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cInstitute of Particle Process Engineering, University of Kaiserslautern-Landau (RPTU), Gottlieb-Daimler-Straße

74, Kaiserslautern, 67663, Rhineland-Palatinate, Germany

Abstract

Spray drying is a versatile technique for producing fine powders with controlled size and morphology.
This study investigates the impact of both feed rate and binder concentration on the morphology and
porosity of the spray-dried powder of nano-alumina and polyvinylpyrrolidone (PVP-30) granules.
Droplet size and velocity distributions, measured using HiWatch setup, indicated that higher feed
rates generate larger droplets with increased velocities, directly influencing the resultant three-
dimensional (3D) morphology of the dried product. The morphology of the dried granules was
analyzed using in-line SOPAT imaging. Off-line scanning electron microscopy (SEM) was also used
to characterize the morphology of the dried product, while pore volume and pore size of the granules
was quantified by mercury intrusion porosimetry. The results indicate that higher feed rates lead
to larger granules and larger pore volumes, whereas increasing the binder concentration yields a
more compact morphology with reduced pore volume. By understanding the relationship between
these process parameters and product characteristics, this research contributes to the optimization
of spray drying processes for the production of high-quality alumina–polymer nanocomposites.

Keywords: Spray drying, Optimization, Process-product relationship, Polymer composite,
Particle technology, Image processing, Parametric stochastic modeling

1. Introduction

Polymer nanocomposites possess a wide range of industrial uses, e.g., in biomedicine, phar-
maceuticals, electronics and ceramics [1, 2, 3]. In these materials, a polymer matrix is filled
with nano-particles [4, 5, 6] that enhance the mechanical, magnetic, electrical or optical prop-
erties [6, 7, 8, 9, 10, 11]. A key challenge in fabricating such composites is preventing the agglom-
eration of nano-particles, since van der Waals forces and other attractive interactions are relatively
strong at the nanoscale [7, 9, 10, 12, 13]. Over the years, various synthesis routes have been de-
veloped to achieve a homogeneous dispersion of nano-particles within polymers. These include:
(1) synthesizing nano-particles and polymers separately and then mixing them (e.g., in a melt
or solution), (2) in-situ generation of nano-particles within a polymer matrix, and (3) polymeriz-
ing monomers around dispersed nano-particles [7, 8, 14]. Each method has advantages; however,
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many fail to achieve uniform dispersion of nano-particles when incorporating high concentrations
of nano-particle fillers [8, 9, 12].

Spray drying is a process where a liquid containing dispersed solids is atomized into droplets
from a nozzle, leading to solidification through concentration increase in the presence of circulating
drying gas [15]. The atomization process of the liquid into droplets is one of the relevant factors
that affects the properties of the dried product [16]. Spray drying a polymer solution containing
pre-dispersed nano-particles has emerged as an effective method to create polymer nanocomposites.
In the process developed by Banert and Peuker [4], a solution of polymer and nano-particles is spray-
dried to produce a composite material with uniform nano-particle distribution. This method takes
advantage of a low-viscosity solvent to disperse nano-particles, with polymer molecules adsorbing
on nano-particle surfaces to provide steric stabilization against aggregation [9, 17]. The rapid
evaporation of the solvent in the spray dryer “freezes” the dispersed state, preventing nano-particle
agglomeration during solidification [8]. Previous studies have successfully applied this solution-
spray-drying approach to create polymer composites highly loaded with magnetite and other nano-
materials [18, 19].

Nano-alumina (nano-Al2O3) filled polymer composites have gained significant attention in recent
years due to their exceptional properties and applications. Such alumina-polymer nanocomposites
combine the high strength, thermal stability, and wear resistance of alumina with the flexibility and
process ability of polymers. They are being explored for uses in catalysis, battery electrodes, and
drug delivery, among others [20, 21, 22, 23, 24]. The spray drying method provides a promising route
to synthesize these nanocomposites, as it allows precise control over the dried product properties
such as size, morphology, and internal structure [25, 26, 27, 28]. However, systematic studies on
how spray drying process parameters affect the morphological and structural characteristics of dried
products are required to guide process optimization. A deeper understanding of these relationships
is essential for the effective application of model-based control strategies, which are central to our
research goal.

In this experimental study, we spray dry a suspension of nano-alumina and polyvinylpyrrolidone
(PVP-30) in water to produce alumina–polymer nanocomposite. The composite product material
is an granule formed from the primary alumina nano-particles with PVP-30 particles acting as
bridges. The focus of the experimental investigation is the examination of the effect of two critical
process parameters: (a) the feed rate (the liquid feed flow rate into the dryer) and (b) the binder
concentration (the mass fraction of PVP-30 in the liquid feed) on the resultant size, shape, and
porosity of the dried granules. All other process parameters are held constant to isolate the effects
of these two concerned parameters.

We employ an in-line imaging probe (SOPAT imaging system) to capture the granule morphol-
ogy, which has been used already to study particle morphologies and agglomeration [29, 30]. To
obtain detailed insights into the granule morphology, off-line characterization techniques are car-
ried out on the granules. High-resolution scanning electron microscopy (SEM) characterization is
conducted on the spray-dried product to visualize the rich structures of the granules, followed by
mercury intrusion porosimetry [31] to quantify the internal porosity of the dried granules. By corre-
lating the morphological observations from the in-line SOPAT data with the off-line porosity data,
we seek a deeper understanding of the relationship between feed rate and binder concentration,
granule size/shape, and pore volume/size.

This approach aligns with the growing trend towards model-based control of spray drying pro-
cesses [32, 33], where understanding the relationships between process parameters and product
characteristics is crucial for developing predictive models [34] and control strategies [35, 36]. In
particular, parametric stochastic modeling approaches have been deployed to derive interpretable
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relationships that allow for the predictive simulation of products [37, 38] at unseen scenarios, as well
as for the optimization of products by optimizing process parameters [39]. Such an approach can
dynamically predict and adjust process conditions in real-time, enabling the consistent production
of tailored particle properties for specific application requirements. Thus, our study contributes to
the understanding of spray drying process depending on the process parameters and establishes a
preliminary pathway towards automated and optimized control of such processes.

The present paper is structured as follows. Section 2 details the materials and methods employed
in the study, covering the characteristics of feed materials, the experimental spray drying setup, an
outline of all the spray drying experiments conducted in this investigation, the droplet characteri-
zation setup, image processing algorithms, and the definitions of size and shape descriptors utilized
for granule characterization. The section concludes with an introduction to the mathematical basis
of the parametric modeling and prediction analysis discussed later in Section 3.2. Section 3 presents
experimental results, including droplet characterization, granule size and shape descriptor distri-
butions, SEM analyses, and mercury intrusion porosimetry measurements. Specifically, the section
explores how variations in feed rate and binder concentration affect: (a) droplet size and velocity
distributions during atomization, (b) size and shape descriptor distributions of dried granules, and
(c) the pore volume and pore size distributions within the granules. A parametric statistical analy-
sis is applied to model granule size and shape descriptor distributions based on process parameters.
Section 4 provides an in-depth discussion of the experimental findings from Section 3, offering ex-
planations for observed phenomena based on fundamental physical principles and microstructural
observations. Finally, Section 5 summarizes the key findings and discusses their implications for
the optimized design and production of spray-dried alumina–polymer composites.

2. Material and methods

2.1. Feed material

The primary solid component used in the spray drying experiments was spherical alumina pow-
der (DENKA Alumina ASFP-20). These alumina nano-particles have a well-defined spherical mor-
phology and a solid, non-porous structure, as confirmed by SEM imaging of the raw, unprocessed
powder (Figure 1a). The absence of internal voids or surface cracks in the as-received particles en-
sures a uniform starting material, which is crucial for attributing any changes in morphology solely
to the spray drying process. To characterize the size of the alumina nano-particles, we performed
dynamic light scattering (DLS) measurements using a Sympatec Nanophox analyser. The DLS
measurements provided the particle size distribution in suspension. The empirical cumulative size
distribution and probability density distribution acquired by the DLS measurements are shown in
Figure 1b. It is important to note that Figure 1 represents a number-weighted distribution, meaning
each detected particle in the suspension contributes equally to the overall distribution. In other
words, the resulting cumulative or density distribution reflects the relative abundance of particles
of a given diameter, rather than emphasizing the mass or volume. The alumina nano-particles have
a median diameter (d50,0) of approximately 0.368µm and a modal diameter (dh,0) of 0.356µm.

In order to perform spray drying experiments, a liquid feedstock was prepared as an aqueous
suspension of the alumina nano-particles with dissolved PVP-30 as a binder. In a typical batch,
33.3 g of ASFP-20 alumina powder and 2.67 g of PVP-30 were mixed into 300mL of distilled water.
This corresponds to a solids content of 10 wt% alumina and 0.8 wt% PVP-30 in the suspension. The
PVP-30 acts as a polymeric binder which, after drying, helps to hold the alumina nano-particles
together in the composite. To investigate the influence of binder concentration, even further liquid
feedstocks were prepared with PVP-30 mass fractions of 0.4 wt%, 1.6 wt%, and 3.2 wt%, while
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keeping the alumina content fixed at 10 wt%. Each feedstock was freshly prepared before every
experimental case listed in Section 2.3 to ensure consistency and to avoid any effects of aging or
sedimentation.

(a) (b)

Figure 1: a) SEM micrograph of ASFP-20 alumina nano-particles; (b) Number-weighted cumulative distribution
function (blue) and probability density function (red) of particle size obtained from DLS measurements.

2.2. Experimental setup

The BÜCHI B-290 Mini Spray Dryer, a laboratory-scale instrument, was employed for conduct-
ing the spray drying experiments. This particular instrument features a standard two-fluid nozzle,
characterized by a diameter of 0.7mm and a nozzle cap diameter of 1.4mm, which facilitates the
efficient atomization of the liquid feed into fine droplets.

The atomization process utilizes compressed air, functioning as the spray gas, with adjustable
flow rates ranging from 200L h−1 to 800L h−1 and operating pressures between 5 bar and 8 bar.
This inherent flexibility in the system allows for control over the formation of droplets and their
corresponding size distribution.

The drying gas, typically air, is heated to a maximum inlet temperature of 220 ◦C, which is
accurately measured by a PT-100 thermocouple with a control accuracy of ±3 ◦C, ensuring consis-
tent thermal conditions for effective drying. The evaporative capacity of the instrument is rated
at 1 L h−1 specifically for water. The aspirator component is responsible for generating the drying
gas flow, with a maximum airflow capacity of 35m3 h−1, providing sufficient residence time, ranging
from 1 s - 1.5 s, for the droplets to undergo complete drying within the chamber.

The liquid feedstock is introduced into the nozzle by means of a peristaltic pump, which offers
adjustable flow rates up to 30mLmin−1. The BÜCHI B-290 Mini Spray Dryer incorporates an
integrated cyclone separator positioned at the outlet of the drying chamber, efficiently collecting
the dried product and minimizing any potential product loss. The transparent glass assembly of
the instrument provides visual access to the spray drying process, facilitating real-time monitoring
and adjustments during operation. A labeled view of the entire experimental setup, including the
attached SOPAT imaging probe, is illustrated in Figure 2.

2.3. Conducted spray drying experiments

Using the materials and setup described above, we performed a series of spray drying experiments
to systematically study the effect of feed rate and binder concentration. Four experiments were
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conducted with varying feed rates (referred to as ”F series”) while keeping the binder concentration
constant at 0.8 wt% (PVP-30) and all other operating parameters fixed (as listed in Table 1). These
experimental cases are labeled F1B2, F2B2, F3B2, and F4B2, corresponding to feed flow rates of 11,
14, 17, and 20 mLmin−1, respectively. In each experimental case, the atomization pressure (5 bar),
spray gas flow (742L h−1), inlet temperature (220 ◦C) and drying gas flow (35m3 h−1) were held
constant. By comparing the experimental cases of the F series, the isolated impact of increasing
feed rate on the product properties can be observed.

Figure 2: Photograph of the spray drying setup with the integrated SOPAT in-line imaging probe.

Next, to examine the influence of binder concentration, three additional experiments were carried
out at the lowest feed rate (11mLmin−1) while varying the PVP-30 concentration (referred to as
”B series”). These cases are labeled F1B1, F1B3, and F1B4, which used 0.4 wt%, 1.6 wt%, and
3.2 wt% PVP-30 (by mass), respectively. All other process parameters in F1B1, F1B3, and F1B4
were identical to the process parameters of the F series experimental cases (see Table 1) so that the
effect of the binder fraction on the product properties could be isolated.

Each experimental case was performed with a fresh batch of liquid feedstock and ran until
enough product was collected for analysis (several grams of dried powder). The in-line SOPAT
imaging was conducted during each spray run to capture images of the granules under steady-state
conditions (after drying), and samples of the powder were later taken for porosity measurements.
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Table 1: Summary of spray drying experimental conditions (fixed parameters and variable settings). The experi-
mental cases denote feed rate (F1=11, F2=14, F3=17, F4=20 mLmin−1) and binder concentrations (B1=0.4 wt%,
B2=0.8 wt%, B3=1.6 wt%, B4=3.2 wt%).

Process parameters
F series B series

F1B2 F2B2 F3B2 F4B2 F1B1 F1B3 F1B4
Atomization pressure [bar] 5 5 5 5 5 5 5
Spray gas flow rate [L h−1] 742 742 742 742 742 742 742
Inlet temperature [◦C] 220 220 220 220 220 220 220

Drying gas flow rate [m3 h−1] 35 35 35 35 35 35 35
Feed flow rate [mLmin−1] 11 14 17 20 11 11 11

PVP-30 concentration [wt%] 0.8 0.8 0.8 0.8 0.4 1.6 3.2

2.4. Off-line droplet imaging setup

In order to link the spray drying conditions to the resulting product formation, it is important
to first understand how the liquid feed breaks up into droplets under different feed rates and
binder concentrations. Therefore, we employed an optical spray characterization system (Oseir Ltd.
HiWatch HR2) to measure the droplet size and velocity distributions in the spray. This system was
used independently of the B-290 dryer (on a separate setup) to replicate the atomization conditions
and gather detailed droplet data.

The HiWatch HR2 system uses a backlight illumination and a high-speed camera to capture
images of droplets, applying a particle tracking velocimetry (PTV) technique. A multi-pulse laser
illumination during a single camera exposure creates multiple faint “shadow” images of each droplet
in motion. In essence, each droplet appears as a series of three closely spaced silhouettes (a shadow-
ing triplet) in the image, corresponding to successive laser pulses. By detecting these triplets, the
system can determine an individual droplet’s velocity (from the spacing of the silhouettes) and size
(from the size of the silhouettes) simultaneously [40] – an approach termed as sizing PTV (S-PTV).

A schematic of the HiWatch optical setup is shown in Figure 3. The HiWatch is capable of
sizing droplets down to 5 µm in diameter. For our measurements, the laser was configured to emit
a train of three pulses with a fixed interval of 25 ns between pulses. This produced the shadow
triplets needed for velocity calculation. We adjusted the pulse frequency and camera exposure
such that droplets with velocities up to the expected maximum could be accurately tracked. Each
measurement was conducted for 120 s to 240 s, capturing spray data (depending on when a sufficient
number of droplet images was collected). All droplet measurements were performed at a position
50mm below the nozzle.

To extract quantitative data, the raw images from the HiWatch system underwent a processing
algorithm provided by the manufacturer. First, a pre-processing step removed background noise
(e.g., static reflections) to enhance the triplet detection. Then, the software identified groups of three
collinear droplet shadows and linked them as triplets based on consistent spacing. Any spurious
or overlapping signals that could not be unambiguously assigned to triplets were filtered out via
morphological operations and autocorrelation analysis. This ensured that only true droplet signals
were used for calculating velocities. The outcome of this procedure is a set of droplet diameters
and velocities for each condition tested.

To characterize the droplet size and velocity distributions, we applied Gaussian kernel density
estimation (KDE) to each dataset, which is a non-parametric method for estimating a probability
density function (PDF) of a random variable [41]. We then integrated the resulting PDFs to obtain
the corresponding cumulative distribution functions (CDFs). These droplet size and velocity distri-
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Figure 3: Schematic illustration of the HiWatch droplet imaging system setup.

butions (see Section 3.1) subsequently guided our interpretation of granule formation, as discussed
in Section 3.2.

However, it should be noted that there are practical limits to the conditions we could measure.
At higher feed rates or high binder concentrations, the spray becomes so dense that the HiWatch
measurements are not reliable. In such regimes, the overlapping of droplet images (due to high
number density and turbulence in the spray cone) makes it challenging for the S-PTV system to
distinguish individual droplets. One can attempt to mitigate this by increasing the distance between
the measurement zone and the nozzle, while focusing the laser beam on the edge of the spray plume,
where droplet density is lower. However, the measurement region of the HiWatch has a maximum
horizontal length of 8mm that limits the vertical distance between the measurement zone and the
nozzle since the spray cone cross-section increases as the vertical distance increases below the nozzle.
Moreover, for the extreme case of very high feed rate and high binder concentration, quantitative
droplet data cannot be obtained because of pervasive signal overlap and clustering of droplets.
These constraints highlight the complex interplay of feed rate and liquid properties (viscosity, solids
content) in two-fluid nozzle atomization. In dense sprays, multiple droplet interactions and rapid
coalescence or trajectory perturbations can occur, complicating the measurement.

2.5. In-line granule imaging setup

To observe the dried granules produced in the spray dryer, we utilized an in-line imaging probe
”SOPAT PL” from SOPAT GmbH. The in-line camera system features a long, immersible shaft
with a diameter of 12mm, which was inserted directly into the collection vessel beneath the cyclone
(as illustrated in Figure 2) to capture in situ images of the granules after drying. The camera tip is
equipped with a sapphire lens, ensuring durability against the abrasive alumina nano-particles. A
rhodium reflector can be positioned at a distance ranging from 1 µm to 1000 µm from the camera
lens. The combination of this reflector and the built-in strobe provides uniform illumination of the
granules. Optimal image quality is achieved when the reflector is placed close to the lens. However,
for certain material systems, a larger reflector-lens distance is preferable to prevent granules from
obstructing the field of view and to accommodate larger objects. In this study, the distance between
the reflector and the lens was maintained at approximately 1mm.

The probe features a microscopic optics system with a diagonal field of view of 800µm, capable
of resolving granules in the approximate size range of 2 µm to 300µm. Consequently, the SOPAT
camera is expected to primarily capture granules formed after drying, rather than the individual
primary alumina nano-particles, which are likely too small to be effectively observed.
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The imaging conditions for the SOPAT probe are summarized in Table 2. The camera captured
8-bit monochrome images at a resolution of 2464×2056 pixels. With a calibrated spatial conversion
factor of 0.2464µm/pixel, this setup provides a scaling to enable accurate conversion from pixel
measurements to real granule dimensions. To obtain a statistically significant size distribution at a
given time t, a single image is insufficient. Instead, 100 images were acquired per measurement point
at a constant frame rate of 20Hz. The selection of the frame rate is crucial and must be adapted
to the velocity of the granules being captured. If the frame rate is too high, the same granule may
appear in multiple frames, potentially biasing the statistical analysis and leading to inaccuracies
in the derived size distribution. The focus was adjusted to approximately 100µm in front of the
probe lens, optimizing clarity for granules at that distance. By collecting a series of images from
this probe for each experimental run, we obtained datasets for image analysis to determine granule
size and shape descriptor distributions (using the descriptors defined in the following Section 2.6).

Table 2: Image capture specifications for the SOPAT in-line granule imaging probe.

Image format Monochromatic 8-bit
Image dimensions [pixels×pixels] 2464 × 2056

Frame rate [Hz] 20
Conversion factor [µm/pixel] 0.2464

Focus position [µm] 99.8629
Strobe intensity [%] 100
Exposure time [µs] 6400

Reflector distance [µm] 1000

2.6. Size and shape descriptors of granules

To quantitatively characterize the size and shape of the dried granules, we consider two key size
and shape descriptors derived from two-dimensional (2D) image analysis of SOPAT images:

1. Maximum Feret diameter (dFmax) – the longest distance between two parallel lines tangential
to the 2D silhouette of the granule as observed in the imaging plane. It provides an estimate
of the granule’s largest dimension in the image plane. Formally, it is defined as

dFmax = maxθ∈[0,π)dF(θ), (1)

where dF(θ) > 0 represents the distance between two distinct parallel lines at an angle θ to
the x-axis that are tangents of the granule’s 2D silhouette.

2. Aspect ratio (ΨA) – the aspect ratio is defined as the ratio of the minimum Feret diameter
to the maximum Feret diameter (dFmax) of the granule, where the minimum Feret diameter
dFmin

is given by Eq. (1), by substituting maxθ∈[0,π) by minθ∈[0,π). Then the aspect ratio ΨA

is then given by

ΨA =
dFmin

dFmax

. (2)

Note that the aspect ratio is a dimensionless number between 0 and 1 that indicates the
compactness or elongation. An aspect ratio of 1 indicates a compact shape (equal length and
width), whereas values significantly less than 1 indicate an elongated 2D silhouette.

A schematic representation of the minimum and maximum Feret diameters is shown in Figure 4
for an irregularly shaped solid. These two descriptors (dFmax and ΨA) together provide a simple but
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effective characterization of the granule’s morphology. In subsequent analysis, we will use them to
compare the effects of different process parameters (feed rate and binder concentration) on the size
distribution and shape uniformity of the granules.

Figure 4: Schematic representation of the minimum and maximum Feret diameters for an irregularly shaped solid.

2.7. In-line image processing pipeline

The raw images of dried product from the SOPAT probe were analyzed through an image pro-
cessing pipeline to detect the granules and measure their descriptors (dFmax and ΨA). An example
illustrating the key steps of this pipeline is provided in Figure 5. First, each raw image (Figure 5a)
is loaded along with the calibrated pixel-to-micron conversion factor from the automatically gen-
erated log-file during image acquisition. To enhance granule visibility, we apply local background
subtraction. To do so, for each image, a background intensity image is estimated (precisely, by
taking a moving median filter over a 2D neighborhood of 51×51 pixels around each pixel) that is
then subtracted from the original image [42]. This operation improves clarity by removing uneven
illumination and static artifacts, making the granules stand out. Then, we then perform contrast-
limited adaptive histogram equalization (CLAHE) to further enhance image contrast [43]. CLAHE
operates on small regions (tiles) of the image, equalizing the histogram within each tile but limiting
the contrast amplification to avoid noise enhancement. This technique is particularly useful for
bringing out faint edges of granules without over-saturating noise in dark areas. We also apply a
bilateral filter [44] to reduce high-frequency noise while preserving the edges of the granules. The
bilateral filter replaces each pixel with a weighted average of its neighbors, where weights depend
on both spatial proximity and intensity similarity. After these steps (illustrated in Figures 5b–c),
granules appear much clearer against the background.

The pre-processed image is then converted to a binary (black-and-white) image to segment
the granules. We use Otsu’s global thresholding method [45] to automatically choose an intensity
threshold that separates foreground (granules) from background. Pixels above the threshold are set
to white (granule) and below to black (background). This yields an initial binary mask (Figure 5d).
Next, we apply morphological operations to clean up the segmentation. In particular, we use a
morphological opening operation (erosion followed by dilation) to remove tiny white specks (noise)
and to smooth the boundaries of granule regions. The result is a refined binary image where each
white region corresponds to an granule (Figure 5e).

Finally, connected-component labeling is performed on the binary image to identify individual
regions. Each region is considered to be one detected granule (Figure 5f). For each region, we
compute the size and shape descriptors: the maximum Feret diameter dFmax and aspect ratio ΨA,
as defined in Section 2.6.
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We intentionally kept this segmentation algorithm straightforward and computationally light
so that it could be used to process in-line measurements in near real-time. Despite its simplicity,
the algorithm achieved high accuracy in identifying the granules correctly and then calculate their
size and shape. We validated the image analysis by manually hand-labeling a subset of granules
(see, for example, Figures 5g-i) and comparing the descriptors computed for hand-labeled and
algorithmically segmented granules, see Table 3. This level of accuracy was deemed sufficient for
reliable analysis of trends in granule size and shape.

Figure 5: Example of granule detection workflow from SOPAT images: (a) raw image, (b) after background removal,
(c) contrast enhancement and bilateral filtering, (d) Otsu thresholding, (e) morphological operations, (f) final granule
detection, (g) zoomed-in view of raw image section, (h) corresponding zoomed-in detected granules, and (i) manual
labeling of granules from image (g). The overall contrast and sharpness of the images (a-c) was increased by 20%
and 100%, respectively, for the sake of better visibility in this paper.

Table 3: Segmentation validation for three example granules, comparing hand-labeled (HL) measurements vs. auto-
mated (AL) image analysis.

Label dFmax (HL) [µm] dFmax (AL) [µm]
1 4.99 4.99
2 4.35 4.16
3 3.25 3.08

Label ΨA (HL) [-] ΨA (AL) [-]
1 0.79 0.79
2 0.66 0.63
3 0.72 0.68
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2.8. Parametric modeling and prediction of descriptor distributions

We employ parametric modeling to allow for the straightforward and easy comparison of granule
descriptor distributions measured for different experimental cases. For that let A1, . . . , An ⊂ R, n >
1 be the (finite) data sets of granule descriptors measured in processes with parameters z1, . . . , zn ∈
R. By considering a parametric family of probability densities {fθ, θ ∈ Θ} and fitting densities
fθ1 , . . . , fθn : R → [0,∞) to these data sets, we achieve a low-dimensional representation of the data
sets in terms of the model parameters θ1, . . . , θn ∈ Θ ⊂ Rm for some integer m ≥ 1. This low-
parametric representation offers several advantages over non-parametric techniques, such as KDEs,
which are simple to implement and do not require any assumption on the data. However, parametric
modeling provides some key advantageous, such as interpretability, dimensionality reduction and
computational efficiency. These benefits are especially important in applications like on-line process
monitoring. By determining a functional relationship between the process parameters z1, . . . , zn ∈ R
and the model parameters θ1, . . . , θn ∈ Θ by means of regression, we can predict model parameters,
and thus descriptor distributions, for not yet conducted experiments.

For a given family of parametric probability densities {fθ, θ ∈ Θ}, the optimal parameters
θ∗1, . . . , θ

∗
n associated with the process parameters z1, . . . , zn can be determined by means of maxi-

mum likelihood estimation [46]. Therefore, we consider the likelihood function L : Θn → R which
is given by

L(θ1, . . . , θn) =
n∏

i=1

∏
x∈Ai

fθi(x), (3)

for any θ1, . . . , θn ∈ Θ. Then, the optimal parameter values θ∗1, . . . , θ
∗
n ∈ Θ can be determined by

maximizing the likelihood function considered in Eq. (3), L, i.e.,

(θ∗1, . . . , θ
∗
n) = argmax

(θ1,...,θn)∈Θn

L(θ1, . . . , θn). (4)

When considering more than one parametric family of probability densities, the family leading to the
best fit can be identified by choosing the family that yields the largest likelihood value L(θ∗1, . . . , θ∗n),
i.e., the family for which the value of max

(θ1,...,θn)∈Θn
L(θ1, . . . , θn) is highest.

For predicting the probability density of the descriptor under consideration for a process with
process parameter z for which no data were acquired yet, we utilize a parametric regression function
g : R → Θ, which maps the process parameter z ∈ R to a model parameter θ = g(z) ∈ Θ of the
desired probability density fg(z). In the present paper we consider a linear regression function g
given by

g(z) = a · z + b, (5)

for each z ∈ R, where a, b ∈ Rm are parameters that have to be fitted to data. More precisely,
optimal parameter values a∗, b∗ ∈ Rm are determined by means of a mean-squared error-based
regression between z1, . . . , zn and θ∗1, . . . , θ

∗
n, i.e.,

(a∗, b∗) = argmin
a,b∈Rm

1

n

n∑
i=1

(g(zi)− θ∗i )
2. (6)
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3. Experimental Results

In the following, we present the experimental results obtained for the process scenarios outlined
in Section 2.3. The findings are organized as follows: we first examine the droplet characteris-
tics (Section 3.1), then analyze the distributions of size and shape descriptors for dried granules
(Section 3.2), including statistical modeling of the distributions. This is followed by a discussion
of qualitative observations from SEM imaging (Section 3.3) and, finally, a quantitative analysis of
porosity (Section 3.4). This structure allows us to build a comprehensive understanding from the
spray formation through to the final product properties.

3.1. Droplet size and velocity distribution

To understand the influence of feed rate and binder concentration on the atomization process,
we first analyzed the size and velocity distributions of the droplets produced by the two-fluid nozzle
under different values of the concerned process parameters. Using the HiWatch S-PTV system,
already described in Section 2.4, we obtained droplet data for selected representative experimental
cases: a low feed rate with low binder (F1B1), a low feed rate with high binder (F1B2) and a high
feed rate with high binder (F2B2). It was not possible to obtain analyzable data for the other
experimental cases with higher feed rate or binder concentrations due to the signal overlapping
constraint discussed in Section 2.4. The resulting PDFs and CDFs are plotted in Figure 6 for the
size and velocity, respectively.

(a) PDF size (b) PDF velocity (c) CDF size (d) CDF velocity

Figure 6: PDFs and CDFs for droplet size (a,c) and velocity (b,d) from HiWatch measurements.

Droplet size. All three tested cases exhibit a unimodal droplet size distribution (Figure 6a).
However, there are shifts in the distribution depending on feed rate and binder content. At a con-
stant low feed rate (F1 series), the case with lower binder concentration (F1B1) produced droplets
that are, on average, smaller than those with a higher binder content (F1B2). The peak of the
probability density of the droplet size for F1B1 (in red) is located at a larger diameter than that
of F1B2 (in blue), but F1B1 exhibits a steeper drop-off at larger diameters. Additionally, while
F1B2 (0.8 wt% binder) has a more pronounced tail for larger droplets (> 25 µm), F1B1 (0.4 wt%
binder) shows a distribution that is more concentrated around its peak. This trend is confirmed
by the cumulative size distribution functions (Figure 6c). The CDF for F1B1 lies to the left of
F1B2, indicating that percentiles for the droplet size are smaller for F1B1. For example, the me-
dian droplet diameter (50th percentile) is smaller in F1B1 than in F1B2. Thus, reducing the binder
concentration (at low feed rate) tends to yield generally smaller droplets.

Increasing the feed rate while keeping binder the same has the opposite effect. Comparing F2B2
(in green) (high feed rate, 0.8 wt% binder) to F1B2 (in blue) (low feed rate, 0.8 wt% binder),
we observe that the droplet size distribution for F2B2 is shifted towards larger diameters. The
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probability density for F2B2 indicates a large variance with a noticeable tail towards large droplets,
and its cumulative distribution function is located to the right of F1B2, indicating a larger median
droplet size for the F2B2 case. In our measurements, the median droplet diameter increased under
higher feed rates (F2B2) in comparison to lower feed rates (F1B2).

Droplet velocity. The droplet velocity data (Figures 6b and 6d) show trends associated with
both feed rate and binder concentration. At low feed rate (F1), the lower binder case (F1B1)
produced notably higher droplet velocities than the higher binder case (F1B2). The probability
density of droplet velocity for the F1B1 case is shifted towards larger values compared to F1B2,
and the corresponding cumulative distribution function shows that higher velocities are reached for
the F1B1 case (its function is to the right of F1B2). This suggests that for low binder contents
(and thus for lower viscosities of the liquid and possibly for lower surface tensions), the droplets
emerge from the nozzle with greater speed. When the feed rate is increased (F2B2 vs F1B2, both
at 0.8 wt% binder), we also see an increase in droplet velocity. The F2B2 condition yields higher
velocities on average than F1B2, as evidenced by the probability density of droplet velocity being
shifted rightward for the F2B2 case. Moreover, the cumulative distribution functions lies to the
right for higher velocities, i.e., in comparison to the F1B2 case. The nearly monotonous trend
observed in the cumulative distribution functions of droplet velocities suggest that F2B2 droplets
are the fastest, followed by F1B1, and then F1B2. This hierarchy indicates that both a higher feed
rate and a lower binder concentration can contribute to higher droplet exit velocities.

These trends observed from the droplet analysis provide valuable insight. They confirm that feed
rate and binder concentration influence the initial droplet size/velocity, which in turn is expected
to impact the product, namely, the resulting dried granules. In the following sections, we connect
these findings to the properties of the dried granules. Larger and slower-evaporating droplets (from
high feed rates) should yield larger dried granules with potentially more internal voids, whereas
smaller, faster-drying droplets (from low feed or low binder) should produce smaller, more solid
granules. The next section examines the actual size and shape descriptor distribution of the dried
granules to verify these relationships.

3.2. Distributions of granule size and shape descriptors

Once the drying process was completed, the resulting granules were examined in terms of size and
shape using the descriptors (stated in Section 2.6) derived from in-line SOPAT images. Figure 7a
shows the number-weighted CDFs of granule size (as represented by dFmax) for the four different feed
rates in the F series (all at 0.8 wt% binder content). The CDFs were calculated in the same way
as the CDFs for the droplet size and velocity, i.e. by integrating the PDFs obtained by applying
Gaussian KDE. Figure 7b presents the number-weighted CDFs of the maximum Feret diameter
distribution functions for the different experimental cases of the B series.

The characteristic percentile values (d10,0, d50,0 and d90,0) extracted from these CDFs for both
the F series (varying feed rate) and the B series (varying binder concentration) are summarized in
Table 4.

For the F series, increasing the feed rate from F1B2 to F4B2 leads to a systematic increase in
granule size across all three characteristic percentiles. Specifically, the median granule size (d50,0)
increases from approximately 3.76 µm (F1B2) to 5.42 µm (F4B2), with similar trends observed at
the 10th and 90th percentiles. This indicates that higher feed rates consistently shift the granule
size distribution toward larger sizes.

Similarly, for the B series, increasing the binder concentration from F1B1 to F1B4 at a con-
stant feed rate also increases the granule size substantially. The median size (d50,0) increases from
3.65 µm (F1B1) to 5.35 µm (F1B4). Again, this growth trend is consistently observed at the lower
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(a) F series (b) B series

Figure 7: CDFs of dFmax for F series (a) and B series (b) of experimental cases.

(10th) and upper (90th) percentiles. Thus, higher binder content promotes larger granule formation,
demonstrating that both feed rate and binder concentration independently play significant roles in
influencing the size distribution of spray-dried granules.

Table 4: Characteristic percentile values (d10,0, d50,0 and d90,0) from the CDF of dFmax
for F series and B series.

F series B series
F1B2 F2B2 F3B2 F4B2 F1B1 F1B3 F1B4

d10,0 [µm] 3.11 3.26 3.57 4.07 2.87 3.36 4.26
d50,0 [µm] 3.77 4.23 4.85 5.42 3.65 4.49 5.35
d90,0 [µm] 5.16 6.06 6.97 7.69 5.34 6.84 7.82

In the rest of this section, we will deploy parametric modeling in order to further quantify the
influence of process parameters on the distribution of granule size and shape descriptors.

Parametric modeling. We applied the parametric modeling approach from Section 2.8 to
model the distributions of the maximum Feret diameter dFmax and the aspect ratio ΨA for both the
F series and B series. Specifically, we ran the optimization procedure stated in Eq. (4) four times
to fit parametric PDFs to measured maximum Feret diameters across all cases in the F series and
the B series. The same procedure was applied to model the distribution of measured aspect ratio
ΨA along the experimental cases of the F series and B series.

As candidates for the parametric families of distributions, we considered the normal, lognormal,
beta, gamma, and Student’s t-distributions [47]. The distribution of the maximum Feret diameter
dFmax was best approximated by lognormal distributions, which are commonly used for particle sizes
due to their non-negativity and right-skewness. In contrast, the distribution of the aspect ratio ΨA

was best represented by normal distributions. Recall that the probability density fθ : R → [0,∞)
of a normal distribution is given by

fθ(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
, (7)

for each x ∈ R, where θ = (µ, σ) ∈ R×(0,∞) is its two-dimensional parameter vector. Furthermore,
the probability density fθ : (0,∞) → [0,∞) of a lognormal distribution is given by

fθ(x) =
1

(x− c)σ
√
2π

exp

(
−(log(x− c)− µ)2

2σ2

)
(8)
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for x > c, and fθ(x) = 0 for x ≤ c, where θ = (µ, c, σ) ∈ R2 × (0,∞) is its three-dimensional
parameter vector.

Figure 8 provides a visualization of the fitted normal and lognormal probability densities. The
corresponding values of their parameters are shown in Table 5. For the F series we see a clear shift of
the PDF for dFmax toward larger diameters as the feed rate increases. The variances of the probability
distributions of dFmax increase with the feed rate, reflecting less uniform drying of larger droplets,
and thus larger range of maximum Feret diameters. In contrast, the fitted probability distributions
of ΨA remain centered around the same mean (≈ 0.8) for varying feed rate (F series). A value of
0.8, indicates near-compact shapes for all feed rates, though there is a slight increase in the spread
of ΨA at the highest feed rate. This suggests that at high feed rates, while most granules are still
roughly compact, a few more irregular shapes appear, widening the shape descriptor distribution a
bit. When considering variation in binder concentration, we also observe an increase of maximum
Feret diameters (see Figure 8c) with increasing binder concentration (B series). Interestingly, for
the binder variation, the variance of the aspect ratio distribution (see Figure 8d) did not increase
– in fact, high binder experimental cases had similar ΨA variance as low binder, but a higher mean
ΨA. In other words, higher binder made all granules a bit more compact uniformly (likely because
the polymer content can form smooth coatings), rather than introducing more variability in aspect
ratios. This is in contrast to the feed rate effect, where high feed increased the variability of aspect
ratios slightly (perhaps due to some irregular drying outcomes).

(a) Maximum Feret diameter (b) Aspect ratio (c) Maximum Feret diameter (d) Aspect ratio

Figure 8: PDFs of the fitted lognormal and normal distributions for granule size dFmax
(a) and aspect ratio ΨA (b)

for F series, and corresponding PDFs of the fitted lognormal and normal distributions for B series (c,d).

Table 5: Model parameter values of fitted distributions for dFmax
and ΨA.

dFmax ΨA

µ σ µ σ c
F1B2 0.188 0.592 2.563 0.712 0.072
F2B2 0.520 0.577 2.487 0.711 0.075
F3B2 1.032 0.455 2.031 0.712 0.078
F4B2 1.037 0.471 2.572 0.707 0.086
F1B1 0.315 0.597 2.249 0.665 0.085
F1B3 0.687 0.594 2.476 0.679 0.085
F1B4 0.579 0.652 3.523 0.714 0.085

Prediction of descriptor distributions. By applying the regression procedure described in
Section 2.8 to the F series and B series, we can predict the probability densities of descriptors for
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process parameters, for which no measurements have been conducted yet. For both series and both
considered granule descriptors dFmax and ΨA, we fit the regression function g (see Eqs. (5) and (6))
to capture the relationship between the process parameters z (the feed rate in the F series and the
binder concentration in the B series) and the model parameters θ of the corresponding probability
densities of the conducted experiments. The resulting fit of the linear regressions can be observed
in Figure 9 and Table 6. A high degree of agreement between the fitted regression lines and the
model parameters can be observed.

With the fitted regression functions, we can predict the distribution of dFmax and ΨA for interme-
diate feed rates or binder concentrations that we did not experimentally measure. More precisely,
the regression function fitted to the data set belonging to the F series can be utilized to predict
the model parameters of the distribution of dFmax and ΨA for processes with arbitrary feed rate in
z ∈ [11, 20] and a fixed binder concentration of 0.8 wt%, whereas the regression functions fit to the
B series can be utilized to predict the model parameters of the distribution of dFmax and ΨA for
arbitrary concentrations z ∈ [0.8, 3.2] and a fixed feed rate of 11mLmin−1 . By inserting the pre-
dicted model parameters θ = g(z) into Eqs. (7) and (8), we acquired predictions for the probability
densities of granule descriptors, for which possibly no measurements have been conducted yet.

(a) (b) (c) (d)

Figure 9: Regression of model parameters for the lognormal distribution (a,c) and the normal distribution (b,d),
where (a, b) correspond to F series, and (c, d) to B series.

Table 6: Regression parameter values of fitted functions.

dFmax ΨA

µ σ µ σ c

F series
a 0.102 -0.016 -0.014 0.000 0.002
b -0.886 0.774 2.636 0.718 0.054

B series
a 0.085 0.020 0.466 0.018 0.000
b 0.379 0.579 1.942 0.6558 0.085

Before showing exemplary resulting predicted probability densities, we examine the linear cor-
relation between the granule descriptors dFmax and ΨA. To quantify this, we consider the empirical
Pearson correlation coefficients (EPCC), which is given by

EPCC(x, y) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (9)
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where x and y are the means of the xi and yi values, respectively. In this case, xi and yi represent
the maximum Feret diameter and aspect ratio of the i-th granule, respectively, from the SOPAT
images. For the experiments F1B2, F2B2, F3B2, F1B1, F1B3, and F1B4, the EPCC has values
close to 0 (EPCC < 0.02), indicating little to no linear correlation between the two descriptors.
The observed near-zero EPCC values suggest that the size of the granules, as measured by dFmax ,
provides little information about their shape, as measured by ΨA, and thus, for simplicity we will
neglect any modeling of their dependency.

Figure 10 displays the joint predicted probability densities for the maximum Feret diameter
and aspect ratio, which are assumed to be independent random variables, for process parameters
where no experimental data have been collected yet. In particular, in Figure 10 (middle column),
these probability densities are shown for a feed rate of 12.5mLmin−1 and a binder concentration
of 0.8 wt% (top row) as well as a feed rate of 11mLmin−1 and a binder concentration of 2.4 wt%
(bottom row). Furthermore, Figure 10 shows the fitted densities for the experiments F1B2, F2B2,
F1B3 and F1B4, along with their respective measured granule descriptors. Recall that the process
parameters of these processes are shown in Table 1. The figure shows a high agreement of the fitted
parametric probability densities with the displayed measured granule descriptors. Furthermore, in
Figure 10, in both rows, a clear and desired shift in the location and variance of the distributions
can be observed from left to right.

Figure 10: Bivariate descriptor distribution. The (parametric) bivariate distributions are shown as contour plots,
together with corresponding measured data. The top row shows the effect of varying feed flow rates, whereas the
bottom row shows the effect of varying binder concentrations. The red contours (middle column) arise from parameter
interpolation for a feed rate of 12.5mLmin−1 and a binder concentration of 0.8 wt% (top row) as well as a feed rate
of 11mLmin−1 and a binder concentration of 2.4 wt% (bottom row). Recall that we assumed independence of the
maximum Feret diameter and aspect ratio when modeling their bivariate distribution.
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In summary, we observed that the feed rate strongly controls the maximum Feret diameter
distribution of granules (with higher feed rates yielding higher expected values and variances),
while binder concentration influences both, the size and shape of the granules. In the following
section, we will look into the inner structure of the granules using SEM.

3.3. SEM imaging of dried granules

To complement the in-line optical measurements, we examined the dried granules using off-line
high-resolution SEM, which provides direct visual evidence of granule morphology and can reveal
internal structural features (like hollow cores or pores) from broken granules. Figure 11 shows SEM
images of granules produced in two experimental cases: F1B2 (low feed rate, 0.8 wt% binder) and
F2B2 (high feed rate, 0.8 wt% binder), each imaged at two different magnifications.

(a) (b)

(c) (d)

Figure 11: SEM images of spray-dried granules at two different feed rates: (a, b) low feed rate (F1B2), and (c, d)
high feed rate (F2B2).

The SEM images confirm that the spray drying process produced composite granules consist-
ing of alumina nano-particles dispersed in a PVP-30 matrix. The granules exhibit a variety of
morphologies, predominantly spherical or near-spherical shapes, along with notable instances of
doughnut-shaped granules and granules containing visible hollow cavities or surface depressions. In
the lower-magnification views, F1B2 and F2B2 both show mostly individual spherical granules of a
few microns in size.

At higher magnification, differences become apparent. Many granules have a doughnut-like
morphology (ring-shaped or with a central pit). A fractured granule also reveals internal cracks
and pores, indicating a porous interior structure. These features likely arise from the dynamics
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between solvent evaporation and granule redistribution during the final stages of drying, discussed
in detail in Section 4.4 below. Some granules, by contrast, exhibit relatively smooth surfaces
and appear more solid. These observations collectively demonstrate the morphological variations
ranging from uniformly dense to hollow and cracked porous structures, motivating a quantitative
analysis of granule pore volume and pore size using mercury intrusion porosimetry, as discussed in
the following section.

3.4. Granule porosity analysis

The 3D volume of pore space was measured using the PASCAL 440 (Thermo Fisher Scientific
GmbH) mercury porosimeter for selected experimental cases to investigate how feed rate and binder
concentration affect the pore structures. Measurements focused on samples produced at different
feed rates under a constant binder concentration (F1B2 – F4B2) and on samples with varying binder
concentrations (F1B1 and F1B2). For each measurement, a sample with a certain mass of the dried
granules (msample) was taken and mercury was pressed into the sample. The sample was first sub-
jected to an intrusion cycle from atmospheric pressure (101 325Pa ≈ 0.1MPa) up to 100MPa. As
the pressure increases, more mercury is forced into the pore space of the sample. The instrument
sums up how much mercury has been intruded (Vintruded) at each pressure step, giving a total in-
truded volume for each pressure. After reaching 100MPa, the pressure was released to 10MPa.
A second intrusion cycle then increased the pressure from 10MPa to 400MPa. Figure 12a shows
the resulting specific volume of mercury intruded (normalized by the mass, Vintruded/msample) as a
function of the applied pressure for the experimental cases mentioned above, where the intrusion-
extrusion-intrusion cycle can be observed. A steep jump at relatively low pressure implies that the
samples have a high fraction of macro-pores, which mainly are pores between individual granules.
However, we are interested in the nano-pores (in the range of 10 nm - 150 nm) within the gran-
ules. By assuming that the pores behave like cylindrical capillaries, we can compute pore sizes
corresponding to given pressures by means of the Washburn equation [48], which is given by

rP = −2γ cos θ

P
, (10)

where rp is the pore radius corresponding to the applied pressure p, γ (= 480 nNm−1) is the surface
tension of mercury, θ (= 140◦) is the wetting angle.

(a) (b) (c)

Figure 12: (a) Specific volume of mercury intruded versus applied pressure for the entire intrusion-extrusion-intrusion
cycle (0.1MPa −→ 100MPa, 100MPa −→ 10MPa, 10MPa −→ 400MPa); (b) Specific volume of mercury intruded during
the second intrusion cycle (10MPa - 400MPa); (c) Specific volume of mercury intruded during the second intrusion
cycle as a function of pore sizes (10 nm – 150 nm), according to Eq. (10).
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To focus on the nano-pores within the granules, we analyze only the specific volume intruded
during the second intrusion cycle. This is achieved by subtracting for each experiment the specific
volume already intruded after the first intrusion-extrusion cycle, see Figure 12b. We can observe
that for higher feed rates, the specific volume intruded is higher, meaning that the total specific
volume of the nano-pores is higher. Moreover, reducing the binder concentration leads to a higher
total specific volume of nano-pores.

In Figure 12c, we changed the x-axis of Figure 12b to get an estimation of the specific volume
of mercury intruded for given pore sizes, according to Eq. (10). Recall that increasing the feed
rate and decreasing the binder content yields granules with higher specific mercury-intruded pore
volumes. In Figure12c we can observe that these differences are primarily attributed to pores in
the size range from 80 nm to 140 nm. In contrast, no significant differences are observed for pores
with sizes less than 80 nm.

4. Discussion

4.1. Influence of process parameters on droplet characteristics

The spray drying experiments demonstrated the critical influence of feed rate and binder concen-
tration on the initial droplet characteristics, notably size and velocity distributions. Reduced binder
concentration at a constant low feed rate resulted in smaller and faster droplets, a phenomenon con-
sistent with fundamental fluid mechanics. Lower viscosity liquids facilitate easier breakup into finer
droplets due to decreased resistance during atomization, subsequently accelerating more readily in
the airflow. Conversely, higher feed rates at constant binder concentration yielded larger droplets
with increased velocities, reflecting enhanced momentum flux from the nozzle. Such conditions
require more energy for atomization and therefore produce larger initial droplets. Understanding
these initial droplet dynamics is crucial, as they directly influence subsequent drying mechanisms
and ultimately determine the final properties of the granules.

4.2. Impact of droplet characteristics on granule morphology

The initial droplet characteristics influenced the resultant granule size and morphology. Higher
feed rates consistently led to larger maximum Feret diameters in dried granules, a direct consequence
of larger initial droplets entraining more solid material. Binder concentration, however, influenced
granule morphology differently. At low binder concentrations, granules exhibited moderate size
increases, primarily due to granule stabilization rather than extensive bridging. Conversely, higher
binder concentrations increased granule sizes through enhanced polymer bridging of alumina nano-
particles into larger, coherent structures during the drying stage.

4.3. Parametric modeling and process optimization

Our study utilized parametric modeling to quantitatively describe granule descriptor distribu-
tions using regression functions linking process parameters to probability distribution parameters.
These functions not only enable predictions of granule characteristics under untested intermediate
conditions but also provide a systematic approach to process optimization. Specifically, given a de-
sired distribution of maximum Feret diameters and aspect ratios, it is possible to identify optimal
spray drying parameters by minimizing the discrepancy between predicted and target distributions.

Given the primary objective of this study — to present initial insights into the relationships
between process parameters, granule morphology, and size — we intentionally limited our modeling
analysis to qualitative visual assessments. Formal statistical validation of these predictive models
was not conducted, as this would involve complex interpretations of parameter sensitivity and
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advanced statistical metrics. Rigorous validation of these predictive models using formal statistical
approaches will be an essential future step, employing appropriate metrics for enhanced model
accuracy and interpretability.

Although negligible linear correlation between the maximum Feret diameters and aspect ratios
justified our use of independent marginal distributions, our regression approach is sufficiently general
to accommodate more complex multivariate descriptor vectors. Future investigations may benefi-
cially integrate additional descriptors such as internal porosity or surface roughness. Advanced
multivariate statistical tools, such as copulas [49], could manage the interdependencies among these
descriptors effectively, enabling a more comprehensive understanding and control over granule qual-
ity.

The presented regression framework also allows for simultaneous exploration of multiple process
parameters and their interactive effects. However, expanding the parameter space dimensional-
ity necessitates significantly larger datasets to robustly calibrate multivariate regression functions.
Consequently, future studies would prioritize extensive experimental datasets complemented by
sophisticated statistical modeling to explore these higher-dimensional parameter interactions thor-
oughly.

4.4. Microstructural insights and implications

SEM imaging provided detailed insights into the granule morphologies formed under varying
spray drying conditions, complementing the droplet size and velocity analyses. Granules exhibited
frequent doughnut-like shapes and internal voids or cracks, indicating that rapid surface solidifica-
tion and uneven internal solvent evaporation were key drivers in their formation. Conversely, the
granules which demonstrated relatively uniform, dense, and smooth spherical structures were due
to more uniform drying.

Specifically, doughnut-like structures emerged due to a rapid drying mechanism, wherein the
outer layer solidifies quickly, causing internal solvents to escape unevenly and create internal
voids [50]. Additionally, the presence of internal cracks in some granules suggests that drying-
induced stresses during solvent evaporation and polymer shrinkage contribute to their porosity.
Lower feed rate conditions, facilitating rapid and uniform solvent evaporation, minimize such
stresses and thus result in more solid, spherical granules with smoother surfaces.

Mercury intrusion porosimetry results further substantiated these SEM observations. At higher
feed rates, the resulting granules exhibited larger pore volumes, signaling more extensive internal
voids and, consequently, an overall increase in granule porosity. This outcome may be attributed
to the larger droplets formed under higher feed rates. Such droplets typically undergo rapid shell
formation at the surface while retaining substantial liquid in the core. Once a visco-elastic skin
or crust develops at the droplet perimeter, internal evaporation forces can inflate or maintain
an enlarged interior cavity, ultimately leading to the higher specific pore volume observed [51].
Simultaneously, granules produced at lower binder concentrations showed significantly higher pore
volumes owing to insufficient polymer bridging between the alumina nano-particles. When the
polymer fraction is reduced, it becomes less capable of filling or reinforcing the interstitial spaces,
thus preserving a comparatively open and porous internal architecture. By contrast, higher binder
fractions effectively occupy and consolidate the voids within the forming granule. In these cases, the
denser polymeric network restricts pore growth by exerting stronger cohesive forces and facilitating
granule shrinkage, thereby decreasing the final pore volume. These findings emphasize the critical
role of binder concentration and feed rate in tailoring granule porosity, which directly impacts
practical application properties. Specifically, higher porosity may be beneficial for applications
requiring increased surface area, such as catalysis or controlled drug release, but could adversely
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affect mechanical strength and durability.
In summary, this investigation offers detailed micro-structural insights connecting spray drying

conditions, droplet characteristics, and granule morphology. By systematically adjusting binder
concentration and feed rate, we demonstrated the ability to manipulate granule micro-structures
and thus tailor their physical properties for specific application needs.

5. Conclusion and outlook

This study provides a comprehensive analysis of the relationship between spray drying pro-
cess parameters and the morphology of resulting alumina–polymer nanocomposite granules. By
systematically varying the feed rate and binder (polymer) concentration and employing advanced
characterization techniques, we elucidated the fundamental mechanisms governing granule size,
morphology and porosity in the spray drying of nano-alumina/PVP suspensions.

In summary, we found that an increased feed rate leads to larger granules and higher granule
pore volumes and sizes. Higher feed rates promote the formation of larger droplets at the nozzle,
which in turn produce larger dried granules. These larger droplets also dry less uniformly, resulting
in hollow or porous granules. SEM and mercury intrusion porosimetry consistently confirmed that
granules produced at higher feed rates are larger and tend to form hollow or porous structures. Thus,
feed rate emerges as a critical factor controlling not only granule size but also internal morphology
(solid vs porous).

Conversely, a higher binder concentration (PVP-30 content) in the feed was found to produce
more compact and less porous granules. With more binder present, the polymer fills the gaps
between alumina nano-particles, leading to denser packing and fewer voids in the dried composite.
The binder effectively acts as a “cement” that reinforces the granule structure. Additionally, higher
binder concentrations tended to yield granules with slightly higher aspect ratios and smoother
surfaces, as the polymer can form a continuous matrix around the alumina nano-particles.

The integration of in-line imaging with statistical distribution modeling in our work enabled
us to not only measure the outcomes but also to develop predictive models for granule size and
shape as functions of feed rate (and by extension, binder content). This model-based approach
provides a potential framework for optimizing spray drying processes. For example, one could
decide on a target granule size/shape descriptor distribution for a given application, and then use
these empirical relationships to choose appropriate feed rates and binder concentrations to achieve
those targets.

Future work will incorporate the building of a custom spray dryer equipped with advanced
in-line sensors, enabling real-time monitoring and model-based control of granule formation pro-
cesses. This spray dryer will integrate additional in-line pressure and temperature sensors for pre-
cise measurement of granule characteristics, providing crucial feedback for immediate adjustments
of process parameters. Additionally, a dedicated preconditioning stage before atomization is also
planned, to precisely control particle interactions, suspension viscosity, and stability, enhancing
the control over granule structures. Future work would also extend our initial findings by inte-
grating additional structural descriptors, employing rigorous statistical validations, and exploring
more complex multivariate relationships among spray drying parameters, granule structure, and
performance outcomes. Furthermore, the current parametric modeling framework will be enriched
through advanced statistical learning methods, such as copula-based modeling and autoencoders,
facilitating real-time process adjustments and robust control strategies under varying operational
conditions. Together, these planned enhancements will facilitate the implementation of real-time,
autonomous closed-loop control strategies, significantly advancing the reproducibility and quality
of spray-dried alumina–polymer composites.
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