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Abstract

Many important properties of particulate materials are heavily influenced

by the size and shape of the constituent particles. Thus, in order to

control and improve product quality, it is important to develop a good

understanding of the shape and size of the particles that make up a given

particulate material. In this paper, we show how the spherical harmon-

ics expansion can be used to approximate particles obtained from tomo-

graphic 3D images. This yields an analytic representation of the particles

which can be used to calculate structural characteristics. We present an

estimation method for the optimal length of expansion depending on indi-

vidual particle shapes, based on statistical hypothesis testing. A suitable

choice of this parameter leads to a smooth approximation that preserves

the main shape features of the original particle. To show the wide ap-

plicability of this procedure, we use it to approximate particles obtained

from two different tomographic 3D datasets of particulate materials. The

first one describes an anode material from lithium-ion cells that consists
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of sphere-like particles with different sizes. The second dataset describes

a powder of highly non-spherical titanium dioxide particles.

Keywords: Structural Characterization, Spherical Harmonics,

Lithium-Ion Cells, Particle Shape

1. Introduction

Granular materials are used in many different industrial applications.

For instance, they are used as ingredients in pharmaceutical materials

and in the production of semiconductors and energy materials such as

lithium-ion cells, solar cells and fuel cells [1, 2, 3]. Both the transport

and industrial processing of agglomerates are greatly influenced by the

shape and size of the agglomerate components [4]. For example, the flow,

handling and rheology of granular materials are directly influenced by the

shape and size of the constituent particles [1, 5, 6, 7]. The performance of

particulate materials also depends directly on their microstructure. For

example, the performance of lithium-ion anodes depends strongly on the

morphology of graphite particles and their spatial arrangement [8].

Tomographic three dimensional (3D) images are ideal sources for in-

vestigation of particle characteristics. Many different imaging techniques

exist, including electron tomography [9, 10] and focused ion-beam (FIB)

tomography [11, 12], which have resolutions on the nm-scale, synchrotron

tomography [13] and X-ray microtomography (µ-CT) [14, 15], which have

resolutions on the µm-scale, and neutron-tomography [16] which can be

used for investigations of larger objects.

Since particles in experimental 3D data sets are represented by sets

of voxels, their analysis is a non-trivial task. In addition, particles can
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have rough surfaces and there are often artifacts present in the data,

e.g., caused by the measurements or preliminary image processing steps

like filtering and binarization. Thus, a different particle representation is

needed to reproduce the properties of particle shapes, which is suitable for

many materials. In some cases, this can done by using simple geometric

objects like spheres, ellipsoids or unions of spheres. However, these simple

objects cannot reproduce the shape of more complex particles, because

important characteristics like volume, surface area or surface roughness

are not preserved.

In this paper, we use the spherical harmonics expansion [17, 18, 19]

to calculate an alternative representation of particles based on voxelized

objects. Spherical harmonics have proven to be a valuable tool for the

representation of particles [20, 21]. The exact shape of a particle is repre-

sented as a combination of objects with growing roughness, the spherical

harmonic functions. The spherical harmonic functions in the expansion

are ordered in a way that the roughness of the functions increases with the

length of expansion. This kind of hierarchical representation is essentially

influenced by a cutoff parameter to achieve a smooth approximation. The

cutoff parameter is crucial as it controls the balance between the qual-

ity and the smoothness of the approximation. We present a method for

optimally choosing this cutoff parameter, L, the length of expansion,

based on statistical hypothesis testing. We show by comparing the mean

square error that in this way an approximation is obtained which is in

good accordance with the voxelized representation for complex shaped

objects. Furthermore, we use an analytic description of this representa-

tion to calculate different particle characteristics and compare them to
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those obtained directly from the voxelized objects. A basic characteristic

is the radius of an equivalent sphere, where this sphere can be defined to

have equal volume, equal surface area or the same minimum or maximum

particle axes, depending on the given application [22]. Other character-

istics are sphericity [23] and characteristics that are based on the convex

hull [24] and Gaussian curvature [25, 26, 27]. We note that the repre-

sentation of particle shapes in spherical harmonics enables the definition

and calculation of more refined characteristics as stated in [28]. Some

of these characteristics can be linked with effective physical properties of

the materials like diffusive behavior or interfacial reaction rates [8, 29].

In order to demonstrate the potential and generality of this method

we apply it to two different particle systems. Both samples are obtained

using 3D imaging techniques with subsequent segmentation. The first

particle system is extracted from the anode of a lithium-ion cell and

consists of LiC6 particles. The second sample describes a powder of

highly non-spherical TiO2 particles.

The rest of this paper is organized as follows. In Section 2, the class of

spherical harmonic functions is introduced. We discuss the definition of

the boundary for an object which is defined on a voxel grid and present an

algorithm for its fast evaluation. For the purpose of implementation, all

necessary algorithms and numerical details for the fast and efficient calcu-

lation of the coefficients in the spherical harmonics expansion are briefly

recalled. Furthermore, we propose a method to estimate the parameter

L, which determines the approximation quality and the smoothing effect

in the expansion. In Section 3, this technique is applied to experimen-

tal data. After a short description of the materials, the approximation
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of particles from both samples by spherical harmonics is described. A

comparison of the particle systems from the two different materials is

performed using the spherical harmonics expansion. The goodness of ap-

proximation is discussed and various structural characteristics like par-

ticle sizes, surface areas and surface roughness are calculated. Finally,

an outlook to further possibilities regarding the representation of particle

systems by means of spherical harmonics concludes the paper.

2. Representation of particles by spherical harmonics

In this section we introduce the mathematical background of spherical

harmonics and describe the techniques required for application to par-

ticles extracted from 3D images. Throughout this section, a particle is

taken to be a set of connected voxels in a binary image, where each voxel

can only adopt one out of two values which indicates whether the voxel

belongs to the foreground or background, respectively. The two possible

states are denoted by true and false. The spherical harmonics are a set of

functions defined on the unit sphere which form a basis for a large class

of functions. In fact, each square integrable function on the unit sphere

can be represented as a series of spherical harmonics. In the situation

where the functions define the boundary of the particles, this integrabil-

ity condition is always naturally fulfilled. An important requirement for

the particles is that they are star shaped (or star convex) with respect to

a centroid [30], in our case to the barycenter. If this is true, it is possible

to define a radius function on the unit sphere to fulfill the conditions

for the expansion in spherical harmonic functions. The radius function

maps each angle (θ, φ) on the unit sphere to the distance from the cen-
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troid to the boundary of the particle in that direction. Star shaped (or

star convex) with respect to a point means that the connection from this

point to each point of the particle lies completely inside the particle. This

means especially that there are no holes or e.g. curved intrusions into

the particles. Furthermore, it only makes sense to calculate a smooth

approximation of particles if it is reasonable to assume that the observed

objects are smooth.

2.1. Definition and calculation of the boundary

During the preprocessing of data, the 3D images are binarised and

segmented using a morphological segmentation method. In our case, a

watershed transform [31, 32, 33, 34] is used. This means that the binary

image B is divided into distinct regions B1, . . . , Bn with
⋃n
i=1Bi = B

and Bi ∩ Bj = ∅ for i , j. The set of foreground voxels in a region

corresponds to exactly one particle. In the following we describe the

procedure that is applied to each particle.

The first step is to determine the distance from the barycenter of the

particle to the boundary in each direction in order to compute the radius

function. However, it is not clear how the boundary should be defined

to model the original object as accurately as possible. There are several

reasons for this. The discretization of the real object, based on grayscale

intensities in an image, to Boolean values can be done using some kind

of threshold to decide whether a voxel is classified as foreground or back-

ground. Thus, it is clear that the boundary cannot be defined without

some assumptions about the preliminary step of discretization. Figure 1

shows a 2D example of the consequences of different thresholds for the

voxelized object. In the first case, shown in Figure 1(a), every voxel that
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covers a part of the original object, which means that it has an intensity

value larger than zero, is put to foreground which leads to an overestima-

tion of the size of the object. In the other case, considered in Figure 1(b),

only voxels that are completely inside the object, which means that their

intensity has the maximal value, are marked as foreground which leads

to an underestimation of the size of the object.

(a) low threshold (b) high treshold

Figure 1: Schematic illustration of the effect of a low or a high threshold for the shape of the object in the

binary image.

Therefore, it is important to have information on the choice of the

threshold and other preliminary steps for the binarization. In the extreme

cases discussed above one can perform a morphological erosion or dilation

[35] as a correction.

After a suitable preprocessing of the particle, we need to determine

the exact distance from the centroid to the boundary for each direction

on the unit sphere. As stated above, we assume that the particle is star

shaped to ensure that the algorithm proposed below yields valid results in

all cases. For a given angle, (θ, φ), we use nested intervals for an efficient

evaluation of the particle boundary of the voxelized particles. We use the

diagonal size, d, of the bounding box calculated for the original object as
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an upper bound for the radius in each direction. We then consider the

following procedure:

(1) Construct a unit vector e in direction (θ, φ).

(2) Put the initial interval [a, b] = [0, d].

(3) If (a+b)/2·e belongs to the particle, then put a = (a+b)/2, otherwise

set b = (a+ b)/2.

(4) Repeat step 3 if b − a > τ , where τ is some required (maximum)

tolerance.

(5) The result is r(θ, φ) = (a+ b)/2.

A schematic illustration of this procedure is shown in Figure 2. The

advantage of nested intervals is that the runtime of the algorithm is,

in practice, nearly independent of the particle size because the compu-

tational effort is logarithmic in the diameter of the particle’s bounding

box for a fixed tolerance. The boundary in direction (θ, φ) can then be

represented in Cartesian coordinates relative to the centroid by

x = r(θ, φ) sin θ cosφ , (2.1)

y = r(θ, φ) sin θ sinφ ,

z = r(θ, φ) cos θ .

2.2. Expansion in spherical harmonics

The set of spherical harmonic functions {Y ml : [0, π] × [0, 2π) →

[0,∞) : l,m ≥ 0} is a basis for the family of square integrable func-

tions defined on the unit sphere. This means that the radius function for
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Figure 2: Schematic description of nested intervals with lower boundaries as white points and upper bound-

aries as black points. The small dashed lines in gray display the integer points in the grid and the black

dashed line displays the search direction.

a given particle can be expanded in terms of spherical harmonics, if the

particle is star shaped. The spherical harmonics Y ml are organized in a

special way. The subscript l denotes the degree and the superscript m

is called the order. An application to single particles has been shown in

[36].

In the following, we describe an efficient way to calculate the coeffi-

cients of the expansion with respect to the spherical harmonics for a large

set of particles. In our setup, we deal with a function r : [0, π]× [0, 2π)→

[0,∞). The expansion in spherical harmonics is then given by

r(θ, φ) =
∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) , (2.2)

where the coefficients cml are called the spherical harmonics coefficients

of the radius function r of the underlying particle, and for any pair of

integers l,m ≥ 0 with −l ≤ m ≤ l the spherical harmonic function Y ml
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is given by

Y ml (θ, φ) = (sin θ)mP
(m,m)
l−m (cos θ)

eimφ√
2π

. (2.3)

Here, P (m,m)
l−m denotes a Jacobi polynomial, which can be calculated effi-

ciently using the following recursion formula [19]:

P
(m,m)
k (x) = 2xP

(m,m)
k−1 (x)

(
1 +

m− 1/2

k

)1/2(
1− m− 1/2

k + 2m

)1/2

− P (m,m)
k−2 (x)

(
1 +

4

2k + 2m− 3

)1/2

(
1− 1

k

)1/2(
1− 1

k + 2m

)1/2

, (2.4)

with

P
(m,m)
−1 (x) ≡ 0 ,

P
(m,m)
0 (x) ≡ 1√

2

m∏
j=1

√
1 +

1

2j
. (2.5)

The calculation of the spherical harmonics coefficients of a radius function

r is then done using the relation

cml =

∫ 2π

0

∫ π

0

r(θ, φ)Y m∗l (θ, φ) sin θ dθ dφ , (2.6)

where ∗ denotes the complex conjugate. For the numerical evaluation of

the coefficients cml we use an equiangular grid G on the sphere with N

supporting points for each component:

G =

{
(θi, φj) =

(
π
i+ 1/2

N
, 2π

j

N

)
: i, j ∈ Z, 0 ≤ i, j, < N

}
. (2.7)

For more details on this choice of grid see [19]. Using (2.3) and changing

the order of integration, the double integral in (2.6) can be interpreted as

a Fourier transform and an integral over the associated Legendre poly-

nomial, i.e.,

cml =

∫ π

0

(∫ 2π

0

r(θ, φ)
e−imφ
√

2π
dφ

)
(sin θ)mP̃

(m,m)
n−m (cos θ) sin θ dθ .
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The discretized version of the inner integral using the grid G can be

calculated using the fast Fourier transform [37] and for the outer integral

a suitable set of integration weights is given by

wN (i) =
2
√

2

N

N/2−1∑
k=0

1

2k + 1
sin ((2l + 1)θi) , (2.8)

where N denotes the number of supporting points and θi is given by

the grid in (2.7), see [38] and [19]. For further details on the theory of

spherical harmonics, see e.g. [17, 18].

As mentioned above, the representation in spherical harmonics is hi-

erarchical in the sense that spherical harmonic functions with a smaller

degree describe coarser shapes and the shapes become finer with higher

degrees. Thus, we can control the quality of approximation by limiting

the number of coefficients in the expansion. This step determines the

quality of the approximation, as a longer series leads to a more accurate

reproduction of the original object. A short series, on the other hand, has

a smoothing effect where sharp edges and small artifacts from the imag-

ing or postprocessing can be avoided in the approximated particle. This

is similar to limiting the “bandwidth”, something that is used often by

engineers when dealing with noisy data [39]. In our situation this means

that the series is truncated after a maximum degree L, which leads to

the limited expansion

rL(θ, φ) =
L∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) , (2.9)

with the same coefficients as in (2.2).
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2.3. Estimation of the maximum degree L

The parameter L that describes the length of expansion in (2.9) is cru-

cial and has a large effect on the calculation of structural characteristics.

If L is chosen too small, then important features of the particle shape are

neglected. If L is chosen too large the smoothing effect is lost. A com-

parison of approximations of a particle from the first dataset presented

in Section 3.1 for different values of L is shown in Figure 3.

(a) voxel representation (b) L = 4

(c) L = 10 (d) L = 20

Figure 3: Rendering of a single particle from a lithium-ion cell anode and spherical harmonic approximations

with different lengths of expansions.

In order to determine an optimal value of L we do not compare the

particle and the approximation directly. Although, to illustrate the in-

fluence of the representation on different characteristics we do show the

values calculated for both representations. This is due to the fact that a
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direct comparison like computing the L2-norm would always favor an ex-

act representation which is counterproductive to the smoothing aspect.

Instead, we use a stochastic approach to evaluate the accordance of a

particle and its approximation. It is important to note that this pro-

cedure makes only sense if it is reasonable to assume that the particles

observed in the experimental data have smooth surfaces. We draw S � 1

points from a uniform distribution on the unit sphere using the method

described in [40] and compute the radius of the original particle as well

as the approximation with respect to these S uniformly distributed di-

rections. Note that the choice of S is motivated in Section 3.2, where

we obtained a suitable value of S=100 for our datasets. The set of ob-

servations from the original particle is then compared to the set with

the values from the approximated particle. We perform a Kolmogorov-

Smirnov test [41, 42] with the null hypothesis H0 : F1 = F2 , where F1

denotes the distribution of the radial values of the original particle and

F2 the distribution of the radial values of the approximated particle.

The Kolmogorov-Smirnov test is performed for each particle in the

sample for different values of L a 100 times where a 5% significance level

is used. It is important to note that the Kolmogorov-Smirnov test is de-

signed for independent samples and the samples in our case are not com-

pletely independent. But as the random points on the unit sphere are in

most cases not too near to each other the application of the Kolmogorov-

Smirnov test seems to be reasonable. Thus, we calculate the rejection

rate and choose the smallest value of L which leads to a rejection rate

smaller than 5%. This technique works appropriately in practice, cf. Sec-

tion 3.1. For a more or less detailed approximation the rejection rate
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threshold can be varied.

3. Application to experimental 3D image data

In this section we explain how the description of particles by spher-

ical harmonics can be used to approximate and characterize particles

extracted from 3D image data. To demonstrate the generality of this ap-

proach, we consider two datasets describing particle systems of different

nature. One shows sphere-like particles in a lithium-ion cell anode. The

other one shows a powder of apparently randomly shaped TiO2 particles.

Cross-sections of both samples are shown in Figure 4.

(a) anode material (b) TiO2 particles

Figure 4: 2D cross-sections of 3D grayscale images.

3.1. Description of experimental image data

The first sample (sample I) is a cutout of an anode from a lithium-ion

battery investigated with synchrotron tomography. The anode consists

of a system of connected graphite (LiC6) particles. For more details

on the production of anodes for lithium ion cells we refer to [43, 44,

45, 46]. The measurements were performed at the electron storage ring

BESSY (Helmholtz Centre Berlin, BAMline). An optical set-up (Optique
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Peter) and a 20 µm-thick CWO scintillator screen were used to detect

the X-rays. An X-ray energy of 15 keV was chosen. Overall 2200 single

radiographic projections were taken for 3D data reconstruction. From

a first impression most particles could be described as sphere-like and

regular.

The second dataset (sample II) describes a powder of irregular shaped

TiO2 aggregates, i.e. particles which are composed of many very small

primary particles. For imaging purposes the powder has been filled into

a thin-walled glass capillary with an inner diameter 2mm and wall thick-

ness of about 50µm. The image was then obtained by a high resolution

XMT device (MicroXCT 400, Xradia, Inc., USA) [47]. In order to pre-

pare well-defined specimens, a powder tester has been developed and

integrated into the XMT system [15, 47]. For 3D imaging of sample II

an X-ray energy of 50 keV was chosen. From 3000 single radiograph

projections a 2k3 Dataset with a spatial resolution of 1.1 µm/voxel was

reconstructed. For a convenient post processing the dataset was then

resampled to 1k3 resulting in a resolution of 2.2 µm/voxel. From a first

inspection it is clearly visible that the particles have irregular shapes and

sharp edges.

To extract more detailed information about the particles, a 3D wa-

tershed algorithm has been applied [31, 32, 33, 34] to both samples after

binarization. More precisely, we employed a stochastic watershed tech-

nique to reduce oversegmentation, see [48].

The voxel size for sample I is 0.44µm in each direction. The cutout

has a size of 1909×1785×116 voxels. The volume fraction of the particle

system is 72.8% and the watershed segmentation identifies 61280 differ-
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ent particles. For sample II the voxel size is 2.2µm in each direction

and the 3D image has a size of 1972 × 2014 × 2014 voxels. The volume

fraction of the particles is 54% and the segmentation identifies 20905

particles. A comparison of the radii of volume equivalent spheres shows

that the particles from the lithium-ion anode are smaller—measured in

voxels, because this is the relevant scale for the methodology. The mean

radius of the volume equivalent spheres for the anode particles is 7.67

voxels with standard deviation of 4.09 voxels. For the particles from the

TiO2 powder the mean value is 12.67 voxels with standard deviation of

5.56 voxels. Note that the real size of particles is not important for our

approximation technique, but their size with respect to the voxel grid is,

of course.

3.2. Selecting the number of points S

Obviously, the choice of the number of directions S that are considered

in the algorithm for determining an optimal L (see Section 2.3) plays a

huge role. Thus, we performed some tests to find a relation between the

noise one expects in the image and suitable values for S.

This is done as follows. For both materials considered here 500 parti-

cles have been chosen randomly and approximated by spherical harmon-

ics with L = 5. These are called test particles in the following. All test

particles have been superimposed with two different modes of noise. The

optimal length of expansion is estimated for the noisy particles and differ-

ent values of S. The approximations are then compared to the "ground

truth" before the addition of noise.

For the comparison, three different error types are considered. First,

we look at the relative L2-norm (with respect to the L2-norm of the
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"ground truth"). Furthermore, we look at the symmetric difference be-

tween both representations of the particles. For two sets A and B, we de-

fine the relative symmetric difference volume as the ratio between the vol-

umes of the symmetric difference A∆B and the volume of their union A∪

B. Finally, we also consider the Hausdorff distance between both parti-

cles which is given by dH(A,B) = max
{

supx∈A d(x,B), supy∈B d(y,A)
}

for two (non-empty) sets A and B, where d(x,A) = infa∈A d(x, a) de-

notes the minimal distance from an arbitrary point x to the set A. For

more details, we refer to [49].

To mimic the uncertainty in boundaries of particles in tomographic

images, which could be caused by variations in material densities or orig-

inate from artifacts of the measurements, we consider a roughening of

surfaces as noise. The algorithm to obtain a noisy particle is as follows.

1. Plot the test particle, i.e., discretize on voxel grid.

2. For each surface voxel perform an Bernoulli experiment with pa-

rameter p = 0.01. If the experiment is successful (with probability

p), perform Step 3, otherwise skip the voxel.

3. A ball is placed around the voxel with radius r =
√

2. Perform

another Bernoulli experiment with p = 0.5 to determine if the ball

is added to or subtracted from the voxelized particle representation.

An important requirement for the expansion in spherical harmonics is,

as stated above, that the particles are star-shaped. Thus, the simulated

noise should not alter this property of the particles. With the algorithm

stated above it is not clear that star-shaped particles keep this property

after the addition of noise. But, a rough surface in tomographic data is
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only approximately star-shaped, too. An example of a noisy test particle

is shown in Figure 5. The results of the approximation error can be

seen in Figure 6. As expected, the approximation error decreases for

higher values for S for all types of errors considered here. This is due to

the fact that a higher number of observations S leads to a more precise

representation of particles.

(a) Original particle (b) Particle with noise

Figure 5: 2D cross-section of an particle without and with simulated surface roughness.

(a) L2-Error (b) Symmetric difference (c) Hausdorff distance

Figure 6: Boxplots of three different error types for 1000 particles with noise.

Another type of noise considered are spikes emanating from the par-

ticles surfaces, which can be observed in experimental data. In the ex-

emplary particle from a lithium-ion cell shown in Figure 3(a) one can

see multiple spikes above the particle or on the right-hand side. As the

particles have been processed in an high energy disperser it is unlikely

that these spikes belong to the particles. Thus, we take these artifacts

into consideration. To mimic this effect we use the following method:
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1. Plot the test particle, i.e., discretize on voxel grid.

2. For each surface voxel, perform an Bernoulli experiment with prob-

ability p = 0.01. If the experiment is successful perform Step 3,

otherwise skip the voxel.

3. A tube is drawn from the voxel in direction of the connecting line

from the barycenter of the test particle to the boundary voxel. The

length of the tube is set to 3.0 and the diameter is set to 3.0.

From this method it is clear that the particles with noise are still star-

shaped and our method can be applied straightforward. A particle with

simulated spikes is shown in Figure 7. The calculated errors are shown in

Figure 8. As one can see, the tendency is contrary to the one in Figure 6.

A higher number of observation points S leads to a larger error, which can

be explained by the fact that small spikes are "ignored" for small values

of S as no (or only few) observations are subject to the error induced by

the spike.

(a) Original particle (b) Particle with noise

Figure 7: 2D cross-section of an particle with and without spikes.

Overall, one can see, that a smaller value of S around 50 minimizes

the error when spikes are present in the particles. If the particles have
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rough surfaces then a higher value of S around 150 is favorable. Thus,

we choose S = 100 as trade off in our situation. Note that the absolute

values for two of the three error measures are approximately equal at

S = 100.

(a) L2-Error (b) Symmetric difference (c) Hausdorff distance

Figure 8: Boxplots of three different error types for 1000 particles with spikes.

3.3. Particle approximation

The particles from both materials are approximated by spherical har-

monics. The particles of the anode material appear to be very sphere-like

and therefore one could expect a good accordance even with a small num-

ber of coefficients. The particles from the powder material are much more

irregular and apparently not even always convex but it turns out that the

particles are still star shaped.

To speed up the calculations we precompute the associated Legendre

polynomials given in (2.4) and (2.5) as well as the numeric weights given

in (2.8) and use them for all particles. The coefficients are then calcu-

lated using the numerical method described in Section 2.3 with N = 256

in (2.7). For both sets of particles we estimate the value of L for the

expansion of every particle, see Figure 9. For sample I (anode material)

we get the mean value µI
L = 4.60 and for sample II (TiO2 particles) we

get the value µII
L = 4.36. In Figure 10 we show a boxplot of the radii
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r of volume equivalent spheres over the length of expansion L for both

materials. One can see that the size of the particles has a slight influence

on the length of expansion for the lithium-ion cell anode sample. For

the particles from the TiO2 there is no significant trend. The decreasing

mean radius for larger values of L in the anode material can be explained

by the fact that a portion of the small particles in this material was gen-

erated by larger particles breaking apart. This means that those particles

have a higher tendency to sharp edges, which leads to longer expansions.

Figure 9: Distribution of the L values chosen individually for every particle: anode material (red) and TiO2

particles (blue)

A 3D rendering of voxelized and approximated particles from the an-

ode material is shown in Figure 11.

3.4. Comparison of both datasets

In this section, we look at different structural properties of particles

from both materials and compare them to each other. This includes the

approximation error, as well as structural characteristics like the specific
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Figure 10: Boxplot of the radii of volume equivalent spheres over the length of expansion L for both types

of particles: anode material (red) and TiO2 particles (blue)

(a) Voxel representation particles (b) Approximated particles

Figure 11: 3D rendering of voxelized and approximated particles for the system of densely packed particles

from the anode material.

surface area, the sphericity and the integral of the absolute curvature as

a measure for surface roughness.

For a formal examination of the approximation quality, we use the

root of the normalized mean squared error, i.e.,

Eparticle =

√√√√∫ 2π

0

∫ π
0

(r(θ, φ)− rL(θ, φ))
2

sin θ dθdφ∫ 2π

0

∫ π
0
r2(θ, φ) sin θ dθdφ

.

The normalization is necessary to compare particles with different sizes.

In Figure 12 we plot the frequencies of the approximation errors for all
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particles. Note that Figure 12 shows the estimated density function of

the approximation error evaluated for all particles. The difference to a

histogram is that the observations are not only counted in a fixed interval,

but each point of the axis is assigned a value depending on the number

of points in its neighborhood and their distance. More precisely, we use a

kernel density estimation with Gaussian kernel and bandwidth h = 0.01,

see [50, 51] for details. From Figure 12 it can be seen that, as expected,

sphere-like particles from the battery anode can be described better by

spherical harmonics than the TiO2 particles. The mean approximation

error for sample I is µI
E = 0.10 with standard deviation σI

E = 0.038,

whereas we have µII
E = 0.15 with standard deviation σII

E = 0.057 for

sample II. Both, mean value and standard deviation are higher for the

TiO2 material (sample II). This is due to the more irregular shapes of

the particles in sample II.

Figure 12: Comparison of the particle approximation error Eparticle: anode material (red), TiO2 particles

(blue)
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3.4.1. Volume

The calculation of structural characteristics is an important task in

the analysis of 3D image data. First, we look at the particle volumes,

calculated by

Vparticle =
1

3

∫ π

0

∫ 2π

0

r3L(θ, φ) sin θ dφdθ .

This equation can be evaluated easily if the coefficients of the expansion

are known and it is easy to implement. However, there exist methods

to calculate the volume of a given approximation faster using formulas

based on the convolution of coefficients, see [52].

(a) Anode material (b) TiO2

Figure 13: Visualization of the radii of volume-equivalent balls; calculated by spherical harmonics and by

direct estimation from voxelized data. Each dot represents a particle from the respective material.

Figure 13 shows a comparison of the radii rVSH and rVdirect of volume-

equivalent balls calculated based on the volumes obtained from the spher-

ical harmonics approximation and the volumes computed directly from

voxelated data. It can be seen that these radii are very similar for both

samples, but not identical. For the particles from the anode material the
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accordance is slightly better than for the TiO2 particles. And, in addi-

tion, the TiO2 particles are approximated with a smaller L value and

have a more irregular shape.

3.4.2. Surface area

Another important characteristic of particles is their (specific) surface

area. First, we compare surface areas obtained using spherical harmonics,

which can be calculated by

Sparticle =

∫ π

0

∫ 2π

0

rL(θ, φ)

((
∂

∂φ
rL(θ, φ)

)2

+

(
∂

∂θ
rL(θ, φ)

)2

sin2 θ + r2L(θ, φ) sin2 θ

)1/2

dφdθ ,

(3.1)

to a surface area estimation based on weighted local voxel configurations

[53]. The idea of this approach is that one can reconstruct an approxi-

mation for the "real shape" of an underlying object based on 2 × 2 × 2

voxel squares. For each possible configuration one can thus calculate the

surface area one would expect based on the voxel representation. These

surface areas are the weights for the local 2× 2× 2 voxel configurations.

See Figure 14 for a comparison of the radii rSSH and rSLW of surface area-

equivalent balls for the surface calculated by spherical harmonics and

local weights respectively. It turns out that spherical harmonics tend to

give us smaller estimates, which makes sense as they generate smoother

surfaces, and we aim to neglect effects caused by discretization or noise.

Clearly, this effect is more noticeable for larger particles. Again this ten-

dency is more visible for the TiO2 particles due to their larger surfaces

and irregular shapes.
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Note that in (3.1) all expressions can be evaluated very fast for spher-

ical harmonics. The derivatives with respect to θ and φ can be calculated

from (2.3) and (2.9). The calculation of the surface area using (3.1) is

computationally expensive. Due to the square root in the expression

there exists no fast formula for the calculation of the surface area. How-

ever, we would like to note that there exist formulas for a fast and efficient

calculation of lower and upper bounds for the surface area that may be

sufficient in some applications, see [52] for more details.

(a) Anode material (b) TiO2

Figure 14: Visualization of the radii of surface-equivalent balls; surface area calculated by spherical har-

monics and by local weights directly from voxelized data. Each dot represents a particle from the respective

material.

Furthermore, we consider the specific surface area, i.e., the surface

area of an object divided by its volume. This is important for active

materials used in anodes of lithium-ion cells to characterize the balance

between energy storage and charging / discharging behavior due to in-

tercalation at the surface, where the specific surface area for a particle is
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defined by

SSAparticle =
Sparticle

Vparticle
.

For the two materials discussed in this paper, the specific surface area

of particles is shown in Figure 15. In Figure 15(a) it looks as if the

particles from the anode material have a larger specific surface area which

is not intuitive, since the shapes of the TiO2 particles seem to be more

irregular. This is due to the varying sizes of the particles. For a ball

the SSA can be expressed explicitly as 3/r. Therefore, the normalized

specific surface area SSAnorm = SSA·r
3 , with r calculated from the sphere

with equal volume is shown in Figure 15(b). As expected, the normalized

specific surface area which corresponds to a surface based shape factor

is clearly larger for irregular (TiO2) particles. For the TiO2 particles the

distribution is wider. This is in good agreement with what one would

expect from the optical inspection of both samples, because the particles

from the anode sample look more spherical than those from sample II.

(a) specific surface area (b) normalized specific surface area

Figure 15: Specific surface area (SSA) of particles directly calculated and with normalization: anode material

(red), TiO2 particles (blue)
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3.4.3. Sphericity

A further characteristic which is frequently considered in various ap-

plications is the sphericity of particles Ψ. There exist different definitions

of this characteristic in the literature, we however define it as the ratio

of the surface area of the volume-equivalent ball divided by the surface

area of the corresponding particle, i.e.,

Ψparticle =
π1/3(6Vparticle)

2/3

Sparticle
,

see [54]. Figure 16 shows the estimated sphericities of particles, with

volume and surface obtained from voxelized data and with volume and

surface calculated using spherical harmonics, respectively. As expected,

the particles from the anode material show a higher sphericity in both

cases. Sphericities estimated using spherical harmonics are larger for

both materials, because the surface of particles is smoothed, which leads

to a smaller surface area as shown in Figure 14 and discussed above. The

comparison of the sphericities which have been calculated by the methods

considered in Figures 16(a) and 16(b) shows that there are quite signif-

icant differences. We suppose that these differences are caused by the

imprecise estimation of surface area, especially for small and irregularly

shaped objects.

3.4.4. Surface roughness

For a more detailed characterization of particle surfaces we look at

the surface roughness, which we define as

R =

∫ π

0

∫ 2π

0

|K(θ, φ)| dφdθ ,
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(a) Original particle (b) Spherical harmonics representation

Figure 16: Sphericity calculated from the original particle and the spherical harmonics representation: anode

material (red), TiO2 particles (blue)

where K(θ, φ) denotes the Gaussian curvature at the surface point in

direction (θ, φ) which is given by

K(θ, φ) =
−Xθ · nθXφ · nφ + 1

2(Xθ · nφ +Xφ · nθ)
r2θ(r

2
φ + r2 sin2 θ)− r2θr2

, (3.2)

with

X(θ, φ) =


x(θ, φ)

y(θ, φ)

z(θ, φ)


where x, y and z are defined in (2.1). In addition, n denotes the unit

normal vector, which can be calculated using

n =
Xθ ×Xφ

|Xθ ×Xφ|
.

The subscripts in (3.2) denote derivatives in the respective directions.

The idea of this quantity for roughness is that the Gaussian curvature

has large values where the curvature of the surface changes. This means

that a blistered surface will lead to a large value for the integrated ab-

solute curvature. For a comparison we show the estimated values for
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this characteristic for the particles of both datasets in Figure 17. In

Figure 17(a) the calculated values are visualized which have been ob-

tained using the spherical harmonics approximation of the particles. It

is important to note that such characteristics that involve second order

derivatives along the particle surface cannot be evaluated directly from

the voxelized particles. However, the value of the curvature is not only

influenced by the shape of the particle, but also by the size of the par-

ticles, as the roughness for a sphere with radius r is 4π/r2. Therefore,

we also look at the normalized roughness Rnorm = r2R/(4π) where r is

the radius of the volume-equivalent ball. The results obtained for this

quantity are shown in Figure 17(b).

(a) (b)

Figure 17: Roughness of particles on logarithmic scale calculated for spherical harmonic approximation:

anode material (red), TiO2 particles (blue)

4. Conclusions and outlook

In this paper we have shown how an analytical description of particles

can be obtained using an expansion in terms of spherical harmonics. We

discuss the problem of discretization present in voxelized (experimental
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and noisy) data. Using our approach, this problem can be treated ele-

gantly by determining the length of expansion using a statistical testing

approach, which leads to a proper and smooth representation of particles.

An analytical description of particles has several advantages. First, it can

be used directly for modeling, where mostly simple objects like spheres

have been used so far in the literature. Second, an analytical description

allows the application of standard formulae for the calculation of struc-

tural characteristics like surface area and other shape-related quantities.

The surface of each particle is given by a smooth function and derivatives

can be obtained easily, which is always a problem for voxelized data. To

demonstrate the potential and generality of our method, we have applied

it to two different particle systems. The first particle system is extracted

from the anode of a lithium-ion cell. The second material sample is a

powder of highly non-spherical TiO2 particles. The particles from both

samples are approximated by spherical harmonics, and important struc-

tural characteristics are calculated and compared.

Depending on the kind of application, it may be useful to split the

particle description into size, shape and rotation. Therefore, it should

be noted that, for spherical harmonics as described in this paper, the

description of shape is not rotation-invariant, which means that the de-

scription of a given object will change when the object is rotated. We

refer to [55], where rotation invariant descriptors are presented that are

based on spherical harmonics.

In a forthcoming paper, we will use the expansion in terms of spherical

harmonics for stochastic modeling of particulate materials with densely

packed particles, e.g., battery electrodes. As explained in the introduc-
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tion, this will allow us to match important structural characteristics ob-

served in experimental data, e.g., surface areas. The flexibility provided

by the spherical harmonics is central for this approach.
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