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Abstract

This paper presents a mathematical model for the prediction of the proba-

bilities of reverse power flow exceeding predefined critical thresholds at feed-in

points of a distribution network. The parametric prediction model is based on

hourly forecasts of global horizontal irradiation and uses copulas, a tool for mod-

eling the joint probability distribution of two or more strongly correlated ran-

dom variables with non-Gaussian (marginal) distributions. The model is used

for determining the joint distribution of forecasts of global horizontal irradiation

and measured solar power supply at given feed-in points, where respective sam-

ple datasets were provided by Deutscher Wetterdienst and the N-ERGIE Netz

GmbH. It is shown that the fitted model replicates important characteristics of

the data such as the corresponding marginal densities. The validation results

highlight strong performance of the proposed model. The copula-based model

enables to predict the distribution of solar power supply conditioned on the

forecasts of global horizontal irradiation, thus anticipating great fluctuations in

the distribution network.
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1. Introduction1

In the recent decade, the global annually installed capacity of solar power2

increased rapidly, reaching 98 Gigawatts in 2017 alone. Compared to other3

power generation sources connected to electricity networks, solar power has the4

greatest capacity installed in 2017, followed by wind power with 52 Gigawatts,5

gas power with 38 Gigawatts, coal power with 35 Gigawatts and various other6

sources adding up to 37 Gigawatts. Although the global capacity of solar power7

installed in 2017 already exceeded most expectations, solar analysts predict even8

further increase of the annually installed capacity for the future. Thus, it comes9

as no surprise that the worldwide installed capacity of solar power is estimated10

to exceed 1 Terrawatt by 2022 (SolarPower Europe, 2017).11

The increase in solar penetration causes greater fluctuations in the power12

supply, which might result in increasing overloading problems and voltage vio-13

lations (Karimi et al., 2016). To tackle the upcoming challenges for distribution14

network operators, suitable computer-based models are developed. Since solar15

power is a variable power source, better forecasts of solar power supply are use-16

ful to predict oversupply events and reduce the curtailment (Bird et al., 2014).17

Moreover, planning maintenance becomes easier and bids in electricity markets18

can be better estimated. For a deeper understanding of the economical value of19

forecasting solar power supply we refer to Antonanzas et al. (2016).20

Most prediction models of solar power supply rely on weather forecasts as21

input (Antonanzas et al., 2016). Usually, these weather forecasts are the re-22

sult of a complex modeling process starting with numerical weather prediction23

models based on data assimilation that use all kinds of meteorological observa-24

tions in real time including e.g. temperature, wind, pressure, humidity, as well25

as geospatial data as input information (Coiffier, 2011). Based on this data,26

the task of numerical weather prediction models such as the high resolution ver-27

sion COSMO-DE of the Consortium for Small-scale Modeling (COSMO) run by28

Deutscher Wetterdienst (DWD) is to solve differential equations for modeling29

the spatio-temporal evolution of meteorological variables and simulate physi-30
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cal processes (Baldauf et al., 2011). However, numerical weather prediction31

models are subject to systematic errors and not all weather phenomena are32

simulated and need to be interpreted therefore. For these reasons, statistical33

post-processing methods are applied. For example, DWD runs Model Output34

Statistics (MOS) techniques (Hess et al., 2015), which are based on multiple35

linear and logistic regression models (Jobson, 1991). The regression models fit36

historical data of the direct output of numerical models to corresponding obser-37

vations from synoptic stations. In operational use, the fitted regression models38

calibrate and interpret the output of numerical weather predictions resulting39

in deterministic and probabilistic forecasts for various meteorological variables40

(Heinemann et al., 2006).41

Since energy conversion by solar plants mainly depends on direct and dif-42

fuse radiation, our prediction model is based on deterministic and statistically43

post-processed forecasts of global horizontal irradiation (GHI). Other meteoro-44

logical variables such as ambient temperature, wind velocity, humidity and dust,45

may also influence the energy conversion and have been used in the literature46

(Kaldellis et al., 2014; Mekhilef et al., 2012). Moreover, probabilistic models47

which take into account the spatio-temporal correlation between these variables48

were also proposed. Almeida et al. (2015) developed a non-parameteric quantile49

regression forest model which takes as training input temperature, wind speed,50

wind direction, humidity, sea level pressure and cloud cover at different levels.51

Bessa et al. (2015) proposed a vector auto-regressive model with time series52

information collected at different locations on a smart grid as input. In Zhang53

et al. (2016) a Gaussian conditional random field model was applied, where54

historical forecasts and solar power measurements were considered at many so-55

lar sites. Huang and Perry (2016) estimated prediction intervals based on a56

k-nearest neighbor regression and added to deterministic forecasts computed by57

gradient boosting, where weather variables such as solar radiation, temperature,58

cloud ice water content, wind speed were considered. Solar power measurements59

at adjacent solar farms were included as explanatory regression variables. In60

contrast we apply a copula model which only considers the GHI forecasts, the61
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most important explanatory variable for energy conversion. This simplifies the62

fitting procedure of the model due to a smaller number of parameters, while63

still capturing the correlation structure between weather conditions and solar64

power supply.65

Copulas are a mathematical tool to model the joint distribution of two or66

more random variables. In the context of renewable energies, they were first67

applied for the probabilistic prediction of wind power generation, see e.g. Pa-68

paefthymiou and Kurowicka (2009); Wang et al. (2014); Lu et al. (2014). Re-69

cently, copula models have also been used for statistical analysis of data on70

solar power generation. For example, Golestaneh et al. (2016a,b) applied quan-71

tile regression to non-parametrically compute conditional marginal densities of72

solar power supply for neighboring solar plants, given numerical weather pre-73

diction forecasts. Then, in a next step, multivariate Gaussian copulas were used74

in Golestaneh et al. (2016a) to determine the joint conditional distribution of75

solar power supply at neighboring plants with the previously computed non-76

parametric conditional marginal densities. Golestaneh and Gooi (2017) com-77

pared Gaussian copulas with multivariate R-vine copulas. However, in both78

papers copulas were merely used to model the spatial relationship between so-79

lar power supply at neighboring plants. More recently, Panamtash et al. (2020)80

proposed a similar copula-based model, where bivariate copulas are applied to81

improve prior probabilistic forecasting done by traditional forecasting methods82

such as multiple linear regression, artificial neural networks, gradient boost-83

ing, random forests and autoregressive integrated moving average. The results84

showed that copulas capture the joint probability distribution of solar power85

and temperature effectively. In Panamtash et al. (2020), ambient temperature86

has been considered as input variable, while we focus on the correlation between87

GHI forecasts and solar power supply.88

Given a weather forecast, our proposed model computes conditional proba-89

bilities of reverse power flow exceeding predefined critical thresholds at feed-in90

points of a distribution network. To implement the prediction model, the first91

step is to fit univariate (so-called marginal) probability distributions using his-92
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torical data of hourly GHI forecasts and hourly averages of measured solar93

power supply. The second step is to model the joint probability distribution of94

GHI forecast and solar power supply by applying copula theory (Durante and95

Sempi, 2015; Nelsen, 2006; Joe, 2014). Finally, the third step is to compute the96

conditional probability distribution of solar power supply based on the fitted97

joint and marginal distributions. Taking a real-time GHI forecast as input, a98

probabilistic prediction of solar power supply for the same time horizon as the99

weather forecast can be computed by the prediction model.100

The rest of this paper is organized as follows. In Section 2, the data used in101

this paper is described, including its pre-processing and analysis. The model and102

its fitting procedure is explained in Section 3. The fitted model characteristics103

and the validation of the prediction model are discussed in Section 4, where also104

the performance of the proposed model is compared with that of the quantile105

regression technique, one of the most frequently used probabilistic prediction106

method (see, for instance, Bacher et al. (2009); Zamo et al. (2014); Massidda and107

Marrocu (2018); Lauret et al. (2017); Golestaneh et al. (2016b); Alessandrini108

et al. (2015) ). Finally, Section 5 concludes.109

2. Data110

The modeling approach for the prediction of solar energy supply, proposed in111

the present paper, is a parametric probabilistic model which is based on copulas112

(Durante and Sempi, 2015; Nelsen, 2006; Joe, 2014). Compared to conventional113

photovoltaic performance models, a probabilistic model is more flexible, but114

needs historical data as input (Antonanzas et al., 2016). In particular, the gen-115

eral modeling idea is not concerned with physical attributes of the datasets, e.g.116

the locations of the measurement points. Our probabilistic modeling approach117

and its application are illustrated by using suitable sample datasets provided118

by DWD and the N-ERGIE Netz GmbH (NNG). For calibration and validation119

of our model, the time frame covering the months May, June and July of the120

years 2015 till 2017 is considered, resulting in 273 days.121
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Figure 1: Forecast grid of DWD (blue) and feed-in points of NNG (red). The (appropriately

dilated) convex hull (grey) of all feed-in points in the zoom-in of the red box is the part of

Germany used for visualizing our results. To illustrate the geographical location of this area,

the cities of Würzburg (WÜ), Nürnberg (N) and Ingolstadt (IN) are depicted (black).

2.1. Description of data122

The fitting of our model is based on two datasets, namely GHI forecasts123

provided by DWD and measured solar power supply provided by NNG.124

The first dataset consists of hourly GHI forecasts (in kJ/m2), statistically125

interpreted based on synoptic observations and numerical forecasts of COSMO-126

DE-EPS, the ensemble system of COSMO-DE at DWD. The forecasts are issued127

every three hours with forecast lead times up to 19 hours. For the time frame128

mentioned above, the forecasts are available on a 20 km × 20 km grid covering129

Germany and parts of neighboring countries, see Figure 1. However, there is130

no GHI forecast generated for grid points and forecasts times with a local solar131

elevation angle of less than 5 degrees at the beginning or end of the forecast132

hour.133

The second dataset, provided by NNG, records the amount of electricity,134

which was generated by solar plants, supplied to the distribution network and135

measured at its feed-in points. These amounts of solar power supply are 15-136

minute average values. Each of the 168 feed-in points, considered in this paper,137
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is connected with at least one solar plant with nominal capacity of the connected138

solar plants ranging from 0.25 up to 10 Megawatts.139

In Figure 1 the considered feed-in points of NNG are visualized. The corre-140

sponding supply area covers ca. 8000 km2.141

2.2. Data preprocessing142

At first temporal and spatial compatibility between the datasets has to be143

established. Temporal compatibility can be easily realized by calculating the144

averages of solar power supply for each hour. For spatial compatibility we con-145

sider two different hierarchy levels in the distribution network. On the one hand146

we are interested in the GHI forecasts and amounts of solar power supply at the147

feed-in points, on the other hand we want to apply our model to communities,148

i.e. sets of neighboring feed-in points, as well. Therefore, we match GHI fore-149

casts and amounts of solar power supply to feed-in points and communities, see150

Section 2.2.1 and 2.2.2.151

2.2.1. Spatial compatibility for feed-in points152

In this section we consider the problem to match the amount of solar energy153

measured at every feed-in point to a single GHI forecast. For simplicity, the154

locations of solar plants are assumed to coincide with the locations of their155

feed-in points. Since the hourly averages of forecasted GHI are practically the156

same on such small spatial scales, the error introduced by this assumption is157

negligible. The GHI forecast at a certain feed-in point has been estimated by158

interpolating the GHI forecast at the grid points of the 20 km × 20 km grid, see159

Figure 1. This is done by bilinear interpolation, see Hämmerlin and Hoffmann160

(2012).161

2.2.2. Spatial compatibility for communities162

In a next step, the amounts of solar power supply and the GHI forecasts need163

to be matched to communities. Therefore, we approximate the solar power sup-164

ply generated in a community by summing the solar power supply measured at165

the feed-in points over all feed-in points within the community. It is assumed166
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that there are no transmission losses, but alternatively the losses can be com-167

puted either using explicit formulas or statistical estimations, see Dickert et al.168

(2009), Council of European Energy Regulators (2017).169

To compute the GHI forecasts for the corresponding communities, we use the170

interpolated GHI forecasts at the feed-in points in a community as mentioned171

in Section 2.2.1. By averaging the GHI forecasts over all feed-in points in a172

community, we get the GHI forecast of the community.173

2.2.3. Selection of data174

Due to maintenance, repair work and risk of overloading, some solar plants175

might have to be shut down for certain time periods. Since these actions are176

not directly related with weather phenomena, corresponding time periods are177

excluded by removing solar power supply being equal to zero from data. The178

GHI forecasts for those locations and forecast times are also removed from data,179

leaving only data pairs with matching time stamps.180

Furthermore, the performance of solar plants is strongly influenced by many181

factors apart from meteorological variables, e.g. nominal capacity, tilt angle and182

composition of photovoltaic units. Most of these factors are constant over long183

time periods, but their influence might largely depend on the time of day as it184

is the case with the tilt angle. A simple way to remove such effects from data185

is to consider each hour of the day and feed-in point separately.186

Lastly, by matching both data sets, all hours which have no measurement of187

solar power supply or GHI forecast are removed. This includes all night hours,188

see Section 2.1.189

2.2.4. Rescaling the data190

For an easier comparison of the datasets with different scales, the interpo-191

lated GHI forecasts and measured amounts of solar power are locally normal-192

ized. More precisely, the datasets are rescaled for a certain feed-in point, or193

community, by applying the transformation194

φa,b(x) = (1− 2c)(x− a)/(b− a) + c, (1)195
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where c > 0 is close to zero. If a is the minimum and b the maximum of the196

dataset under consideration, then, φ maps onto the interval [c, 1− c]. For c > 0197

close to zero, [c, 1 − c] approximates the open interval (0, 1). Thus, we use198

c = 0.001 in this paper.199

2.3. Empirical data analysis200

The rescaled and interpolated data of solar power supply and GHI forecast201

for feed-in points are analyzed in order to highlight their strong correlation and202

their spatial disparities. We consider the time frame May, June and July of203

the years 2015 till 2017 (11-12 UTC), denoted by T , and GHI forecasts with204

forecast lead time of one hour. The method, described in Section 2.2, is applied205

for each feed-in point and dataset separately, where the rescaling parameters a206

and b, in Section 2.2.4, are set to the minimum and maximum of each dataset207

in T .208

Therefore, the local empirical correlation coefficient of GHI forecasts and209

amounts of solar power supply at each feed-in point `, denoted by ρ(`), is com-210

puted. Note that the empirical correlation coefficient ρ(`) is defined as211

ρ(`) =

∑
t∈T (r(`, t)− r(`))(s(`, t)− s(`))√∑

t∈T (r(`, t)− r(`))2
∑
t∈T (s(`, t)− s(`))2

, (2)212

where r(`, t) and s(`, t) are the preprocessed GHI forecast and solar power supply213

for forecast time t, respectively, and r(`) and s(`) are the corresponding time214

averages.215

Figure 2: Empirical correlation coefficients of preprocessed GHI forecasts and preprocessed

amounts of solar power supply for each feed-in point visualized by Voronoi tessellation.
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In Figure 2, the results are visualized, which we obtained for the local em-216

pirical correlation coefficients, where the Region of Interest (ROI), i.e., the (ap-217

propriately dilated) convex hull of all feed-in points, is decomposed into the218

Voronoi tessellation generated by the feed-in points. The value computed for a219

feed-in point is assigned to the entire Voronoi cell of this point.220

(a) GHI forecast (b) Solar power supply

Figure 3: Local means over 273 days for each feed-in point visualized by Voronoi tessellation.

In general, Figure 2 shows rather high empirical correlation coefficients for221

all feed-in points, but also the existence of significant differences between feed-in222

points. By depicting the local means of the preprocessed datasets in Figure 3,223

which are obtained by averaging over the 273 days considered in this paper,224

this observation becomes even more evident. Indeed, the map of local means225

of the GHI forecasts does not show the same kind of pattern as the one of the226

solar power supply, see Figure 3. Thus, there have to be other factors except227

GHI forecasts, e.g. physical characteristics of the solar plants connected with228

the feed-in points, influencing the local means of solar power supply shown in229

Figure 3.230

As a conclusion of this empirical analysis, our modeling approach has to con-231

sider the interdependence of GHI forecasts and solar power supply, see Figure232

2. Moreover, Figure 3 indicates that the parameters of the probability distri-233

butions considered in this paper should be determined for each feed-in point234

separately to take into account their spatial variability.235
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3. Copula-based model for the prediction of solar power supply236

In many fields, where risk must be managed, probabilistic predictions are237

preferred as they allow to quantify the uncertainty. In our case, given some238

probability estimation for the occurrence of a critical feed-in event, distribu-239

tion network operators might make their decisions individually based on how240

much risk they want to take. Further advantages of probabilistic forecasts are241

discussed, e.g., in Antonanzas et al. (2016).242

3.1. Modeling approach243

For simplicity, we consider preprocessed solar power supply and preprocessed244

GHI forecast at a certain location in the distribution network for a single time of245

day and forecast lead time. Both are interpreted as realizations of some random246

variables R and S, which are strongly correlated as Figure 2 in Section 2.3247

depicts. The support of R and S is the interval [0, 1], because of the rescaling248

transformation given in Eq. (1).249

Given a GHI forecast r the conditional probability of solar power supply250

exceeding a certain threshold v ∈ [0, 1] can be written in the following form:251

P (S ≥ v | R = r) =

∫ 1

v

fS|R(s | r)ds (3)252

=

∫ 1

v

f(R,S)(r, s)

fR(r)
ds, (4)253

254

where fS|R is the conditional density of the random variable S given R, f(R,S)255

the joint density of the random variables S and R, and fR the marginal density256

of R. Thus, our task lies in modeling the marginal and joint distributions of S257

and R.258

The proposed method can be decomposed in the following two steps:259

1. derive a parametric form of the marginal densities fR and fS of the random260

variables R and S ;261

2. use a copula and the marginal densities fR and fS to model the joint262

density function f(R,S).263
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Then, the conditional level-crossing probabilities P (S ≥ v | R = r) can be264

computed using Eq. (4). In the following, these two steps are further explained265

in detail.266

3.1.1. Model for the marginal densities267

Vale (2015) investigated several types of parametric distributions for solar268

irradiation in Lisbon with respect to the day time and month, where it is con-269

cluded that the mixed beta distribution is the best fit for most months of the270

year. However, the difference in the considered time frame and location might271

influence the quality of fits for the tested distribution types.272

In Section 4.1.1, we demonstrate that the mixed beta distribution is indeed273

suitable for GHI forecasts and also for solar power supply. Therefore, we choose274

the models of the marginal densities fS and fR to be a mixture of beta densities.275

The family of beta distributions allows for various shapes of probability density276

functions.277

Given a mixing parameter q ∈ (0, 1) and two densities of beta distributions278

fi : R → [0,∞) with i ∈ {1, 2}, the probability density fX : R → [0,∞) of the279

mixed beta distribution of a random variable X is given by280

fX(x) = qf1(x) + (1− q)f2(x) (5)281

for all x ∈ R. For i ∈ {1, 2}, the beta density fi has two shape parameters ai > 0282

and bi > 0, and is defined by283

fi(x) =
Γ(ai + bi)

Γ(ai)Γ(bi)
xai−1(1− x)bi−1 (6)284

for x ∈ (0, 1) and fi(x) = 0 otherwise, where Γ denotes the gamma function.285

Then, the marginal densities fR and fS take the form of the mixed density given286

in Eq. (5) and are specified by five parameters each. The determination of these287

parameters is explained in Section 3.2.288

3.1.2. The copula model289

If R and S were independent random variables, the bivariate density function290

f(R,S) would turn out to be the product of the univariate densities fR and fS .291
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But, in fact, the random variables R and S are strongly correlated as depicted292

in Figure 2. Therefore, the design of a parametric joint density is more complex.293

To calculate the joint density with the non-Gaussian marginal densities fit-294

ted in Section 3.2, a parametric modeling approach based on Sklar’s theorem is295

applied (Durante and Sempi, 2015). This fundamental result of copula theory296

allows us to represent the bivariate joint distribution function of two random297

variables by superposing a copula function upon the marginal distribution func-298

tions. Note that a copula is defined as the joint cumulative distribution function299

C : [0, 1] × [0, 1] → [0, 1] of a two-dimensional random vector (U, V ) with com-300

ponents U and V uniformly distributed on [0, 1], see Nelsen (2006) for further301

details.302

Let (R,S) be the two-dimensional random vector consisting of the random303

variables R and S introduced above with joint cumulative distribution function304

F(R,S) : R2 → [0, 1] and marginal distribution functions FR and FS . Then,305

Sklar’s theorem says that a copula function C : [0, 1]× [0, 1]→ [0, 1] exists such306

that307

F(R,S)(r, s) = C(FR(r), FS(s)) (7)308

for all r, s ∈ R. Note that Eq. (7) can be written in the following differential309

form:310

f(R,S)(r, s) = fR(r) · fS(s) · c(FR(r), FS(s)), (8)311

where f(R,S), fR, fS and c are the densities corresponding to the cumulative312

distribution functions F(R,S), FR, FS and C. Using (8), the conditional den-313

sity function fS|R(s | r) of solar power supply given a GHI forecast r can be314

computed by315

fS|R(s | r) =
f(R,S)(r, s)

fR(r)
= fS(s) · c(FR(r), FS(s)). (9)316

Thus, to determine the conditional level-crossing probability considered in (4),317

we estimate the marginal densities fS and fR, which leads to estimates of the318

corresponding distribution functions FS and FR, and the copula density c in319

Eq. (9). For the estimation of c we apply Archimedean copulas. Archimedean320
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copulas are a commonly considered class of copulas which can be given by321

analytical formulas and are therefore especially easy to handle.322

A function g : [0, 1] → [0,∞] is called an Archimedean generator if g is323

continuous, strictly decreasing and solves g(1) = 0. The pseudo-inverse g[−1] of324

an Archimedean generator g is an extension of the inverse function g(−1) defined325

as326

g[−1](t) =

g
(−1)(t), if 0 ≤ t ≤ g(0),

0, if g(0) < t ≤ ∞.
(10)327

The Archimedean copula generated by g is then given by328

C(u, v) = g[−1](g(u) + g(v)) (11)329

for u, v ∈ [0, 1].330

In this paper, we focus on four parametric types of Archimedean copulas,331

see Table 1, each of them having a single parameter θ ∈ R to be fitted.332

Type Archimedean generator Parameter

Joe gθ(t) = − log(1− (1− t)θ) θ ∈ [1,∞)

Frank gθ(t) = (− log( exp(−θt−1)
exp(−θ)−1 ))θ θ ∈ R\{0}

Clayton gθ(t) = 1
θ (t−θ − 1) θ ∈ [−1,∞)\{0}

Gumbel gθ(t) = (− log(t))θ θ ∈ [1,∞)

Table 1: Types of Archimedean copulas

3.2. Model fitting procedure333

In this section, we describe the procedure to find the best model parameters334

of the marginal densities fS and fR, which are modeled by mixtures of beta335

densities, see Eq. (5). Next, we detail the method to search for the copula type336

and the copula parameter θ, which gives us the best fit to the data. Both fitting337

procedures are based on the maximum likelihood estimation (MLE) principle,338

see Wilks (2011).339
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3.2.1. Fitting marginal densities340

There are five parameters to be determined for each marginal density fR341

and fS : the mixing parameter q, the shape parameters a1 and b1 of the first342

beta density f1, and the shape parameters a2 and b2 of the second beta density343

f2, see Eq. (5).344

The main idea is to consider the maximum of a certain product of likelihood345

functions. Note that the likelihood function is defined, in the case of the random346

variable R, by347

L(β | r) = fR(r), (12)348

where β = (q, a1, b1, a2, b2) is the set of parameters and r is a GHI forecast. If349

we consider the dataset r1, . . . , rn and assume that the observations r1, . . . , rn350

are independently sampled realizations of the random variable R (n is the total351

number of observations), then the MLE consists in maximizing the function352

L(β | r1, . . . , rn) =

n∏
i=1

L(β | ri) (13)353

=

n∏
i=1

fR(ri) (14)354

=

n∏
i=1

qf1(ri) + (1− q)f2(ri), (15)355

356

where the densities f1 and f2 depend on the parameters a1 and b1, respectively357

a2 and b2. The MLE expresses the fact that the realized observations occur358

with the highest possible probability. In general, it is more convenient to take359

the logarithmic form of the expression given in (15) in order to deal with a sum360

instead of product operations. Then, the best parameters q, a1, b1, a2 and b2361

for the marginal density of GHI forecasts are the solution of the maximization362

problem363

arg max
q,a1,b1,a2,b2

n∑
i=1

log (qf1(ri) + (1− q)f2(ri)) . (16)364

The estimated parameters for the marginal density fS of the solar power supply365

are the solution of an analogous maximization problem.366
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Note that the maximization problem stated in (16) is difficult to solve be-367

cause of its high dimensionality. The iterative expectation-maximization algo-368

rithm (EM algorithm) proposed in Dempster et al. (1977) is particularly ap-369

propriate to deal with the maximization of such functions as it enables us to370

decompose the maximization problem stated in (16) into easier sub-problems.371

For further details regarding the EM algorithm, see Hastie et al. (2009), Leisch372

(2004).373

3.2.2. Fitting the copula function374

To estimate the copula parameter θ, see Table 1, the inference function for375

margins method proposed in Joe and Xu (1996) is applied. The first step of this376

method is to estimate the marginal distributions, as described in Section 3.2.1.377

In the second step, the copula parameter θ is fitted using the MLE principle378

based on the previously estimated marginal distributions.379

Indeed, for each copula type in Table 1, the copula density c(θ) can be380

obtained by differentiating Eq. (11) in dependence of the copula parameter θ.381

Using Eq. (8) and the previously fitted marginal distributions we compute the382

joint density f
(θ)
(R,S) for each copula type in dependence of θ. Then, we apply383

the MLE method to fit the joint density f
(θ)
(R,S) for each copula type to the data.384

As a result, we get an estimate of θ and the corresponding maximum of the385

product of likelihood functions for each copula type. We choose the copula type386

and its copula parameter, which gives the largest maximum.387

Note that the inference function for margins method represents a certain388

break with the classical MLE principle, where all model parameters, including389

the parameters of the marginal distributions, are simultaneously estimated. As390

an alternative, in Joe (2014) it is proposed to use the components of param-391

eter vector β determined by the two-step procedure in Section 3.2.1 as initial392

values for iterative numerical methods, which estimate all model parameters393

simultaneously. But this has not been done in the present paper.394
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4. Results395

To begin with, in Section 4.1, we present the results which we obtained396

when fitting the model to the pre-processed data at the feed-in points. In397

Section 4.2, the performance of the prediction model using various validation398

scores are studied. Section 4.3 quantifies the economic value of the prediction399

model based on the value score. In Section 4.4, the performance of the copula400

model are compared to the ones of a quantile regression model. Finally, we401

check the performance of the fitted models for communities in Section 4.5.402

4.1. Fitted model characteristics403

The idea of the model fitting procedure was described in Section 3.2. To404

illustrate the results, which we obtained for the fitted model, we consider an405

exemplary feed-in point `0. The marginal distributions of GHI forecasts and406

the copula parameter are fitted for each hour of the day and forecast lead time407

separately, whereas the marginal distributions of solar power supply are fitted408

for each hour of the day. Both datasets are spanning over May, June and July409

of the years 2015 and 2016, 11-12 UTC. Thus, each of the datasets has about410

180 timestamps.411
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4.1.1. Fitted marginal densities412
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Figure 4: Histograms of rescaled GHI forecasts and rescaled solar power supply with fitted

mixed beta density (grey) and weighted component distributions (blue and red) for feed-in

point `0.

The histograms in Figure 4 visualize the empirical distribution of GHI fore-413

casts and solar power supply for the feed-in point `0. For data of length n the414

k equally distant bins of both histograms are determined by the Sturges’ rule,415

see Scott (2011), i.e.,416

k = d1 + log2(n)e. (17)417

If we sum up both suitably weighted curves we get the grey curve in Figure 4,418

which is the fitted mixed beta density.419

From visual inspection of the empirical marginal distributions of the random420

variables R and S, we observe two modes in the histograms. We see that421

the fitted marginal densities approximate the shapes of both histograms quite422

accurately. Therefore, from a qualitative point of view a mixed distribution423

should be applied.424

A quantitative assessment is also provided with the computation of the425

Akaike information criterion (AIC) for five different distribution types (for each426

feed-in point), see Figure 5. The AIC compares the fit for different distribution427
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types while penalizing choices with a larger number of fitted parameters. It is428

defined by429

AIC = 2k − 2 log(L), (18)430

where k is the number of fitted parameters. The smaller the AIC the better431

the fits of the distribution. Figure 5 shows that the mixed beta distribution fits432

the GHI and solar power supply better than the other considered distribution433

types.434

●

●●

●

●

●

●

0

25

50

beta
 mixture

gamma normal normal
 mixture

Weibull

type

A
IC

Forecasts of GHI

●

●
●●

●
●

●●

●

●
●●

●

−50

0

50

100

beta
 mixture

gamma normal normal
 mixture

Weibull

type

A
IC

Solar power supply

Figure 5: AIC computed for different distribution types fitted to GHI forecasts and solar

power supply.

4.1.2. Variation in the marginal densities435

Let R1 and R2 denote random variables with the beta densities f1 and f2,436

respectively, considered in Eq. (5), likewise for S1 and S2. Thus, the random437

variables R1 and R2 are related to the two underlying beta densities of the438

random variable R, and S1 and S2 to the ones of the random variable S. For439

all feed-in points we computed the expectation and variance of the random440

variables Ri and Si using the equations441

E(Z) =
ai

ai + bi
, (19)442

Var(Z) =
aibi

(ai + bi + 1)(ai + bi)2
, (20)443

444
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where Z is a random variable designating either Ri or Si, and ai, bi > 0 are the445

shape parameters introduced in Section 3.1.1. The computed expectations and446

variances over the entire ROI are summarized in Figure 6.447
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Figure 6: Expectation and variance of the fitted component beta distributions.

Note that the width of most of the boxplots is quite large. This indicates448

that applying averages of the density parameters over all feed-in points might449

introduce inaccuracies into the model. Thus, the fitting of the density parame-450

ters should be done for each feed-in point separately as it was already mentioned451

in Section 3.2.1.452

4.1.3. Fitted copula and two-dimensional density function453

As described in Section 3.2.2, we computed the copula parameter θ and454

the maximum of the log-likelihood function for each copula type and feed-in455

point separately. The results are depicted in Table 2 for feed-in point `0. Table456

2 shows that the Frank copula has the largest maximum of the log-likelihood457

function. Thus, for `0 the Frank copula performs better than the other copula458

types considered in Table 1.459
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copula type Clayton Frank Gumbel Joe

θ 3.50 7.26 2.94 3.21

log L(θ) 70.63 93.87 69.37 49.08

Table 2: Estimates of the parameter θ and maxima of the log-likelihood function for the

exemplary feed-in point `0.

Altogether, for 166 feed-in points out of the 168 considered feed-in points,460

see Section 2.1, the Frank copula was determined as best fit while for only two461

feed-in points a different copula type performed better. Therefore, in order to462

reduce computational complexity, we decided to apply the Frank copula to all463

feed-in points.464

The copula parameter θ expresses how strongly the random variables R and465

S are correlated. Note that for each feed-in point `, Spearman’s rank correlation466

coefficient rc(`) of R and S can be written as467

rc(`) = 12

∫ 1

0

∫ 1

0

C`(u, v)dudv − 3, (21)468

where C` is the copula function fitted to the data at `, see Schweizer and Wolff469

(1981). In Figure 7 the local Spearman’s rank coefficients are visualized. High470

correlations, but also spatial disparities, can be observed.471

Figure 7: Local Spearman’s rank coefficients computed based on fitted copula parameters.

Figure 8 visualizes the fitted joint density f(R,S) and the conditional densities472

fS|R of solar power supply given a GHI forecast r at the exemplary feed-in point473

`0. As expected, with increasing GHI forecasts, the conditional densities assign474
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higher values to larger amounts of solar power supply.475
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Figure 8: The joint density fR,S and conditional densities fS|R given certain GHI forecasts r

for feed-in point `0.

4.2. Validation based on scores476

The proposed copula model was validated using various validation scores,477

such as the Brier skill score or the continuous ranked probability score, widely478

applied in the field of weather forecasting, see Wilks (2011). Recall that for479

model fitting we used datasets spanning over May, June and July of the years480

2015 and 2016. For validation we consider the data in the time frame May, June481

and July of the year 2017.482

4.2.1. Notation483

In the following we consider GHI forecasts ri and corresponding measure-484

ments of solar power supply si where the index i belongs to the validation485

set Ival = {1, . . . , n}. We compute the conditional level-crossing probabilities486

pi(v) = P (S ≥ v | R = ri) for solar power supply exceeding the level v ∈ [0, 1].487

The occurrence of the event that solar power supply si exceeds the level v is488

denoted by oi(v) = I(v, si), where I is the indicator function defined as489

I(v, s) =


1 , if s ≥ v,

0 , if s < v.

(22)490
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Thus, for each level v and index i ∈ Ival, we consider the pair (pi(v), oi(v)) of491

the probability and occurrence of the event {S ≥ v} for a given feed-in point,492

hour of the day and forecast time.493

4.2.2. Bias494

The bias of our prediction model is defined as495

bias(v) =
1

n

n∑
i=1

(pi(v)− oi(v)). (23)496

Note that the quantity bias(v) takes values in [−1, 1] for each v ∈ [0, 1]. In the497

ideal case, a good prediction model is unbiased, i.e. , bias(v) is equal to zero.498

However, an unbiased prediction model does not necessarily generate useful499

predictions. For instance, if all probabilities are equal to the relative frequency500

of the occurrences of the considered event, then the predictions are the same for501

all days. Such a prediction model would be unbiased, but it holds no information502

in regard to short term changes.503

4.2.3. Brier score504

Another measure of accuracy is the Brier score defined by505

bs(v) =
1

n

n∑
i=1

(pi(v)− oi(v))2. (24)506

The Brier score takes its values in the interval [0, 1]. It represents the mean507

squared differences between our predictions and the actual events. Thus, the508

Brier score of a good prediction model should be near zero.509

The Brier score encompasses many important characteristics of a prediction510

model. Using the algebraic decomposition of the Brier score, more information511

on the model performance can be obtained (see Wilks (2011)). For a level v,512

the Brier score bs(v) can be expressed in terms of the reliability rel, resolution513

res and uncertainty unc, where514

bs(v) = rel(v)− res(v) + unc(v). (25)515

The definition of the reliability and resolution requires to partition the unit516

interval [0,1] into sub-intervals B1, · · · , BJ . Then, each sub-interval Bj contains517
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nj values of forecasts pi(v) associated to the indicators of the occurring events518

oi(v). Furthermore, by pj(v) and oj(v) we denote the mean of the probabilities519

and the mean of the number of observations for each partition component Bj ,520

i.e.521

pj(v) =
1

nj

∑
pk(v)∈Bj

pk(v), (26)522

oj(v) =
1

nj

∑
ok(v)∈Bj

ok(v). (27)523

524

Moreover, by o(v) we denote the climatological mean for all observations, i.e.525

o(v) =
1

n

n∑
i=1

oi(v). (28)526

Then, the reliability is defined as527

rel(v) =
1

n

J∑
j=1

nj(pj(v)− oj(v))2. (29)528

A small reliability is typical for a well-calibrated prediction model. Besides, the529

resolution is defined as530

res(v) =
1

n

J∑
j=1

nj(oj(v)− o(v))2. (30)531

It measures how large the means of the number of observations for each sub-532

interval differ from the climatological mean for all observations. Higher resolu-533

tion means that the prediction model is able to distinguish between situations534

with different frequencies of occurrence. Last but not least, the uncertainty is535

given by536

unc(v) = o(v)(1− o(v)), (31)537

which summarizes the variability of the observed events. The uncertainty does538

not depend on the prediction model. A low uncertainty value means that the539

observed events happen either with high or low frequency.540

4.2.4. Brier skill score541

The Brier score considered in Section 4.2.3 does not allow for a direct quan-542

titative comparison of the accuracy of prediction models as it depends on the543
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characteristics of the observed event. To draw a clear line between a good and544

a bad prediction model, the Brier skill score is used. The Brier skill score com-545

pares the Brier score bs(v) of the prediction model with the Brier score bsr(v)546

of some reference model. Thus, the Brier skill score is defined as547

bssr(v) = 1− bs(v)

bsr(v)
. (32)548

Note that bssr(v) takes its values in the interval [−∞, 1]. If the reference model549

gives better results than the actually considered prediction model, the Brier550

skill score is negative and otherwise positive.551

As reference model we consider the climatological model o(v) often used as552

a benchmark for weather forecast models. Since for the climatological model553

reliability and resolution are equal to zero, the Brier score of the climatological554

model is equal to the uncertainty unc leading to555

bssc(v) =
res(v)− rel(v)

unc(v)
. (33)556

This implies that bssc < 0 holds if the resolution is smaller than the reliability.557

This is clearly an undesirable outcome, as the resolution should be high and the558

reliability small. Therefore, prediction models with bssc < 0 are commonly not559

considered.560

4.2.5. Continuous ranked probability score561

We consider the conditional cumulative distribution function of solar power562

supply FS|R=ri given a GHI forecast ri, and the corresponding measured solar563

power supply si. Then, we define the continuous rank probability score as564

crpsi =

∫ ∞
−∞

[FS|R=ri(x)− Fi(x)]2dx (34)565

where Fi is the so-called cumulative-probability step function defined as566

Fi(x) =

0 if x ≤ si,

1 if x > si.

(35)567

Furthermore, we compute568

crps =
1

n

n∑
i=1

crpsi (36)569
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to quantify how concentrated around the corresponding observations are the570

computed conditional densities given GHI forecasts. As a general rule we can571

state: the lower the crps, the better.572

4.2.6. Validation for each feed-in point573

In this section we consider the forecast period 11-12 UTC and the forecast574

lead time of one hour. We compute the bias, Brier score and Brier skill score575

for each feed-in point separately. Furthermore, we compute the empirical cor-576

relation coefficient ρ(v), see Eq. (2), of the observations oi(v) and probabilities577

pi(v).578

The resulting validation scores are visualized in Figure 9 for the threshold579

v = 0.8. The biases and Brier scores are near zero for all feed-in points, whereas580

almost all computed Brier skill scores and empirical correlation coefficients are581

high. This indicates that the prediction model proposed in Section 3 works582

quite well regardless of the considered location.583

(a) Bias (b) Brier skill score

(c) Brier score (d) Empirical correlation coefficient

Figure 9: Validation scores computed at each feed-in point for the threshold v = 0.8

26



4.2.7. Validation for different lead times and hours of the day584

It is commonly accepted that the longer the lead time is, the worse is the585

accuracy of forecasts. This effect is analyzed by merging the validation sets of586

all feed-in points and applying each validation score considered in Sections 4.2.2587

to 4.2.6 to the whole validation set. The analysis becomes then independent of588

the location and enables us to sum up the information to a single value for each589

score. Not surprisingly, Table 3 shows that our model yields better results for590

the shortest lead time of 1h than for longer lead times. However, the validation591

scores for longer forecast lead times are still highlighting good performance of592

the proposed model.593

lead time (h) bias bs bss ρ rel res unc crps

1 0.006 0.124 0.437 0.661 0.001 0.097 0.221 0.088

4 -0.017 0.152 0.316 0.568 0.006 0.075 0.223 0.105

7 -0.022 0.151 0.315 0.565 0.004 0.073 0.221 0.108

10 -0.035 0.150 0.326 0.578 0.003 0.075 0.222 0.109

13 -0.037 0.141 0.363 0.608 0.003 0.083 0.221 0.106

16 -0.050 0.145 0.346 0.598 0.004 0.080 0.222 0.108

19 -0.069 0.151 0.327 0.590 0.006 0.079 0.224 0.110

Table 3: Validation scores of the combined validation sets for different forecast lead times and

the threshold v = 0.8.

Finally, we applied our prediction model to GHI forecasts and solar power594

supply for different hours of the day. Table 4 shows very good validation scores595

for each 1h-period, regardless of the considered hour of the day. Regarding most596

scores we get slightly worse results for 13-14 UTC and 17-18 UTC, but even in597

these cases the brier skill score is clearly greater than zero and the bias is almost598

zero.599
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hour of the day bias bs bss ρ rel res unc crps

5-6 0.005 0.085 0.318 0.565 0.002 0.041 0.124 0.086

6-7 -0.019 0.125 0.415 0.646 0.002 0.090 0.214 0.092

7-8 -0.025 0.137 0.419 0.650 0.002 0.100 0.236 0.094

8-9 0.006 0.146 0.369 0.624 0.006 0.090 0.232 0.093

9-10 -0.002 0.155 0.308 0.570 0.005 0.072 0.224 0.097

10-11 -0.006 0.155 0.291 0.552 0.004 0.067 0.218 0.100

11-12 0.006 0.124 0.437 0.661 0.001 0.097 0.221 0.088

12-13 -0.026 0.147 0.347 0.593 0.002 0.078 0.225 0.098

13-14 -0.028 0.157 0.278 0.535 0.003 0.062 0.217 0.108

14-15 -0.026 0.126 0.397 0.633 0.001 0.084 0.209 0.097

15-16 -0.025 0.127 0.368 0.609 0.002 0.074 0.200 0.100

16-17 0.001 0.097 0.290 0.538 0.002 0.041 0.136 0.097

17-18 -0.060 0.104 0.318 0.601 0.007 0.053 0.153 0.168

Table 4: Validation scores of the combined validation sets for 1h forecast lead time, for different

hours of the day (in UTC) and the threshold v = 0.8 .

4.3. Economic value of the forecast model600

Distribution network operators have high interest in the economic value of601

prediction models. For that purpose, the value score V S is often used to analyze602

the economic value of a forecast model compared to the climatological model,603

see Wilks (2011).604

The computation of the value score is based on the so-called cost-loss ratio.605

In our case, the cost C is the cost of a curtailment which should be done if the606

solar plant generates more solar power supply than the predefined threshold.607

The loss L corresponds to the averaged economical damage caused by the over-608

loading event when the predefined threshold is exceeded. Then, the cost-loss609

ratio is given by the quotient C/L ∈ [0, 1]. It enables us to characterize various610

possible scenarios for which the value score can be computed.611

To formally define the value score, the relative joint frequencies p0,0, p1,0, p0,1612

28



and p1,1 given in Table 5 have to be considered.

p1,1 =
#{i : pi > C/L, oi = 1}

m
p1,0 =

#{i : pi > C/L, oi = 0}
m

p0,1 =
#{i : pi ≤ C/L, oi = 1}

m
p0,0 =

#{i : pi ≤ C/L, oi = 0}
m

Table 5: Relative joint frequencies considered for the computation of the value score.

613

Then, the value score V S is defined as614

V S =


(C/L)(p1,1 + p1,0 − 1) + p0,1

(C/L)(o− 1)
, if C/L < o,

(C/L)(p1,1 + p1,0) + p0,1 − o
o((C/L)− 1)

, if C/L > o.

(37)615

For more details regarding the interpretation of the value score, see Wilks (2011).616

Following the approach of Wilks (2001), we compute the value score for the617

cost/loss ratio values equal to (pi + pi+1)/2, where i ∈ {1, . . . ,m − 1}. The618

evolution of the value score with respect to the cost-loss ratio is illustrated in619

Figure 10. The value score is positive for all considered cost/loss ratios which620

means that the proposed model is more valuable than the climatological model.621

Moreover, the proposed model shows a greater economic utility for decision622

making with value scores larger than 0.5 if C/L ∈ [0.12, 0.55].623
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Figure 10: Value score with respect to cost-loss ration for the exemplary feed-in point `0.
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4.4. Comparison with the quantile regression model624

The accuracy of the copula model proposed in this paper is finally compared625

to the one of the quantile regression (QR) model. QR is a non-parametric ap-626

proach to estimate conditional quantiles of a random variable, called predictand,627

given some independent random variables, called predictors. Linear QR assumes628

a linear relationship between the conditional quantiles of the predictand and the629

predictors, see Davino et al. (2013) for more details.630

We consider the time period 11 − 12 UTC and a forecast lead time of one631

hour. For each feed-in point, the solar power supply S is the predictand and632

the global horizontal irradiation R the unique predictor. Then, the conditional633

α-quantile q̂α(r) = b̂αr is computed by minimizing the expression634

n∑
i=1

ρα(si − b̂αri), (38)635

where the quantile loss function is defined as636

ρα(u) =

αu, if u ≥ 0,

(α− 1)u, otherwise.

(39)637

By applying 101 linear quantile regressions, i.e. with α ∈ {0, 1/100, . . . , 1},638

we compute conditional α-quantiles for solar power supply given GHI forecasts.639

Next, for a threshold v we approximate the conditional level-crossing probability640

of S given the GHI forecast r under the quantile regression model by641

π(v) = 1−min
α

(q̂α(r)− v). (40)642

The reliability diagrams are then computed for the copula model and the643

quantile regression. Note that the corresponding reliability diagrams are the644

pairs of points (pj(v), oj(v)) and (πj(v), oj(v)) for j ∈ {1, . . . , J}, where pj(v)645

and πj(v) are the mean conditional level-crossing probabilities of S given R646

under the copula model and the QR model, respectively, for the sub-interval Bj647

(using the same notation as in Section 4.2.3).648

For a perfectly reliable model, the difference between the mean conditional649

probability and the corresponding frequency of occurrence of the considered650
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event is zero, i.e., the reliability diagram coincides with the diagonal (grey line651

in Figure 11). Vice versa, the more the reliability diagram deviates from the652

diagonal, the less reliable the model, see Wilks (2011) for further details.653

Figure 11 compares the reliability diagrams of the two models. The numbers654

of samples nj in the sub-intervals Bj are visualized in bars below the diagrams.655

We observe that the copula model is more reliable than the quantile regression656

model which tends to underestimate the probability that the solar power supply657

exceeds the predefined threshold v = 0.8.658
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Figure 11: Reliability diagrams of the copula model (in violet) and the QR model (in red),

for the predefined threshold v = 0.8.

4.5. Comparison between different hierarchy levels659

Since overloading problems can occur at each hierarchy level of a distribution660

network, it is crucial that probabilistic predictions quantifying the risk of over-661

loading can be generated for several hierarchy levels. In fact, the consequences of662

a critical event are usually even larger the higher the hierarchy level is, where it663

occurs. Indeed, in such a case the solar power supply of a whole region might be664

interrupted. Consequently, it is convenient to have a flexible prediction model,665

which can be applied to different hierarchy levels of a distribution network.666

Using the methods stated in Section 3.1 we compute and visualize condi-667

tional level-crossing probabilities for a certain threshold at feed-in points and668
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communities. It turns out that there are less local disparities for communities669

than for feed-in points. In fact the aggregation of solar power supply causes a670

smoothing effect on the conditional probabilities, see Figure 12.671

(a) Probabilities for feed-in points (b) Probabilities for communities

Figure 12: Conditional level-crossing probabilities for solar power supply exceeding the thresh-

old of 0.8 for May 10, 2017, 11-12 UTC.

Table 6 clearly shows the flexibility of our prediction model by comparing the672

averaged validation scores computed for communities with the averaged scores673

we get for individual feed-in points. Some scores for communities are even674

slightly better than for feed-in points. This stands to reason, since averaging675

over a certain number of feed-in points eliminates noise.676

hierarchy level bias bs bss ρ rel res unc crps

feed-in points 0.006 0.124 0.437 0.661 0.001 0.097 0.221 0.088

communities 0.004 0.113 0.491 0.701 0.002 0.110 0.223 0.080

Table 6: Validation scores of the combined validation sets for feed-in points and communities

with lead time one hour and forecast period 11-12 UTC.

5. Conclusion677

In this paper a probabilistic prediction model to quantify the risk of overload-678

ing at feed-in points was proposed. The model is based on hourly deterministic679

GHI forecasts and applies copula theory to compute the joint distribution of GHI680

forecast and solar power supply for each feed-in point. Based on marginal and681
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joint distributions, conditional probabilities for solar power supply exceeding a682

predefined threshold are computed.683

The model was validated using prediction scores, such as bias, Brier score684

(decomposed into reliability, resolution and uncertainty), Brier skill score, con-685

tinuous rank probability score and the empirical correlation coefficient. The686

scores were validated for forecast lead times ranging from 1 to 19 hours and 1h687

periods of the day ranging from 5 to 18 UTC. These validations showed a high688

accuracy of the proposed copula-based model, regardless of the considered hour689

of the day or forecast lead time. Moreover, a comparison of the copula model690

reliability diagram with the one of the quantile regression model emphasized691

higher reliability than a state-of-the-art model. Besides, we also showed that692

the model can be applied to higher hierarchy levels in the distribution network,693

such as communities. Finally, the value score was computed to quantify the694

economic value of the proposed model for an exemplary feed-in point. The cop-695

ula model demonstrated a higher economic utility than the climatological model696

for the selected feed-in point, regardless of the cost-loss ratio values. Particu-697

larly, the economic utility was outstanding for cost-loss ratios in the interval698

[0.12, 0.55].699

The fitting and the validation of the copula model have been undertaken700

on three typical months with high GHI in Germany (May, June and July). If701

more than three months have to be considered, it may be necessary to split the702

fitting and validation period in order to capture information relevant to seasonal703

variation. The way to split the data, if necessary, is not straightforward and704

may have to be undertaken by trial-and-error.705

Besides, it may also be possible to integrate other factors, except GHI, that706

are correlated to the solar power supply. This will be investigated in a forth-707

coming paper using more advanced tools of copula theory such as nesting or708

vine copulas (Joe, 2014).709
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