Appendix

A Neural network architecture

Table [T] summarizes the architecture of the discriminator network used in this paper. The
receptive field (RF) indicates the effective field of view of each layer, that is, the maximum size
of a spatial region of the input image that can influence the output at a given layer. Definitions
of layer types, kernel sizes, and other parameters can be found in the standard deep learning
literature; see e.g. [I], as well as in the PyTorch documentation. The implementation of the
network considered in the present paper is based on PyTorch [2].

Table 1: Discriminator architecture. Columns: Layer (sequential index), type (layer class), input
(number of input channels), output (number of output channels), kernel (kernel size), params

(number of trainable parameters), RF (receptive field size)

layer | type input | output | kernel | params | RF | notes

1 Conv2D 3 64 3x3 1.7K 3 | no bias, spectral norm
2 LeakyReLU - - - 0 - slope=0.2, inplace

3 Conv2D 64 64 3x3 36.9K 5 | no bias, spectral norm
4 LeakyReLLU - - - 0 - slope=0.2, inplace

5 MaxPool2D - - 2 0 6 |-

6 Conv2D 64 128 3x%3 73.7TK 10 | no bias, spectral norm
7 LeakyReLLU - - - 0 - | slope=0.2, inplace

8 Conv2D 128 128 3x%3 147.5K 14 | no bias, spectral norm
9 LeakyReLU - - - 0 - slope=0.2, inplace

10 MaxPool2D - - 2 0 16 | -

11 Conv2D 128 256 3x3 294 9K 24 | no bias, spectral norm

B Visualization of point patterns and corresponding tessellations

A visualization of the point patterns and the corresponding tessellations used for the generation
of synthetic cellular structures is shown in Figure[I] For clarity 2D point patterns are considered
and the tessellations are displayed without periodic boundary conditions.
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Figure 1: Visualization of point patterns. Seed points are shown in black.



C Description of measured data

This section describes the experimental datasets to which the proposed stereological reconstruc-
tion method is applied. In this study, three different datasets are considered: 3D image data of
polymer foams [3], biological data of epidermal cells from a zebrafish brain [4], and polycrystalline
metallic microstructures [5]. The reconstruction framework relies on a space-filling segmentation
into individual cells. Consequently, for each dataset, the preprocessing steps required to achieve
such a segmentation are detailed, where applicable.

C.1 Foam data

The foam database provided in [3] contains structure-property and mechanical modeling data for
elastic impact protection foams, obtained from various imaging techniques (e.g. microcomputed
tomography, digital image correlation) and force-sensing methods (e.g. dynamic mechanical
analysis, universal testing) under diverse experimental conditions and loading modes. Among
the different image data types available, the present paper employs the binarized 3D datasets
(Figure ) with a voxel side length of 4 pm, where the background (black) corresponds to
the foam and the foreground (white) to the foam cells. These binarized data do not directly
provide a segmentation into individual foam cells, because the cells are partially interconnected,
making it impossible to identify single cells as connected components. Therefore, the data
are preprocessed by first employing a morphological dilation [6] on the original binarized data
(Figure[2p), followed by a combination of the watershed algorithm [7-I0] and a 3D morphological
reconstruction approach [T11 [12] to segment the binarized images into individual foam cells while
simultaneously preventing oversegmentation (Figure ) Finally, the cubic image was rescaled
to a resolution of 100% with a voxel side length of 256 jim.
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Figure 2: Foam data preparation. (a) Planar section of the binarized 3D image data of the
foam (black) and the foam cells (white). (b) Corresponding planar section of the 3D image
after applying morphological dilation and (c) space-filling segmentation achieved by means of
watershed segmentation and morphological reconstruction.

C.2 Biological data

The biological dataset provided in [4] comprises 3D image data of a zebrafish brain obtained by
serial-section SEM (Figure|3p), along with a corresponding segmentation of individual cells from
the grayscale image (Figure[3p). The original resolution of this image data is 256 nm x 256 nm x
256 nm in x-, y-, and z-direction. However, this segmentation is not space-filling, as it includes
both segmented cells and background regions. Therefore, the background voxels are reassigned
to individual cells using nearest-neighbor interpolation. More precisely, each background voxel is



assigned to the nearest cell based on the minimum Euclidean distance. The resulting space-filling
segmentation is shown in Figure [3k.
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Figure 3: Biological data preparation. (a) Planar section of 3D SEM data of a zebrafish brain.
(b) Corresponding segmented data consisting of background (black) and differently colored cells.
(c) Space-filling segmentation achieved by means of nearest-neighbor interpolation.

C.3 Metallic data

The metallic dataset provided in [5] consists of 3D image data measured by electron backscatter
diffraction (EBSD) of a polycrystalline metallic material. The image has a size length of 1pm.
For this data, a space-filling segmentation into individual cells is already available in [5].

D Validation results for synthetic microstructure generation

Table [2] summarizes the relative deviations between the mean values of the considered geometric
descriptors evaluated for the input structures obtained from uniform, hard-core, and twinning
point patterns and for the corresponding generated 3D microstructures. Moreover, it reports
the empirical Wasserstein distances between the corresponding empirical distributions of the
geometric descriptors.

Table 2: Relative deviations between mean descriptor values of input and generated microstruc-
tures (in %) and empirical Wasserstein distance computed for input structures and generated
cellular structures. High values indicate large dissimilarities between input and output struc-
tures.

structure | descriptor method | mean Error % | Wasserstein
equivalent diameter dy | tessellation 3.0 0.527
aniformm surface area S4 tessellation 6.8 63.987
elongation F tessellation 7.1 0.025
number of neighbors v | tessellation 2.4 0.422
equivalent diameter dy | tessellation 0.8 0.647
hardeore surface area Sy tessellation 0.8 79.202
elongation £ tessellation 1.7 0.021
number of neighbors v | tessellation 3.7 0.583
equivalent diameter dy | tessellation 5.0 0.983
twinning surface area Sy tessellation 2.8 69.773
elongation E tessellation 7.2 0.029
number of neighbors v | tessellation 2.7 0.642
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E Comparison with state-of-the-art method

In Figure 4] the distributions of geometric 3D descriptors, together with their mean values (u)
and standard deviations (o), are given for the input data and output structures obtained by
the method proposed in the present paper and by SliceGAN, respectively, using Gaussian kernel
density estimators. Both methods generally show good agreement with the input data.
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Figure 4: Distributions of geometric descriptors together with their mean values (1) and standard
deviations (o) for input data (blue), output structures obtained by the proposed stereological
reconstruction framework (orange) and the reference method (green) for foam, biological and
metallic data.
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