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Abstract

The relationship between the 3D morphology of gas-diffusion layers (GDL) of HT-
PEFCs and their functionality is analyzed. A stochastic model describing the mi-
crostructure of paper-type GDL is combined with the Lattice-Boltzmann method
(LBM) to simulate gas transport within the GDL microstructure. Virtual 3D mi-
crostructures representing paper-type GDL are generated by a stochastic model,
where the binder morphology is systematically modified. On these structures sin-
gle phase, single component gas flow is computed by the LBM. Quality criteria
evaluating the spatial homogeneity of gas supply are introduced and related to the
binder morphology. The spatial homogeneity of the gas supply is analyzed by a
parametrized stochastic model describing the gas flow at the exit of the GDL. This
approach gives insight into the spatial structure of the gas flow at the GDL exit.
The quality of gas supply is quantified by characterizing size and arrangement of
regions with high gas supply. This stochastic gas flow model predicts the quality
of gas supply for further binder morphologies. Analyzing the quality criteria and
the stochastic evaluation of the spatial structure of the gas flow field at the GDL
exit, it is found that the binder morphology has an essential influence on the gas
supply.

Keywords
paper-type GDL, stochastic modeling, microstructure, Lattice-Boltzmann, virtual

materials design, mass transport, gas supply

1



1 Introduction

Polymer electrolyte fuel cells (PEFC) are an attractive instrument for elec-
trical power generation due to their high efficiency and environment-friendly
emissions. A typical PEFC consists of several parts, namely the flow fields,
gas-diffusion layers (GDL) and membrane electrode assembly1. At the mem-
brane electrode assembly the electrochemical reactions take place. The flow
fields provide the reacting gases and remove liquid and gaseous products.
The function of the GDL is to provide a homogeneous mass transport be-
tween the flow field, where the typical size of a channel cross section is 1mm,
and the membrane electrode assembly. In case of high temperature PEFC
(HT-PEFC) with a working temperature above 100 ◦C mass transport takes
place in the gas phase solely. In addition, the GDL have to provide electrical
contact between the flow field and the electrode layer. Different materials
are used for GDL: carbon paper, carbon cloth and non-woven with typical
fiber diameters of 5-10µm and a total thickness of the GDL between 100-
300µm2;3. It is well-known that the 3D microstructure of the GDL has a
large influence on the functionality and efficiency of PEFC4–8. Thus, the de-
tection of ‘optimal’ microstructures is an important yet challenging task. In
the industrial practice, however, the GDL is optimized by means of cost- and
time-consuming experiments mainly based on a trial-and-error basis. Thus, a
more systematic way to optimize GDL structures with respect to their func-
tionality (e.g. gas supply of electrodes), is desirable. One possibility in this
context is to perform virtual materials design, where a large variety of (e.g.
synthetic, but) realistic GDL structures is generated in a systematic manner
and their functionality is evaluated by numerical mass transport simulations.
In this way, it is possible to detect microstructures with improved properties
by means of (cost- and time-efficient) computer experiments.

To generate a large variety of realistic GDL structures, stochastic (parametrized)
microstructure models can be used which provide 3D images describing the
3D microstructure of GDL. In contrast to the generation of experimental 3D
image data, the advantage of using a stochastic microstructure model is that
a large quantity of realistic material samples of GDL can be generated with
arbitrarily large domain sizes, with low costs and in short time. Furthermore,
the values of the model parameters can be varied such that important struc-
tural features (as e.g. porosity or binder morphology) of GDL are modified
in a systematic manner.

Regarding the simulation of mass flow in the GDL, there are two general
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approaches. The geometry of the GDL can either be treated as pseudo-
homogeneous and some morphological features can be incorporated into con-
tinuum models9–13, or the entire geometry information can be used to sim-
ulate mass flow8;14–26. Note that the commonly applied methods in numer-
ical transport simulation that consider the entire geometry information are
the computational fluid dynamics (CFD) and the Lattice-Boltzmann (LB)
algorithm. Also note that the pseudo-homogeneous approach (continuum
models) without resolution of the inner structure of GDL is of advantage
if the focus is on overall functionality of the fuel cells. In the present pa-
per, however, we aim to obtain detailed information on the relation between
morphological features of GDL and their functionality. Thus, the numerical
transport simulations (which consider the entire structural information of
GDL) are the right choice. In particular, we use the LB algorithm.

In this paper, we study the relationship between the 3D morphology of GDL
in PEFC and their functionality. In particular, we investigate the influence
of the binder morphology in paper-type GDL on the gas supply of electrodes
which is one of the main tasks of GDL. The principal idea is to generate
virtual (but realistic) 3D microstructures representing paper-type GDL us-
ing a stochastic simulation model, where the binder morphology is modified
in a systematic manner. On these structures single phase, single component
gas flow is computed by the LB method. Subsequently, the gas flow simula-
tions are analyzed, evaluated and correlated with the corresponding binder
morphologies. As reference system for the mass transport, we chose the case
of mass transport at the anode side of a HT-PEFC, where the only fluid is
gaseous hydrogen. Moreover, we focus on the structure of Toray 090 GDL
belonging to the class of paper-type GDL. Note that paper-type GDL have
a complex microstructure consisting of straight fibers and a binder which
agglutinates the fibers.

In literature, there exist many stochastic simulation models describing the
microstructure of paper-type GDL, see e.g.25;27–30. In the present paper, we
use the multi-layer model proposed in29 to generate virtual GDL consisting
of a system of straight fibers and binder. This model is characterized by very
few parameters and it offers the possibility to easily modify the binder mor-
phology. Note that the model proposed in29 has been successfully validated
against experimental 3D image data of Toray 090 GDL.

To investigate the influence of binder in Toray 090 GDL on their functionality,
we generate virtual Toray 090 GDL microstructures with different binder
morphologies according to our stochastic model. Altogether, we compare
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five different types of binder morphologies, ranging from a homogeneously
spread binder (i.e., many areas of binder with small volumes) to a clustered
binder (i.e., small number of areas with binder having large volumes). For
all simulations, the total binder volume is kept constant. To enhance the
statistical accuracy of the results, for each type of binder morphology, 25
independent samples of 3D microstructures are drawn from the stochastic
GDL model. On these virtual GDL, gas flow is simulated via the LB method.
The major goal of our investigations is the analysis and characterization of
the gas flow and its local inhomogeneities related to the microstructure of
the GDL. Subsequently, a new approach for analyzing and evaluating the
fields of gas flow is considered and the obtained results are correlated to
the corresponding binder morphology. For a conceptual overview on this
analysis, see Figure 1.

To begin with, we introduce quality criteria to quantify the goodness of the
mass flow computed by the LB method with respect to spatial homogeneity.
Recall that the task of the GDL is to serve the electrodes with gas flux.
In order to increase the conversion at the electrodes (and thus the power
generation of the fuel cell), the gas flow field at the exit of the GDL should
be as homogeneous as possible. However, it is not straight-forward how to
compare two gas flow fields with respect to their spatial homogeneity, i.e., to
decide which field is ‘more homogeneous’. Thus, we introduce quality criteria
which quantify the spatial homogeneity of the gas flow field at the exit of the
GDL. These quality criteria are based on statistical characteristics and are
computed for all gas flow simulations. It is found that large clusters of binder
material are unfavorable for a homogeneous gas flux.

Moreover, the statistical significance of mass transport simulations in typical
domain sizes of experimental (tomographic) 3D image data is studied. It
is found that the quality of the gas flux simulations exhibit large variations
dependent on the concrete realization of the microstructure. Consequently, to
accurately measure effects of mass transport related to 3D microstructures, it
is necessary to average over several independently sampled microstructures.

In a further step, the gas flow fields exiting the GDL are described by a
parametric stochastic model. This direct stochastic modeling approach gives
a deeper insight into the spatial structure of the gas flow fields gained by
LB simulations and it allows to quantitatively analyze the quality of gas
supply, e.g., to characterize size, magnitude and arrangement of regions with
high gas supply. The gas flow field at the GDL exit are described by unions
of Gaussian bells, where the locations of the bells are modeled by suitable
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point processes. For each binder morphology, the stochastic gas flow model
is fitted to the fields computed by the LB method. Subsequently, we use the
gas flow model to analyze the influence of binder morphology on gas flow
by a parametric comparison. More precisely, the differences of the model
parameters are related to differences in the structure of the gas flow fields
in dependence of the binder morphology. As a result, we e.g. obtain that
the total intensity of center points of bells decrease for more clustered binder
morphologies, which indicates that regions with high gas supply decrease for
this type of binder. Furthermore, by means of our stochastic gas flow model,
the gas supply can be predicted for further binder morphologies with low
computational efforts. It is preferable that the binder does not build large
clusters. In this way, the understanding of the relationship between binder
morphology and quality of gas supply of electrodes managed by the GDL is
significantly improved.

The paper is organized as follows. Section 2 briefly describes the stochastic
microstructure model, the LB method and the simulation framework of this
paper. In Section 3, quality criteria evaluating the gas supply of GDL are
introduced and subsequently correlated to the binder morphologies. Section 4
establishes a direct stochastic model describing the gas flow field exiting the
GDL in dependency of the binder morphology. Finally, Section 5 concludes
the paper and gives an outlook to possible future research.

2 Model Description and Simulation Framework

The supply of electrodes with gases is one of the main tasks of GDL. Thus,
in this paper the influence of binder in Toray 090 GDL (belonging to the
class of paper-type GDL) on single phase, single component gas flow is in-
vestigated. The basic idea is to consider a stochastic microstructure model
which is able to generate a large variety of synthetic, but realistic paper-type
GDL on the computer. On these synthetic structures, gas flow simulations
are accomplished by the LB method. The outcome of the LB simulations
are analyzed, evaluated and correlated with the corresponding binder mor-
phology. We begin by introducing the stochastic microstructure model for
paper-type GDL and the LB method used in this paper.
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2.1 Stochastic 3D Microstructure Model

Paper-type GDL consist of straight carbon fibers and binder which aggluti-
nates the fibers, see also Figure 2. Note that the fibers of paper-type GDL
mainly run in horizontal direction. In29, a stochastic model for the 3D mi-
crostructure of this kind of paper-type GDL has been introduced which is
shortly presented in the following.

2.1.1 3D Model for Systems of Carbon Fibers

The carbon fiber system of paper-type GDL is modeled by a multi-layer
approach29, that is, a stack of independent thin layers, where each single
layer is modeled by a planar Poisson line tessellation (PLT)31. Note that a
planar PLT Ξ is defined as the union of random lines `(Di,Mi) = {(x, y) ∈
R2 : x cosMi + y sinMi = Di}, i.e., Ξ =

⋃∞
i=1 `(Di,Mi), where {Di : i ≥ 1}

is a homogeneous Poisson process in R with some intensity λf > 0 and
Mi ∼ U(0, π) for i = {1, 2, . . .} is a sequence of uniformly distributed random
variables on the interval [0, π]. Alternatively, the PLT Ξ can be described by
the cells Ξ1,Ξ2, . . . generated by the underlying line system. Since the fibers
in GDL are 3D cylinders, each line of the PLT is dilated using a 3D sphere
with the origin as center and some radius rf > 0. Note that the parameters
of the stochastic microstructure model for the fiber-system are given by the
number n` of fiber layers, the intensity λf of fibers within a single layer and
the radius rf of fibers. The parameters are fitted to resemble carbon fibers
of a Toray 090 GDL. Realizations drawn from this fiber model are 3D images
which can be given in arbitrarily large observation windows.

2.1.2 Modeling of Binder

Paper-type GDL additionally comprise binder, which has an essential influ-
ence on transport processes through the material, since it can block many
paths through the pore phase, see Figure 2 (a). Thus, the binder is included
into the microstructure model for the fiber system presented in Section 2.1.1
by a so-called Bernoulli filling, where to each cell Ξi of each layer, a Bernoulli
distributed random number b ∈ {0, 1} with parameter p > 0 is assigned. If
the mark b of a cell is equal to 1, the cell is filled with binder, either completely
or partially depending on the binder radius br, see Figure 3. For br ∈ [0,∞)
all voxels located in the interior of the cell with a distance smaller than br
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to the boundary are defined as binder. In particular, if br = ∞ the cell is
completely filled with binder. The binder model is uniquely determined by
the volume fraction νB of binder to be included into the fiber system and
by the binder radius br. Moreover, the filling probability p can be calculated
given the binder radius br and the volume fraction νB of binder. A detailed
discussion of the binder model can be found in29;32. The complete model for
paper-type GDL has been successfully validated against experimental 3D im-
age data of Toray 090 GDL29. Figure 2 shows the good optical resemblance
of experimental and simulated data.

2.2 Numerical Calculation of Mass Transport

Using the LB method the numerical simulation of single phase, single com-
ponent flow (i.e., gas transport) through the GDL is performed. Effective
structural parameters can be obtained from the resulting flow fields33–35.

2.2.1 Lattice-Boltzmann Method

The principle idea of LB method is based on the kinetic gas theory. First of
all, on the atomistic level one can look for the probability f(~x, ~p, t) of finding
a molecule around position ~x at time t with momentum ~p which leads to the
Boltzmann equation36:

∂f

∂t
+ v∇f = Q . (1)

with the macroscopic flow velocity v. In this equation, Q denotes the collision
integral which cannot be solved in the general case. The idea to simplify the
collision integral for cases where the system is not too far away from the
Maxwellian distribution was proposed by Bhatnagar, Gross, and Krook in
195437 which leads to the BGK approximation of the Boltzmann equation

∂f

∂t
+ v∇f = −ω

(
f − f (eq)

)
, (2)

where the collison integral Q from Eq. (1) is replaced by a relaxation term.
ω specifies the molecular collision frequency which depends on density and
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temperature of the gas. Furthermore, the equation is discretized to a regular
lattice and normalized by space and time. The resulting (normalized and
discretized) equation is given by

Fi(x+ ci∆t, t+ ∆t)− Fi(x, t) = −ω
(
Fi − F (eq)

i

)
. (3)

The ci are reference velocities on a regular lattice. They are constant for
a particular discretization scheme. In our case, we use as regular lattices
the D3Q19 scheme. D3Q19 specifies a three dimensional regular lattice with
19 neighbored nodes (i = 0, ..., 18) participating on the discretized equa-
tion. The result of LB simulation is a 3D velocity field V given on a 3D
grid, i.e., each voxel of the 3D grid contains a 3D velocity vector, where the
vector represents the averaged direction and velocity of the gas flow in the
corresponding voxel.

2.2.2 Boundary Conditions

The simulations were performed in the through-plane direction, i.e., we con-
sider gas flow from the gas channel to the electrode, perpendicular to the
membrane. Due to the stochastic nature of the microstructure model with
its infinitely long fibers as explained in Section 2.1, wall boundary conditions
at the boundaries of the simulation domain are assumed. In this way four
sides of the cuboid representing the simulation domain are well defined. The
upstream boundary in front of the transport direction are specified with a
given velocity profile. The velocity of the gas flowing into the GDL is ob-
tained from the amount of converted mass via Faraday’s law. This specifies
only a mean value of the gas which does not hold locally at every point of
the GDL. For this reason a simulation frame was introduced which allows to
specify the velocity profile upstream from the corresponding irregular bound-
ary of the GDL. Free space is added to the simulation domain to allow the
gas flow to rearrange according to the irregular stochastic structure where
the gas enters the GDL (Figure 4). It was found that at least 5 voxels were
needed upstream to ensure undisturbed flow at the boundary where the gas
enters the GDL. In our simulations 10 voxels were taken for this area from
conservative reasons. The downstream procedure is applied in an analogous
way. Free space is added behind the GDL of the same size as before. Figure
4 depicts the situation. The boundary condition at the outlet is a constant
pressure, also known as outflow boundary condition.
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2.3 Simulation Framework

Recall that our goal is to study the influence of binder morphology in GDL on
the goodness of gas supply of electrodes with respect to its spatial homogene-
ity. Therefore, we generate virtual, but realistic GDL microstructures with
different binder morphologies and subsequently analyze the gas transport
via the LB method within these structures, see Figure 1. More precisely, we
choose all parameters of the stochastic microstructure model proposed in29

in order to describe real Toray 090 GDL, except the binder radius br (or the
filling probability p, respectively). In particular, we set the intensity of fibers
within single layers λf = 0.025, the radius of fibers rf = 3.75 µm, the volume
fraction of binder νB = 0.05, and the number of fiber layers n` = 26. In the
present paper, five different binder radii br ∈ {6, 18, 30, 40,∞} (correspond-
ing to p ∈ {0.555, 0.116, 0.081, 0.063, 0.059}) are considered. The respective
microstructures are visualized in Figures 3 and 5. In the following, we de-
note the synthetic morphologies with different binder radii by binder types
A,. . .,E, see Table 1. To enhance the accuracy for the statistical analysis ac-
complished in this paper, for each type of binder morphology, 25 independent
samples of 3D microstructures are drawn from the stochastic GDL model.
Thus, in summary, 125 simulations of virtual (but realistic) paper-type GDL
build the data base for the simulation of mass transport. Each sample is
represented by a 3D image stack of size 130× 512× 512 with cubic voxels of
(1.5 µm)3. This leads to an overall thickness of the simulated GDL of 195 µm
which is equivalent to 130 consecutive 2D slices with size 768×768 µm2. The
size of the 3D synthetic structures (i.e., 195 × 768 × 768 µm3) was chosen
such that it coincides with typical domains of experimental (tomographic)
3D image data. Note that the expected volume fraction ν of the solid phase
of the simulated structures is fixed to ν = 1− ε = 0.22 for all the considered
binder types, with porosity ε.

Using the LB method, gas flux in through-plane direction via the pore phase
of these microstructures is computed. The gas flow accounts for characteristic
operating conditions of a HT-PEFC, which are summarized in Table 2. With
the given parameter constellation the Reynolds number is Re≈ 4·10−4 related
to the fiber diameter. In this case the flow is classified as creeping flow since
Re� 1, see also38.

In summary, we end up with 125 gas flow simulations (25 per binder type) on
the virtually generated structures, which are computed by the LB method.
The results of these simulations build the data base for the analysis and
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evaluation of gas supply of electrodes by Toray 090 GDL with respect to its
binder morphology.

2.4 Accuracy of Simulation Study

In this section, we validate the gas flux simulations computed for the virtu-
ally generated GDL structures as described in Sections 2.2 and 2.3. More
precisely, we compare permeabilities measured for Toray 090 GDL which are
stated in literature with the results obtained by the gas flux simulations on
the virtual microstructures.

To best of the authors’ knowledge, the literature about measurements of
porosity and permeability for Toray 090 GDL is scarce. Gostick et al.39;40
presented measurements on GDL materials including Toray 090. Hussaini et
al.4 measured relative permeabilities of several GDL materials, also includ-
ing Toray 090. Recent measurements are presented in41;42. The porosity of
Toray 090 considered in these papers is ranging from 72% to 80% and the
thickness of the paper-type GDL is specified from 190µm to 290µm which co-
incides very well with the corresponding (fixed) values of our simulation study
(i.e., porosity of 0.78 and thickness of 195 µm). Moreover, the through-plane
permeability ranges from 4.4 to 12.4 µm2. The large deviations of these val-
ues especially of the Toray 090 material were already reported by Hussaini4,
who also stated the different operating conditions (e. g. compression) of the
measurements. Note that a higher degree of compression leads to lower per-
meabilities as shown in26;41;43;44. For this reason the values given in Table 3
might deviate from calculated permeabilities on uncompressed geometries.
The measured permeabilities reported by Hussaini et al.4 are also listed in
Table 3.

Effective permeabilities and tortuosities obtained from our transport simula-
tions are shown in Figure 6. Moreover, the means and standard deviations of
these values with respect to the different binder types are listed in Table 4.
Although it is not possible to obtain a perfect match with the values of litera-
ture (due to the large deviation of measured permeabilities), the comparison
of our calculated numbers and the measured values from literature shows
that they are in the same range. This suggests that the combination of the
stochastic microstructure model with LB gas flow simulations describe gas
flow within the GDL in a realistic way.
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Additionally, the simulated permeabilities show a large variation for each
binder type which is caused solely by the stochastic spread in the generated
microstructures. But nevertheless, considering the mean values of Table 4 a
clear influence of the binder model on the permeabilities can be observed.

3 Quality Criteria for Mass Transport

For a high power conversion rate of PEFC, it is desirable that the exiting gas
flux after crossing the GDL is as homogeneously distributed as possible, i.e.,
there should not occur any regions at the interface between the GDL and
electrodes where little or no gas arrives. In case of inhomogeneous gas flow,
electrochemical reactions do not take place at location where no gas arrives
which leads to low conversion rate of hydrogen. The standard proceeding
in analyzing the mass transport through porous media is to compute char-
acteristics like permeability, tortuosity or diffusibility which are well-known
indicators for mass transport. However, these characteristics do not quantify
the homogeneity of gas flow at the exit of the GDL. Since the main task of
the GDL is a possibly homogenous gas supply of the electrodes, methods for
characterization of the local gas flow in terms of homogeneity are required.
The introduction of such characteristics lead to criteria for the quality of gas
flow through the GDL.

3.1 Gas Flow Field

We now introduce characteristics evaluating the quality of gas supply of elec-
trodes by the GDL. More precisely, we introduce two characteristics evalu-
ating the homogeneity of the exiting gas flux after crossing the GDL. These
characteristics are functionals of gas flow simulations computed by the LB
method. Note that the result of LB simulations are velocity fields V on the
voxel grid of the input image, i.e., in our case the velocity fields are given by
V : [0, 129]× [0, 511]× [0, 511]→ R3 , see Section 2.2.1.

The voxel (129, y, z) located at the top layer of the velocity field V (i.e., at
the exit of the GDL) contains information about the mass of gases reach-
ing the electrode at each time point t > 0 at location (y, z), i.e., the voxel
contains information about the gas flow. Because the density of the gas in
the free space behind the GDL is almost homogeneous, the first component
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(u-values) of the velocity vectors in V (x, y, z) = (u, v, w)> is proportional to
the mass of gases reaching the location (x, y, z) at each time point t > 0.
The scalar field of the u-values located at the top layer of the GDL is de-
noted by T : [0, 511] × [0, 511] → R, T (y, z) = (1, 0, 0) · V (129, y, z) in the
following. To get an idea of the structure of such a gas flow field T , see Fig-
ure 7, where a synthetic paper-type GDL and its corresponding field T are
plotted. Thereby, in Figure 7, the dependency of the gas flow field T on the
microstructure of the synthetic GDL can be nicely seen. In Figure 8, gas flow
fields are visualized for five different microstructures (computed according to
the simulation framework described in Section 2.3). Since the gas flow field
T is gained by LB simulations on random (stationary) 3D microstructures
of GDL, T can be interpreted as a (stationary) random field 45, i.e., for each
(y, z) the quantity T (y, z) is a random variable, where the random variables
T (y, z) and T (y′, z′) for different locations (y, z) and (y′, z′) might be corre-
lated in space. Note that, roughly speaking, a random field is stationary if
its mean and variance do not change depending on the position.

3.2 Variability of Gas Flow

It is far from being straightforward how to evaluate the spatial homogeneity
of the mass transport at the exit of the GDL (described by the gas flow field
T ). In the ideal case with respect to uniform mass transport, the gas flow
field T is a constant scalar field within the pore space, i.e., T (y, z) ≡ c for
some c ∈ R and for all (y, z) which are located within the pore phase. If there
exist inhomogeneities, i.e., deviations from the mean value of T , it is desirable
that the sum of all deviations is as small as possible. (Note that existing
inhomogeneities are stationarily distributed in space since the underlying
stochastic microstructures are stationary.) Besides the total deviation, it is
desirable that the size, magnitude and intensity of the inhomogeneities are
as small as possible.

Note that the mean values of gas flow T in the exit plane of the GDL are
constant for all regarded scenarios of the present simulation study if the
domain size of T is chosen large enough. But since we consider the gas flow T
in rather small observation domains, it may occur that the mean values vary.
To account for the possibly varying mean values of gas flow, we introduce
characteristics evaluating the gas supply of electrodes independently of these
mean values.
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We therefore consider the following two characteristics. As a measure of
global variability, the (empirical) coefficient of variation

ρT =

√
1

n−1
∑n

i=1

(
xi − 1

n

∑n
i=1 xi

)2
1
n

∑n
i=1 xi

(4)

is considered, where {x1, . . . , xn} = {T (y, z), y, z ∈ {0, . . . , 511}}. The coef-
ficient of variation ρT is a normalized measure of dispersion from the mean
value of the gas flow field T . It is normalized such that it does not depend
on the mean value of T .

Furthermore, the function γT : [0,∞) → [0,∞) is considered describing the
variation in space (i.e., magnitude, size and arrangement of inhomogeneities)
of T , which is given by a normalized version of the so-called empirical vari-
ogram45, i.e.,

γT (r) =

√
1
|n(r)|

∑
(i,j)∈n(r)(xi − xj)2
1
n

∑n
i=1 xi

, (5)

where n(r) denotes the set of pairs i, j ∈ {0, . . . , 511} such that |xi−xj| = r,
and |n(r)| is the number of pairs of the set n(r). The normalized empirical
variogram specifies the dependency of values T (u, v), T (w, q) of point pairs
(u, v), (w, q) with a specified distance of r = |(u, v) − (w, q)|. Important
characteristics of the variogram are the sill S which is the limit of the var-
iogram if r tends to infinity and the range R defined by the distance when
the variogramm first reaches 95% of the sill. The sill S is equal to the co-
efficient of variation ρT of T , where the range R, roughly speaking, stands
for the distance of point pairs (u, v), (w, q) whose values T (u, v), T (w, q) are
dependent of each other. More precisely, points that are close to each other
will generally have a stronger correlation in their values than those farther
apart. The range R gives the maximal distance between pairs of points where
a correlation of their values is significant. For more information about the
variogram the reader is referred to45. Furthermore, the course of the nor-
malized variogram for gas flow fields T depends on the magnitude, size and
arrangement of inhomogeneities. In particular, larger magnitudes lead to a
larger sill S and larger sizes to a larger range R.

Since it is preferable to characterize the spatial arrangement of inhomo-
geneities by a single value, the following global characteristic is considered.
Let gT be the integral over the normalized empirical variogram γT (·) from 0
to the range R, i.e.,

gT =

∫ R

0

γT (r)dr (6)
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Note that gT is large if the range R and/or the sill S reaches large values.
Considering the case that, both, R and S are small, then gT will be small
too. This is desirable since a small range R indicates that the sizes of inho-
mogeneities are small and a small sill S stands for a small global variability
which can only be the case if the magnitude and size of the inhomogeneities
of T are small. In general, gT depends on the length of integration interval
[0, R], but also on the values of γT (·) which are by trend large if S (being the
limit of γT (r) as r →∞) is large.

Recall that uniform mass transport for the gas supply of electrodes by the
GDL is preferred. Thus, smaller values of gT , ρT evaluate the scalar field
‘better’ and indicate a better gas supply by the GDL.

3.3 Statistical Analysis of the Quality of Gas Supply

In Section 3.2, criteria evaluating the quality of gas supply of electrodes by
the GDL were introduced. We apply these quality measures to all mass
transport simulations via the LB method for the virtual microstructures of
paper-type GDL drawn from the stochastic simulation model, see Section 2.
Subsequently, we correlate the values of the quality measures with the binder
morphology controlled by the binder radius br (or filling probability p, re-
spectively).

3.3.1 Means and Fluctuations of Quality Measures

Table 5 shows that with increasing binder radius br, the mean values of all
characteristics (coefficient of variation ρT , gT and range R) monotonously in-
crease with increasing binder radius. This strongly suggests that the quality
of gas supply decreases with increasing binder radius. Thus, there is strong
evidence that large clusters of binder which hamper the gas flux, are unfa-
vorable for a homogeneous gas supply. Note that the different binder types
A, B, C, D, and E have been realized such that the resulting (synthetic)
paper-type GDL exhibit a constant volume fraction of the solid phase (i.e.,
fibers plus binder).

What is striking, however, are the relatively large fluctuations of the values
of ρT and gT for each given binder type as displayed in Figure 9. Note that
the microstructure of synthetic paper-type GDL is random which is captured
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by the stochastic microstructure model explained in Section 2.1. Thus, one
can expect some natural fluctuations regarding the microstructure and sub-
sequently, also variations regarding the values of the quality measures. Nev-
ertheless, if the size of the synthetic microstructures (observation window) is
large enough these variations will balance and thus, will be more or less the
same for each (independent) replication of a given binder type. In short, a
large image is beneficial for high accuracy of computed characteristics and
this accuracy can be increased by either increasing the volume of the image
or by averaging over an increasing number of replications (i.e., considering
several independent 3D images). In our case, from Figure 9 we see that -
although the considered image is relatively large (195 µm × 768 µm × 768
µm ) - a single 3D image is not enough to measure effects of binder morphol-
ogy accurately. If fact, if one considers only a series of single images for the
different morphologies, one might even obtain, due to the large variations, a
wrong trend, e.g., that large binder radii are preferable for a homogeneous
gas flux.

This emphasizes the absolute necessity of considering a sufficiently large num-
ber of 3D images per binder type to obtain accurate results when one per-
forms a quantitative analysis.

The acquisition of a sufficiently large number of experimental (tomographic)
3D images, however, is expensive in terms of financial and time resources.
In our case, this situation has been remedied by the stochastic model, where
synthetic microstructures can be efficiently generated at almost no costs.
In addition, by parallelizing the computation of the LB method on super
computers, it is possible to obtain gas flow simulations in relatively short
time.

3.3.2 Influence of the Top Layers

Considering the histograms of ρT and gT in Figure 9, we see that the fluctu-
ations of these values per binder type are rather large (i.e., we can observe
a large width of the histograms). As discussed in Section 3.3.1, these strong
deviations would decrease for larger observation windows. However, in ad-
dition to this, the question arises which morphological features of the GDL
microstructure are responsible for the large variability of the quality measures
for each binder type.

Thus, for each binder type, we aim to detect structural characteristics, which
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lead to the fluctuations of the values of ρT and gT , respectively. For brevity,
we only consider the variability of the coefficient of variation ρT , since the
investigation of gT leads to analogous results. Due to the chosen size of the
observation window and the stochastic nature of the microstructure model
(constructed by a multi-layer approach), the volume fraction of the individual
fiber layers plus the binder therein is subject to fluctuations. Furthermore,
it is clear that the layers located at the top of the synthetic GDL are more
important for the variability of the gas flow field at the exit of the GDL. Thus,
our assumption is that the volume fraction averaged over the top layers of
the synthetic GDL highly influences the value of the variation coefficient ρT .

It turns out that the volume fraction νi of the solid phase (i.e., fibers and
binder) of the i top layers is mainly responsible for the variability of ρT for a
fixed binder type. Recall that the virtual GDL consists of n` = 26 layers. To
determine the number of top layers i which are closely related to the value
ρT , we maximize the Pearson correlation coefficient cor(ρT , νi) ∈ [−1, 1] with
respect to the number of top layers i, since the correlation coefficient is a mea-
sure of the strength of linear dependence of νi and ρT 46. The closer cor(ρT , νi)
is to 1 the stronger is the linear dependency of ρT and νi. In Table 6, the
maximized correlation coefficient with respect to the number of top layers i
(i.e., maxi∈{1,...26} cor(ρT , νi)) as well as the number of top layers i with the
maximum correlation coefficient (i.e., arg maxi∈{1,...26} cor(ρT , νi)) are listed.
Furthermore, in Figure 10 the characteristics νarg maxi∈{1,...26} cor(ρT ,νi) and ρT
are plotted against each other for binder types A and C. Note that the re-
maining binder types show the same behavior. We can clearly see that the
value of νi gives a good prediction of the corresponding value of ρT . More-
over, it also turns out that number i of most relevant top layers increases for
increasing binder radius br. This leads to the conclusion that the influence
of binder on the homogeneity of gas flow at the GDL exit is higher for larger
binder clusters.

4 Direct Stochastic Modeling of Gas Supply

In this section, we develop a parametric stochastic model for the gas flow field
T at the exit of the GDL. By means of this stochastic model it is possible
to realistically mimic the results of the LB simulations regarding gas flow at
the exit of the GDL with negligible computational effort, i.e., the gas flow
field T computed by LB and the corresponding field TS generated by the
stochastic model, will exhibit the same structure in terms of magnitude, size

16



and spatial arrangement of inhomogeneities of the gas flux.

Moreover, this direct stochastic modeling approach has further benefits.
First, the stochastic model gives a deeper insight into the geometric struc-
ture of gas flow fields at the exit of the GDL. In this way, it allows to better
compare structural differences in the gas flow fields for GDL with different
binder morphologies. More precisely, the stochastic model allows us to quan-
titatively analyze the gas supply, e.g., to characterize magnitude, size and
arrangement of regions with high gas supply at the GDL exit.

In addition to this, we can apply the stochastic gas-supply model in a way
that allows to predict the gas flow field T at the GDL exit for binder mor-
phologies which have not been considered so far (i.e., for br /∈ {6, 18, 30, 40,∞}
without performing expensive LB simulations).

Our goal is to describe the field T of exiting gas flows after crossing the GDL
for the binder types A, B, C and E by a spatial stochastic model. Note that
we do not take binder type D into account for model fitting, since we will use
it for the validation of the predictive capability of our stochastic model, i.e.,
we compare the gas flow fields predicted by our model to the fields gained
by the LB method as described in Section 2.

To get an idea which class of stochastic models might be suitable to describe
the gas flow fields T for all different binder types A,B,C,E, it is useful to
re-consider the results visualized in Figure 8. This figure suggests that a gas
flow fields resemble a system of Gaussian bells,

Thus, for modeling the field T of exiting gas flows we consider unions of
Gaussian bells, with random locations and heights. In a first step, a suitable
2D point-process model is chosen which describes the locations of the Gaus-
sian bells, see Figure 11 (a). Subsequently, each point of the point process is
marked by a random height, as displayed in Figure 11 (b). Finally, to each
marked point, we associate a truncated Gaussian bell, where the variance
and the range of the bell can be adjusted appropriately, see Figure 11 (c).
Note that the heights of the points are the maximum of the bells. By the
union of the bells, the stochastic model is given describing the gas flow field
T after crossing the GDL.
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4.1 Modeling the Locations of Local Maxima

We consider a suitable 2D point-process model which is flexible enough to
describe the locations of bells for all binder types A, B, C, E. As mentioned
before, binder type D is not taken for fitting but used for validation instead.
In this context, note that the gas flow fields T are given as 2D pixel images,
where the value of a pixel indicates the gas flow at the corresponding location.
Our idea is to interpret the local maxima of these 2D images as the center
points of the truncated Gaussian bells. This assumption is reasonable since
the local maxima in the 2D images indicate areas with peak gas flux. Thus,
local maxima of the gas flow field have a minimum distance of rh = 3 µm
from each other since the maxima cannot be located in neighboring pixels
and the pixel size is equal to 1.5 µm. This minimum distance rh is called
hardcore distance and it is included into the model.

In order to model the locations of bells, we consider a class of point processes
which is build by a modulated dominance-competition principle. In this way
a hardcore distance rh (i.e., a minimum distance between points) as well as
clustering and repulsion effects of points can be included into the model.

The idea of modulated dominance competition consists of a two-stage ap-
proach where in a first step a random set ΞA (avoidance set) is generated in
which no point is allowed to be located. Then, in the second step, we release
points in the complement of the avoidance set ΞA according to a so-called
dominance-competition principle.

The avoidance set ΞA is given by a union of random circles, i.e.,

ΞA =
∞⋃
n=1

b(Pn, rA) (7)

where the midpoints Pn of the circles b(Pn, rA) form a stationary Poisson
process {Pn} in R2 with some intensity λP > 0, and the radius of the circles
is some constant rA > 0. The benefit of including the avoidance set ΞA into
the model is that in this way we are able to get areas where no or only few
gas particles will flow.

In the next step, we consider a stationary dominance-competition point pro-
cess {Sn}n≥1 in R2 with some intensity λS > 0 and random radii Rn. Note
that by an appropriate choice of the distribution of the random radii Rn, the
distances between pairs of points can be controlled efficiently. We consider
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a shifted Gamma distribution, i.e., Rn = Gn + rh, where Gn is a Gamma-
distributed random variable with some mean r1 and variance r2. For further
information about the dominance-competition model the reader is referred
to47–49 and the references therein.

Assuming that the point processes {Pn} and {Sn} are independent, the mod-
ulated dominance-competition model {Mn} is defined by {Mn} = {Sn}∩Ξ{

A,
where Ξ{

A denotes the complement of ΞA. Thus, in {Mn} only those points
of {Sn} are taken into account being not located in the avoidance set ΞA. By
λ > 0, we denote the required intensity of {Mn}. Moreover, the intensity λS
of the dominance-competition model {Sn} can be determined by simulation
experiments provided that the parameter vector (λ, λP , rA, r1, r2, rh) of the
modulated dominance-competition model {Mn} is given.

In this way, we succeed in generating areas (given by ΞA) where low or no gas
flow occurs, whereas the clustering and repulsion of local maxima is nicely
controlled by the dominance-competition model {Sn}. Thus, the modulated
dominance-competition model {Mn} can be described by five parameters:
λS, λP , rA, r1, r2, rh. Note that instead of λP , the area fraction νA of ΞA can
be considered which is given by νA = 1− exp(−λPπr2A).

4.1.1 Model Fitting

The parameters of the modulated dominance-competition model are fitted
to the point pattern of local maxima extracted from the gas flow fields for
each group of binder separately.

The intensity λ of the stationary point process{Mn} can be easily estimated
by

λ =
total number of local extrema in the 25 realizations per binder radius

25 times the volume of sampling window
.

Moreover, the hardcore distance rh is equal to 3 µm. The remaining four
parameters (νA, rA, r1, r2) are estimated using the minimum-contrast method
with respect to the pair-correlation function g of {Mn}. Note that g(r) is
proportional to the relative frequency of point pairs with distance r > 0
from each other31. More precisely, (νA, rA, r1, r2) are chosen such that the
discrepancy

∫ 75

15

(
ḡ(x)− ḡ(νA,rA,r1,r2)(x)

)2
dx between the pointwise averaged

(empirical) pair-correlation function ḡ over the 25 realizations of sets of local
extrema and its simulated counterpart ḡ(νA,rA,r1,r2) drawn from the modulated
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dominance-competition model {Mn} is minimized. Note that the values of
g(r) for r < 15 µm can be seen as estimation artifacts since there exist only
few point pairs with such a short distance to each other. In Table 7, the
fitted parameters of the point process {Mn} for the different binder types
are listed. Figures 12 (a) shows that the modulated dominance-competition
model {Mn} fitted to the local extrema of each binder type A, B, C, and
E excellently reflects the averaged empirical pair-correlation functions. The
same is true for other image characteristics which have not been used for
model fitting, see Section 4.1.2 below.

4.1.2 Model Validation

To check if the fitted point-process model {Mn} reproduces the observed
point pattern of local extrema sufficiently well, the accordance of a further
important structural characteristic of irregular point patterns, the histogram
of spherical contact distances, is investigated. It is defined as the histogram
of the distance from a randomly chosen location in the observation window to
the closest point of the point process31;47. Plots of these histograms are shown
in Figure 12 (b), for both the extracted local extrema and simulated point
patterns, where a very good coincidence is observed. Moreover, the extracted
and simulated point patterns themselves are in a good optical accordance,
see Figure 13.

4.2 Modeling the Heights of Local Maxima

In the next step, to each point Mn of the modulated dominance-competition
model {Mn} we assign a random height Hn which represents the height of the
truncated Gaussian bell to be constructed. We chooseHn as independent and
identically distributed random variables following a shifted, and truncated
Gamma distribution, i.e., Hn ∼ gmin + Γ(g1, g2, gmax) where gmin shifts the
Gamma distribution and gmax truncates it, i.e., realizations of Hn > gmax are
rejected. Moreover, g1 denotes the shape and g2 the scale parameter of the
Gamma distribution. The truncation is reasonable since the maximum gas
flow should be finite.

For parameter fitting, we first choose the values of gmin and gmax, respectively,
putting them equal to the minimal and maximal values of the extracted lo-
cal extrema per binder type. The parameters (g1, g2) are estimated using the
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minimum-contrast method minimizing the Kolmogorov distance between the
empirical distribution functions computed for the observed values of local ex-
trema and simulated values drawn from the shifted and truncated Gamma
distribution, see Figure 12 (right). The fitted values are listed again in Ta-
ble 7. The mean values and standard deviations of the heights of the fitted
distributions are given by 0.0032± 0.0029 for binder type A, 0.0031± 0.0031
for binder type B, 0.0032± 0.0031 for binder type C, and 0.0031± 0.0036 for
binder type E.

4.3 Modeling the Gas Flow Field

So far in Sections 4.1 and 4.2, we have introduced a marked dominance-
competition model {(Mn, Hn)} describing the local extrema and their heights
of the field T of gas flows. Next, we assign to each marked point (Mn, Hn)
a truncated Gaussian bell, where the maximum height of the bell is equal
to Hn and the parameters σ (standard deviation) and κ (range) control the
width and truncation of the bell. More precisely, the truncated Gaussian bell
Gb(Mn, Hn, σ, κ) ∈ R3 is defined by

Gb(Mn, Hn, σ, κ) = {(x, y, f(x, y))> ∈ R3 : f(x, y) = Hn (8)

× exp
(
− (x−M1,n)

2+(y−M2,n)
2

2σ2

)
1I|(x,y)>−Mn|≤σκ} ,

where |(x, y)> − Mn| denotes the Euclidean distance between (x, y)> and
Mn = (M1,n,M2,n).

The complete model Ψ describing the gas flow field T is then given by

Ψ({Mn, Hn}, σ, κ) =
∞⋃
n=1

Gb(Mn, Hn, σ, κ) . (9)

4.3.1 Model Fitting

The stochastic model Ψ introduced in Eq. (9) depends on the marked
modulated dominance-competition model {(Mn, Hn)} and on the parame-
ters σ, κ ∈ [0,∞). The fitting of the parameters of {(Mn, Hn)} has already
been discussed in Sections 4.1-4.2. We therefore focus on the estimation of σ
and κ, where we again use the minimum-contrast method for the Kolmogorov
distance between the empirical cumulative distribution function of all values
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of the observed gas flow fields and Ψ({Mn, Hn}, σ, κ) within an observation
window. See Table 7 for the corresponding list of fitted parameters for the
different binder types.

4.3.2 Model Validation

For model validation, the quality measures introduced in Section 3.1 in order
to evaluate the goodness of gas supply are computed for the observed and
the simulated (drawn from Ψ) gas flow fields. More precisely, the averaged
normalized variograms of observed and simulated gas flow fields are plotted in
Figure 14, where the mean values and standard deviations of the coefficients
of variation ρT are listed in Table 8. The results show that there is a very
good agreement between observed and simulated data. Moreover, the visual
accordance of gas flow fields gained by the LB method and drawn from the
stochastic model presented in this section is also quite good, see Figure 15.

4.4 Prediction of Gas Flow Fields

In Section 4.3, a stochastic model has been introduced, which adequately
describes the fields of gas flow for binder types A, B, C, E gained by LB
simulations.

We now use this model to predict the fields of gas flow for binder radii
which have not been considered so far. That means, for an arbitrary binder
radius br ∈ [6,∞] or an arbitrary filling probability p ∈ [0.059, 0.555] the
resulting gas flow fields and thus the goodness of gas flow for all binder
morphologies generated by the stochastic microstructure model for paper-
type GDL described in Section 2 can be predicted. Throughout this section,
we will focus on the filling probability p instead of the binder radius br since
all possible values for the filling probability p are given in the finite interval
[0.059, 0.555], in contrast to the binder radius br ∈ [6,∞]. Note that in
general, the filling probability p can take an arbitrary value from the interval
[0, 1]. But since all other parameters of stochastic GDL model, introduced in
Section 2, are kept fixed and the volume fraction of the GDL should also be
constant, the filling probability p is restricted to the interval [0.059, 0.555].
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4.4.1 Interpolation of Model Parameters

For the stochastic microstructure model of GDL considered in the present
paper, gas flow fields have been computed using the LB method for specific
binder filling probabilities p ∈ {0.555, 0.116, 0.081, 0.059} (corresponding to
br ∈ {6, 18, 30,∞}). However, what is missing so far, are computations of gas
flow fields for arbitrary filling probabilities p ∈ [0.059, 0.555]\{0.555, 0.116, 0.081, 0.059}.
We now propose a predictive gas flow model where we proceed as follows:
Recall that for each filling probabilities p ∈ {0.555, 0.116, 0.081, 0.059}, the
parameters of the stochastic model Ψ (describing the gas flow field) have
been fitted. Considering the parameters of Ψ as a function of p, this provides
4 points of support for each parameter of the stochastic gas flow model Ψ. A
subsequently application of (non-linear) regression models to the four points
of support we obtain a parametric class of models {Ψp, p ∈ [0.059, 0.555)}50.

More precisely, the stochastic gas flow model Ψ is uniquely determined by
12 parameters c1, . . . , c12, where

(c1, . . . , c12) = (λS, νA, rA, r1, r2, rh, gmin, gmax, g1, g2, σ, κ) (10)

i.e., Ψ = Ψ(c1,...,c12). Since the parameters depends on the filling probability
p, we interpret the parameter vector (c1, . . . , c12) as a function of the filling
probability p, i.e., (c1, . . . , c12)

> : [0.059, 0.555]→ R12 with

p→ (c1(p), . . . , c12(p)) (11)

For each p ∈ {0.555, 0.116, 0.081, 0.059}, the parameters (c1, . . . , c12) of Ψ(c1,...,c12)

have been fitted which yields 4 points of support for each of the functions
(c1(p), . . . , c12(p)), i.e., we obtain (ĉ1(p), . . . , ĉ12(p)) for p ∈ {0.555, 0.116, 0.081, 0.059}.

The predictive model for fields of gas flow given by Ψ(c1(p),...,c12(p)) for p ∈
[0.059, 0.555], where ci(p) = αi · pβi + γi, for some αi, βi, γi ∈ R, adequately
describes the relationship between ci and p. This can be seen in Figure 16
displaying the approximation of the points of supports by the functions ci(p).
In Table 9 the fitted values of αi, βi and γi can be found.

4.4.2 Model Validation

To validate the predictive capability of the stochastic model Ψ(c1(p),...,c12(p)),
we check if the model is able to predict the fields of gas flow for the binder
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type D which was not used for the fitting of (c1(p), . . . , c12(p)). Therefore,
we compare the quality measures introduced in Section 3 for the gas flow
fields which are gained by the LB method for binder type D (filling prob-
ability p = 0.063) and computed for its simulated counterpart drawn from
Ψ(c1(0.063),...,c12(0.063)). In particular, the mean value (standard deviation) of
the coefficients of variation for the gas flow fields of binder type D is 1.33
(0.12) (see Table 5), where its simulated counterpart is equal to 1.34 (0.08).
Additionally, the averaged normalized variograms are plotted in Figure 17
(a).

Finally, for binder type D, we visually compare a gas flow field computed
via the LB method and a simulated field drawn from Ψ(c1(0.063),...,c12(0.063)),
see Figure 17 (b, c). A very good agreement is found for the computed
characteristics as well for the visualized fields. In summary, the stochastic
gas flow model Ψ(c1(p),...,c12(p)) is capable to predict fields of gas flow at the
exit of GDL with arbitrary binder radius br.

4.5 Structural Properties of Gas Flow Fields

The description of the gas flow fields by a predictive stochastic model gives
a deeper insight into the structural properties of the gas flow fields. It thus
allows to quantitatively analyze local properties of gas flow, e.g., to charac-
terize magnitude, size and arrangement of regions with high gas supply.

In particular, we link the parameters of the (predictive) gas flow model given
in Tables 7 and 9 with local properties of gas flow fields for different binder
morphologies. Recall that the fields of gas flow are modeled by unions of
truncated Gaussian bells. We concentrate on the following characteristics.

(a) The parameters κ and σ are responsible for the width and the range of
the truncated Gaussian bells. The curve progressions of both parame-
ters indicate only insignificant differences for κ and σ for the different
values of the filling probability p. This suggests that the width and the
range of the inhomogeneities are invariant with respect to the size of
binder radii.

(b) Recall that the avoidance set ΞA indicates areas where no bells are
allowed to be located. Thus, the increase of the area fraction νA of ΞA

for increasing binder radius indicates that the area of regions with no
or only small gas flow increases significantly for large binder radii.
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(c) The total intensity λ of bells decreases for increasing binder radius.
Thus, taking property (a) into account, for large radii there are fewer
areas with high gas flow.

(d) Regarding the height of the gas flows (c.f. Figure 12 (c)), we observe an
increase of the maximum values gmax and of the variance for increas-
ing binder radii, where the mean value of the heights remains nearly
constant, see Section 4.2. Thus, for large radii, there are fewer areas of
gas flow (c.f. property (c)), however, the peaks of local gas flow as well
as the variability of heights are significantly increased.

5 Conclusion and Outlook

In this paper, we studied the influence of the binder morphology in paper-
type GDL on the quality of gas supply of the electrodes. The principal idea
was to generate virtual 3D microstructures representing paper-type GDL by
a stochastic simulation model, where the binder morphology was modified
in a systematic manner. On these structures single phase, single component
gas flow was computed by the LB method. Subsequently, we introduced and
analyzed quality criteria evaluating the spatial homogeneity of gas supply
with respect to the binder morphology. In addition to this, the goodness of
gas supply was directly analyzed by a parametrized stochastic model which
describes the gas flow field at the exit of the GDL. It was found that the
binder morphology has an essential influence on the quality of gas supply,
where it is preferable that the binder does not build large clusters. In partic-
ular, the clusters were lower than 50 µm which is much smaller than relevant
sizes of macroscopic flow structures. The latter are typically channel widths
and heights in the range of millimeters.

The presented methods build a toolbox for virtual material design in the
field of creeping gas transport in complex microstructures. Not only effective
parameters are calculated but also qualitative criteria of the capability of
the microstructure for gas transport. Last but not least the quantitative
analysis provides valuable information about the size of irregularities in the
gas transport causes by the microstucture.

In a forthcoming paper, we will use the same strategy of combining stochastic
and numerical methods as considered in the present paper, for the evaluation
of gas flow in compressed GDL.
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6 Tables and Figures

Table 1: Notation of binder morphologies generated by different binder radius
br and filling probability p, respectively

binder type A B C D E
br in µm 6 18 30 40 ∞

p 0.555 0.116 0.081 0.063 0.059

Table 2: Operating conditions of HT-PEFC
average current density 1A/cm2

volumetric flow rate H2 7ml/min
operating temperature 400K
superficial velocity H2 1.7·10−3m/s

Table 3: Measured permeabilities on Toray 090 reported by Hussaini et al.4
configuration compression permeability / µm2 origin
through-plane 5 % 4.4 cited

10 % 9 cited
9 % 12.4 ± 0.88 measured

in-plane 0 % 20 cited
9 % 14.6 ± 2 measured

28



Table 4: Simulated transport properties of binder models A, B, C, D, and E,
averaged over 25 virtual geometries

orientation A B C D E
permeability [µm] 16.52 ± 1.21 15.91 ± 1.34 15.27 ± 1.46 13.71 ± 1.58 13.04 ± 1.79

tortuosity 1.34 ± 0.02 1.38 ± 0.03 1.39 ± 0.03 1.47 ± 0.04 1.50± 0.07

Table 5: Mean values and standard deviations of the coefficient of variation
ρT , the global spatial variation gT , and the range R in µm computed for the
25 fields of gas flow per binder type (bt)

bt A B C D E
ρT 1.20± 0.09 1.24± 0.09 1.24± 0.10 1.33± 0.12 1.44± 0.20

gT [µm] 29.23± 3.61 31.50± 4.14 33.97± 5.6 40.15± 9.79 46.03± 10.46
R [µm] 34.74± 3.26 36.78± 4.62 38.94± 4.83 42.30± 6.48 46.08± 7.57

Table 6: Maximized correlation coefficient cor(ρT , νi) and the corresponding
number of layers i for the considered binder types

binder type A B C D E
maxi∈{1,...26} cor(ρT , νi) 0.86 0.83 0.80 0.82 0.77

arg maxi∈{1,...26} cor(ρT , νi) 2 3 3 4 5
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Table 7: Fitted parameters for the stochastic model Ψ for gas flow fields
Binder type A B C E
λS [µm−2] 0.00201 0.00161 0.00153 0.00146
λ [µm−2] 0.00062 0.00061 0.00060 0.00056
λP [µm−2] 2.85 · 10−6 7.36 · 10−6 1.88 · 10−5 2.31 · 10−5

rA [µm] 90 67.5 52.5 60
νA 0.07 0.1 0.15 0.23

r1 [µm] 12 11.85 9.9 8.7
r2 [µm] 45 47.25 56.25 56.5
rh [µm] 3 3 3 3
gmin [m/s] -0.00014 -0.00025 -0.00017 -0.00018
gmax [m/s] 0.02 0.022 0.023 0.031
g1 [m/s] 1.32 1.15 1.12 0.75
g2 [m/s] 0.00267 0.00292 0.003 0.00423
σ [µm] 15.0 15.75 15.75 16.5
κ [µm] 2.1 2.1 2.1 2.1

Table 8: Mean values (standard deviations) of the coefficients of variation ρT
for the gas flow fields gained by LB simulations and drawn from the stochastic
model Ψ

binder type A B C E
ρT via LB 1.20 (0.09) 1.24 (0.09) 1.24 (0.10) 1.44 (0.20)
ρT via Ψ 1.21 (0.09) 1.24 (0.07) 1.25 (0.07) 1.43 (0.15)
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Table 9: Fitted curves for all ci accomplished by non-linear regression
αi βi γi

c1 (λS) 0.00215 0.148 4.5 · 10−5

c2 (νA) 0.00026 -2.272 0.068
c3 (rA) 72.69 0.39 32.36
c4 (r1) -0.00764 -2.175 12.18
c5 (r2) 0.47 -1.19 43.63
c6 (rh) 0 0 3
c7 (gmin) −9.14 · 10−5 -0.146 −4.01 · 10−5

c8 (gmax) 1.8 · 10−6 -3.07 0.02
c9 (g1) −3.79 · 10−4 -2.50 1.315
c10 (g2) 1.068 · 10−8 -4.00 0.0027
c11 (σ) 0.049 -1.21 14.93
c12 (κ) 0 0 2.1
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Figure 2: (a) 2D SEM image of Toray 090 GDL consisting of carbon fibers
agglutinated by binder, (b) top-view on 3D paper-type GDL drawn from the
stochastic model with binder radius br = 6 µm (p = 0.555)

Figure 3: 2D slices of virtual paper-type GDL generated by the multi-layer
model with different binder radii: (A) br = 6 µm (p = 0.555), (B) br = 18
µm (p = 0.116), (C) br = 30 µm (p = 0.081), (D) br = 40 µm (p = 0.063),
and (E) br =∞ µm (p = 0.059)
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Figure 4: Simulation frame and coordinate axes of through-plane simulations

Figure 5: 3D paper-type GDL drawn from the stochastic microstructure
model for binder type A (br = 6 µm), binder type C (br = 30 µm), and
binder type E (br =∞ µm)
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Figure 6: Statistical spread of effective transport properties from through-
plane simulations on virtual microstructures

Figure 7: 3D paper-type GDL drawn from the stochastic microstructure
model (a) and its gas flow field T (b)
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Figure 8: Gas flow fields T for binder type A (br = 6 µm), B (br = 18 µm),
C (br = 30 µm), D (br = 40 µm), and E (br =∞ µm)

Figure 9: Histograms of the coefficient of variation ρT (a), the global spatial
variation gT (b), and point-wise averaged normalized variograms (c) com-
puted for the 25 fields of gas flow per binder type
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Figure 10: Scatter plot of νarg maxi∈{1,...26} cor(ρT ,νi) and ρT for binder types A
and C. Number of top layers according to Table 6.

Figure 11: Basic modeling idea for fields of gas flow: choose a 2D point
process representing the locations of the bells (a), add height information to
the point process (b), and take the union of truncated Gaussian bells (c)
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Figure 12: Pointwise averaged pair-correlation functions (a), histograms of
spherical contact distances (b), and histograms of marks (c) computed for
the extracted (solid lines) and simulated (dashed lines) point patterns of local
extrema for each binder type A, B, C, E
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Figure 13: Local maxima of gas flow fields (top) and simulated point patterns
drawn from the fitted point-process models (bottom) for the binder type A
and E
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Figure 14: Pointwise averaged normalized variograms for the gas flow fields
computed via the LB method (solid lines) and computed for simulations
drawn from the stochastic model Ψ (dashed lines)
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Figure 15: Gas flow fields computed via the LB method (top) and simulated
fields drawn from the stochastic model Ψ (bottom) for binder types A and E
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Figure 16: Non-linear regression curves for the parameters λS · 20000 (i.e.,
c1 · 20000), νA · 100 (i.e., c2 · 100), r2 (i.e., c5), and σ (i.e., c11)

Figure 17: (a) pointwise averaged normalized variograms for the gas flow
fields computed via LB method (solid lines) and computed for simulations
drawn from the stochastic model Ψ (dashed lines), (b) gas flow field gained by
LB simulations for binder type D, (c) gas flow field drawn from the predictive
stochastic model Ψ(c1(0.063),...,c12(0.063)) for binder type D
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