 Anode of an energy cell

The main difficulty for the simulation of anodes that are optimized for a large
energy density is the high volume fraction of active material. In our case the
volume fraction of active material is about 73 %. Therefore, one of the main
challenges is to generate realistic structures with such a high volume fraction
but still realistic particles and the high connectivity present in the material.
Common approaches for the generation of dense packings like, e.g., force-biased
algorithms usually require simple particle shapes like balls [1].

Host lattice, particle arrangement. The generation of the host lattice is based on
a point pattern generated by a so-called random sequential adsorption process
(RSA) [3, 27]. This leads to point patterns that have some ‘regularity’. This
means that, with a high probability, there will be no isolated points as well as
no clustering of points. The ‘host lattice’ is then obtained by calculating the
Laguerre diagram of the realization of the RSA process.

Connectivity of the particles Based on the minimum spanning tree of the graph
of full connectivity, edges are added with a probability proportional to the area
of the facet between two neighboring polytopes. Fig. 7 shows the boundary
conditions that are applied to the particles in detail.

Simulation of individual particles. The particles are simulated using the GRF
model described above with an angular power spectrum that has been fitted to
the particles extracted from tomographic images. The angular power spectrum
is shown in Fig. 4. A comparison of the experimental structure and the result of
model-based simulation is shown in Fig. 1.

3.2 Anode of a power cell

The microstructure of power cell anodes strongly differs from the one in energy
cell anodes. While both consist of a completely connected system of particles
(the so-called active material), the volume fraction of the active material is
much lower for power cell anodes. This improves transport properties in the pore
phase. Thus, the stochastic microstructure model for energy cell anodes has to
be adapted to capture this property. Besides some smaller modifications, which
include a dependence of the connectivity graph on the spatial orientation of pairs
of particles to each other in order to include the anisotropy that was observed in
tomographic image data, the main difference is the inclusion of empty polytopes
in the host lattice, where no particles are created in. This allows to account for
the low volume fraction of the active material, while preserving realistic shapes
of particles.

Host lattice, particle arrangement. The generation of the host lattice is again
based on a system of spheres, which is simulated using a modification of the
so-called force-biased algorithm [1]. Based on an initial configuration of spheres,



an iterative rearrangement is performed until the overlap of spheres falls below a
certain threshold. This procedure results in a system of spheres which resembles
the properties of the particle system observed in tomographic image data, repre-
sented as spheres with volume-equivalent radii. Based on this, the corresponding
Laguerre tessellation can be computed, which results in a space-filling system of
polytopes.

Connectivity of the particles. Given the Laguerre tessellation, a graph indicating
connectivity between particles is created. To account for the anisotropic shape of
particles observed in tomographic image data, the graph is created such that par-
ticles are rather connected in horizontal direction than in vertical direction. This
means that, besides the size of the Laguerre facet between two points and the
distance of those points, the angle with respect to horizontal direction between
those points is computed. Starting with a minimum spanning tree to ensure
complete connectivity, edges are added based on those three characteristics with
a probability such that the mean coordination number of the graph extracted
from tomographic image data is matched.

Modification of host lattice to include empty polytopes. Particles need to fulfill
the connectivity conditions induced by the graph on the one hand, but on the
other hand they have to preserve the desired size. This is important to match
the volume fraction of active material in the electrode. Therefore, the polytopes
where particles are placed in are made smaller by including empty polytopes into
the space-filling system. These empty polytopes are found by adding points to
the generators of the Laguerre tessellation at the center of those facets where no
connectivity is induced by the graph. Moreover, it is ensured that the resulting
empty polytopes do not remove facets of the tessellation where two particles are
supposed to be connected.

Simulation of individual particles. Finally, the particles are modeled using spher-
ical harmonics in the polytopes that have been made smaller in the preceding
step. Because of the smaller polytopes, most particles can fulfill their connectiv-
ity conditions and required size together with a reasonable shape. In case this is
problematic, a more flexible way of setting the boundary conditions to account
for the connectivity is used. For details, we refer to [28]. A comparison of a model
output to tomographic image data can be found in Fig. 8.

3.3 Cathode of an energy cell

After having applied the general framework to model and simulate the 3D mi-
crostructure of two kinds of anodes, namely the ones in lithium-ion energy and
power cells, a third application of the framework concerns modeling and simu-
lation of cathode microstructures (pristine as well as cyclically aged structures).
Cathode microstructures also exhibit distinct structural characteristics which
made some adaptations necessary. There are three main structural differences
observed in cathodes.



(a) (b)

Fig. 8. Comparison of cutout of tomographic image data for a power cell anode (a)
and corresponding model realization (b).

Fig. 9. Tomographic grayscale image - 2D slice of a cutout - showing the microstructure
of a pristine cathode.



Host lattice, particle arrangement. First, there are locally occurring large pores,
especially in the case of the pristine cathode. Therefore, when arranging the
placement of particles in a similar way as done for power cell anodes, a random
marked point pattern is simulated which explicitly generates large polytopes in
the host lattice into which no particles are placed later on. These large and
empty polytopes mimic large pores in the simulated microstructure.

Connectivity of particles. Further, cathodes for lithium-ion batteries exhibit an-
other particle connectivity than anodes. That means, the particle system form-
ing the cathode microstructure is not necessarily fully connected anymore as
observed in the anode cases. This characteristic feature is captured by omitting
the previously used tool of a minimum spanning tree when creating the con-
nectivity graph. Instead, the probability that a pair of particles is connected
depends on just two criteria which are determined from the host lattice, see [15]
for details. The result is a suitable particle connectivity graph.

Particle placement, boundary conditions and simulation of individual particles.
The third and most obvious microstructural difference are the nearly spherical-
shaped particles in the cathodes, see Fig. 9. To achieve simulated particles of
such shapes, we proceed in three steps:

– The polytopes in the host lattice into which particles will be placed are
shrunken to nearly spherical shapes by adding further polytopes which re-
main empty.

– The number of boundary (contact) conditions per particle is reduced, i.e.,
now there is only one boundary condition (point) per facet, compare Fig. 7,
which guarantees connectivity as claimed by the graph.

– The parameter L at which the series of spherical harmonic functions is trun-
cated is no longer fixed for each particle but dynamically chosen depending
on the number of connected neighboring particles. This number is also called
the coordination number of a particle and it is known for each particle from
the connectivity graph. At the end, a higher number of connected neighbor-
ing particles means a larger L and, vice versa, a smaller coordination number
means a smaller L.

All three steps lead to less restricted and less degenerated particles and allow
them to have nearly spherical shapes as desired.

To give a short overview, the basic ideas of the application of the general
framework to cathodes of an energy cell are summarized and illustrated by 2D
sketches in Fig. 10.

3.4 Applications of simulated structures

The main fields of application for microstructure models of energy materials is
the design of new structures with better functionality due to structural improve-
ments. This is done with a method which we call virtual materials testing. The
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Fig. 10. Overview of the basic cathode modeling ideas. (a) Two random marked point
patterns are realized, where the blue dots and circles induce particles and the red ones
induce large pores; (b) A connectivity graph (dashed gray lines) based on the ran-
dom marked point patterns and the corresponding Laguerre tessellation (black lines)
is simulated, where the red shaded polytope indicates an (empty) pore polytope (i.e.,
no particle is placed into); (c) Additional marked points (further red dots and circles)
are determined that induce further pore polytopes; (d) Final arrangement of particle
polytopes (i.e., a particle is placed into) and pore polytopes (red shaded) is computed,
where the initial connectivity is still retained; (e) Particles fulfilling boundary condi-
tions (black dots) are created in the corresponding polytopes using spherical harmonics;
(f) Only the particles are kept and morphological smoothing operations lead to the final
particle system.

idea is to generate virtual structures from the models where the parameters are
varied in a certain range around the values determined for real materials. This
gives us microstructures that are realistic in the sense that they can be manu-
factured with known production processes on the one hand. On the other hand,
these microstructures differ from the known ones and can possibly have more
preferable properties. A similar procedure is used in [12, 26] to investigate the
relation between microstructure and charge transport properties.

As the models introduced above reconstruct microstructures of lithium-ion
cell electrodes, the functionality or performance of the material has to be deter-



mined by spatially resolved electrochemical simulations. The theoretical back-
ground is described in [16, 17].

For anodes of energy cells the microstructure model has been validated using
the electrochemical simulation model [14] where it has been shown that there
is a good agreement of the functional performance of virtual and experimental
microstructures, see Fig. 11.
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Fig. 11. (a) The distribution of the electrolyte concentration for the electrode pore
space and the separator (inset). The density is normed to unity area. The small peak
at the initial concentration indicates unconnected pore volume. (b) Spatial distribution
of electrolyte concentration for two cut-outs: real (left) and virtual (right). Both have
the same color scale (shown below). Larger particles can be seen in both structures.
Also both cut-outs show electrolyte pores, which are less connected to the main pore
space: (virtual) orange part close to the blue and (real) dark red at the upper corner.
Reprinted from [14] with permission from Elsevier.

Furthermore, a workflow was developed to automatize the whole process and
also to speed up the simulation of many cycles which is necessary for studies on
the aging of the cells. This workflow is described in detail in [8].

4 Summary, related work & outlook

A general framework for the simulation of battery electrode microstructures is
presented. The framework consists of multiple steps that can be adopted for
a wide range of electrode materials. Three microstructure models for different
electrodes of lithium-ion cells based on this framework are considered. Finally,
a validation of the model using spatially resolved electrochemical simulations is
mentioned and further applications of such microstructure models are discussed.

Currently, the modeling tools are extended to incorporate cracked particles.
In [22], an application of machine learning for the detection of broken particles



in tomographic images for negative electrode materials of lithium-ion batteries
has been proposed. In [29], an approach for structural segmentation of defec-
tive particles has been developed, which also accounts for cracks and holes in
particles. The automated detection of cracked particles combined with the para-
metric representation of individual particles described above enables statistical
investigations of the relationship between the morphology of particles and their
cracking behavior.

Furthermore, investigations of the influence of different degrees of compres-
sion or multi-layered constructions of positive electrode materials on the prop-
erties of lithium-ion batteries, e.g., on their ion transport behavior, are possible
using the tools described in the present paper.
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