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Abstract. An approach for improving the performance of super-resolution networks by integrating
spatially resolved transport simulations is investigated for three different scaling factors α ∈ {2, 4, 8}.
In addition, the issue of scarcity in training data is addressed by training the networks only on artificial
image data, generated by means of a stochastic 3D model that produces digital twins of the nanoporous
inner structure of active particles in battery cathodes. The performance of the trained networks is
evaluated based on real tomographic image data, and quantified with respect to various geometric
descriptors and effective transport properties. It turned out that the integration of transport simulations
into the training of super-resolution networks showed an increase in performance for the scaling factors
α ∈ {2, 4}, but a decrease in performance for α = 8. However, training the networks on artificial image
data was effective in all cases.

1. Introduction

Predicting effective properties of functional materials on a nanostructural level is a highly complex
task that requires detailed knowledge on the morphology of the specimen in question [1]. In order
to obtain this knowledge, it is often necessary to acquire 3D image data at a resolution that is high
enough to resolve all relevant details of the nanostructure. On the other hand, the acquired data
needs to cover a representative volume element in order to ensure reliability and reproducibility of any
subsequent analysis. This highlights the fundamental trade-off between resolution and field-of-view in
many imaging techniques.

One approach to combat the need of experimentally acquiring highly-resolved image data is through
super-resolution techniques, which artificially up-sample a given image from a lower to a higher reso-
lution. Since imaging at a lower resolution typically is accompanied with a larger field-of-view, super-
resolution enables us to measure a larger volume at a lower resolution during the imaging stage, while
regaining some of the forgone resolution in post-processing. Within the field of machine learning, con-
volutional neural networks (CNNs) have been thoroughly studied for super-resolution tasks and have
been shown to be an efficient technique superior to many classical methods [2, 3]. However, as neural
networks require an extensive database to be trained, such an approach requires a large amount of
already available highly-resolved image data.
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In this paper we attempt to solve the scarcity in training data by application of a stochastic 3D
model [4–6] that allows for a computationally cost-effective generation of digital twins, i.e., an artificial
specimen of a material that is statistically similar to a real world sample with respect to its geometry,
morphology and functional properties [7]. In this way, new image data can be (artificially) generated
and subsequently down-sampled in order to create a database of low- and high-resolution pairs of
simulated 3D images for the training of the super-resolution CNN. Regarding similar papers where
data generation via stochastic modeling and machine learning has been combined, we refer to [8–11].

We study this approach by means of the stochastic 3D model proposed in [12]. More precisely, using
an excursion set of a χ2-random field, we generate digital twins of nanoporous particles in cathodes
of lithium-ion batteries. These particles exhibit a porous structure on the nanoscale and have been
measured by focused ion beam scanning electron microscopy (FIB-SEM) tomography [12]. Based on this
tomographic image data, the model was calibrated and also validated by comparing the values of various
geometric descriptors computed for model realizations and tomographic image data, respectively [12].
In the present paper, the database generated in this way will be used to train different CNNs performing
super-resolution tasks. While this approach still fundamentally requires tomographic image data for the
calibration of the stochastic 3D model, the amount of data needed for this is significantly less than that
required for the training of a CNN performing super-resolution tasks. Moreover, since the stochastic
3D model is fully parametric, it is possible to vary the morphology of the simulated nanostructures in
a systematic way, thereby creating a more comprehensive database for training neural networks.

A primary motivation for obtaining high-resolution 3D image data is their crucial role in supporting
numerical simulations of various physical and chemical transport phenomena. Such data serve as a
detailed basis for modeling transport processes in porous materials, including fluid flow, diffusion,
and reactive transport. In the present paper, we focus specifically on transport processes in battery
electrodes. In this context, highly accurate nanostructure reconstructions are essential for the accurate
simulation of complex electrochemical processes, where the critical interaction between nanostructure,
ion transport, and electrochemical reactions determines the overall performance [13–20]. To ensure
that artificially super-resolved image data provide a reliable foundation for numerical simulations, it
is crucial that the transport pathways through the material are realistically reproduced. In three-
dimensional porous structures, transport often localizes around a few paths that contribute to a major
portion of the flow. If the network misclassifies some voxels in such a way that those paths can no
longer be used, the resulting error in representing the morphology is larger than the errors conceivable
by a voxel-wise comparison between super resolution and ground truth. Thus, in a second study of
this paper, we aim to provide the CNN with a weighting of the voxels based on their contribution
to the overall flow, thereby guiding the network towards important bottlenecks or connections within
the transporting phase. This is done by use of numerical solutions of diffusion problems on the low-
resolution nanostructures. In particular, the diffusion problem is solved on low-resolution images of
both solid and pore phases. Then, the solutions are provided to the network in a discretized form
as two 3D gray scale images in order to perform super-resolution of the low-resolution image of the
nanostructure. On low-resolution images, such a solution can be determined within reasonable time.

We compare the performance of CNNs trained only on simulated 3D binary images with that of
CNNs trained with the additional information of the diffusion problem at three different scaling factors
α ∈ {2, 4, 8}. As a baseline reference, we also consider upsampling by tri-quadratic interpolation [21].
The trained CNNs are validated by assessing the quality of the super-resolution task on both virtual
and experimentally measured image data. For this, we consider metrics such as a simple accuracy
rating acquired by counting the correctly classified voxels in the artificially super-resolved image data.
As super-resolving large areas of the same phase is typically easy, we also consider the surface accuracy,
which only counts correctly classified voxels near the boundary of the solid and pore phase. Moreover,
we assess the quality of super-resolution results by means of the transport-related notion of tortuosity,
which aims to quantify the degree of winding in transport paths through a given phase of the material.
While there are many different definitions of tortuosity [22], we focus on the mean geodesic tortuosity
and the effective tortuosity, which correspond to a purely geometric and a physical approach to define
tortuosity, respectively. The mean geodesic tortuosity quantifies the average relative length of shortest
paths starting from one side of a cuboidal volume element of the material to the opposite side within a
given phase. The effective tortuosity emerges from the solution of the diffusion problem. It is defined
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via the ratio of the effective and intrinsic diffusion coefficients multiplied by the volume fraction, and
quantifies the impact of the morphology on the overall flux in the medium. In this way, we can quantify
whether the additional information on the solution of the diffusion problem aids the CNNs in correctly
classifying voxels that belong to crucial transport paths in the medium.

The remainder of this paper is organized as follows. In Section 2.1 we present the database considered
in this paper. This includes binary tomographic 3D image data acquired by FIB-SEM measurements,
corresponding (simulated) binary 3D image data drawn from the calibrated stochastic 3D models, and
finally 3D gray scale images representing the solution of the diffusion problem on the solid and pore
phase of the nanostructures. Section 2.2 introduces the neural networks used for the super-resolution
task. The metrics used for validation of the performance of these networks are described in Section 2.3.
A detailed discussion of the results obtained in this study is given in Section 3. Finally, Section 4
concludes.

2. Methods

In this paper we apply super-resolution techniques to tomographic image data depicting the nanos-
tructure of battery electrodes. However, the method investigated here is not limited to battery appli-
cations. It can be extended to super-resolution of porous materials with two or more material phases
segmented from tomographic data. In particular, it can be applied to materials used in other energy
storage and conversion technologies, such as fuel cells, proton exchange membranes, supercapacitors
and electrochemical catalysts. In all of these applications, an in-depth understanding of the nano- and
microstructures of the considered materials is beneficial.

2.1. Generating experimentally measured and simulated image data. This section presents
methods for generating the database used in this study, consisting of experimentally measured tomo-
graphic image data, as well as artificially generated image data drawn from a stochastic 3D model, and
3D gray scale images representing the solutions of the diffusion problem on the solid and pore phases
of the nanostructures.

2.1.1. Tomomgraphic image data. In the present paper, we deal with tomographic image data of func-
tional materials, namely active material for lithium-ion batteries. In particular, we focus on the nanos-
tructured porous secondary particles of a battery cathode made of nickel manganese cobalt oxide
(NMC111), which have been experimentally studied, e.g., in [23, 24], see Figure 1.

Figure 1. Lithium-ion battery cathode with hierarchically structured NMC111 active
material particles. The tomographic FIB/SEM image data depicts the inner structure
of secondary particles, visualized the blue box, where the solid phase is indicated in
white, and the pore phase in black.
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The choice of this material is motivated by the availability of a well-established stochastic 3D
model [12] for the generation of virtual material morphologies, which enables the generation of large
data sets required for training super-resolution networks. Synthetic data plays a crucial role in com-
plementing real experimental data and allows the neural networks to generalize effectively over a range
of nanostructural patterns.

The material used in this study comprises five different samples of hierarchically structured NMC111
cathodes, each with different morphologies characterized by various geometric descriptors. These sam-
ples consist of porous secondary particles, which are themselves composed of smaller primary particles.
More precisely, secondary particles have been produced by sintering primary particles—a process in
which the material is heated to just below the melting point to bond the primary particles and change
the inner nanostructure of secondary particles. To investigate the effects of particle size and sintering
conditions, three different primary particle sizes were considered, classified as fine, medium and coarse.
In addition, two different sintering temperatures, 850°C and 900°C, were applied, which further influ-
ence the inner morphology of secondary particles. To capture the nanostructure, all samples have been
analyzed using 3D FIB-SEM with a resolution of 10 nm/voxel, resulting in tomographic image data for
the inner structure of the secondary particles as shown in Figure 1. The size of each measured image
is 4163 voxels. The obtained gray scale images were binarized using the Otsu thresholding method as
described in [12]. For more details on the material as well as on the acquisition and processing of 3D
image data, the reader is referred to [12].

2.1.2. Stochastic 3D model for porous nanostructures. Based on the tomographic image data obtained
by FIB-SEM measurements, as previously described, a stochastic 3D model for the solid phase of
hierarchically structured NMC111 particles has been developed, which effectively captures the inner
structure of the material, as described in [12]. The model is based on excursion sets of random fields,
using tools from stochastic geometry [4] and mathematical morphology [5]. Note that excursion sets
of random fields have recently also been used to model the nanostructure of hierarchically structured
electrodes for sodium-ion batteries [25].

The stochastic 3D nanostructure model was validated with respect to various geometrical descriptors
that were not used for model fitting, such as mean geodesic tortuosity, which quantifies shortest path
lengths within a certain phase, or constrictivity, which measures the strength of bottleneck effects within
a certain phase. In addition, the so-called M-factor was considered, which is the ratio of effective to
intrinsic conductivity in the case of the solid phase, and the ratio of effective to intrinsic diffusivity in
the case of the pore phase. In [12] this descriptor of effective (charge or mass) transport was numerically
computed for both model realizations and tomographic image data of measured active material samples
by means of a finite element method [26, 27]. The validation procedure performed in [12] showed a
high agreement for all considered metrics across all samples, which suggests that the model realizations
provide a suitable database for the training of the super-resolution network introduced in Section 2.2
below.

To make the present paper more self-contained, we briefly recall how the stochastic 3D model intro-
duced in [12] is defined. Let X1 and X2 be two independent copies of a motion-invariant, i.e., stationary
and isotropic, Gaussian random field X = {X(t) : t ∈ R3}, the expectation function EX : R3 → R and
variance function VarX : R3 → R of which fulfill EX(t) = 0 and VarX(t) = 1 for all t ∈ R3. Under
the above-mentioned assumptions, the distribution of such a random field X is uniquely determined
by its covariance function ρX : [0,∞) → R, given by ρX(h) = Cov

(
X(s), X(t)

)
for each h > 0, where

s, t ∈ R3 with |s− t| = h. Due to the assumption of motion invariance, the definition of ρX(h) does not
depend on the specific choice of s and t, but just on distance |s− t| = h between them. Furthermore,
let Y = {Y (t) : t ∈ R3}, where Y (t) = X2

1 (t) + X2
2 (t) for each t ∈ R3. The random field Y is then

called a χ2-field with two degrees of freedom. Similar to the Gaussian random field X, the distribu-
tion of such a field Y is uniquely determined by the covariance function ρX . The solid phase of the
nanostructured active material observed in tomographic image data is now modeled by the random
excursion set Ξ = {t ∈ R3 : Y (t) ≥ ν}, for some ν > 0, which is the set of locations t ∈ R3 at which
the value Y (t) of the random field Y exceeds a given threshold ν. In order to calibrate the model, the
covariance function ρX and the parameter ν, which is directly connected to the volume fraction of the
random set Ξ, need to be estimated from tomographic image data. For estimating ρX , a parametric
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fit of the form ρ(h) = exp(−γ2h), h ≥ 0, for some γ > 0, was shown to be appropriate. The model
is therefore characterized to the two parameters ν and γ. For each of the five samples measured by
FIB-SEM, the value of the parameter pair (ν, γ) is estimated from tomographic image data. A more
detailed description of the estimation of ν and γ is given in [12].

2.1.3. Generating a database of low- and high-resolution image data. First, we introduce some basic
notation for 3D images defined on a cuboidal grid, which will be used throughout this paper. For some
fixed integers m1,m2,m3 ∈ N = {1, 2, . . .}, let

W = {1, . . . ,m1} × {1, . . . ,m2} × {1, . . . ,m3}. (1)

Moreover, in the context of the super-resolution tasks considered in this paper, we will need to change
the resolution of the grid by a scaling factor α ∈ {2, 4, 8}. Therefore, we also consider the domain

Wα = {1, . . . , αm1} × {1, . . . , αm2} × {1, . . . , αm3}. (2)

As a database for training neural networks to perform super-resolution, we draw realizations from
the excursion set model Ξ described in Section 2.1.2. More precisely, for each of the five experimentally
measured samples, 10 realizations are drawn from the corresponding model, using the respective pairs
(ν, γ) of parameters estimated from tomographic image data. The sampling window for these (high-
resolution) images consists of 8003 voxels, i.e., W8 = {1, . . . , 800}3. In other words, a model realization
corresponds to a binary 3D image I : {1, . . . , 800}3 → {0, 1}, where the values 0 and 1 indicate that a
voxel belongs to the pore phase and the solid phase of the active material, respectively. The resolution
of these binary images coincides with the resolution of the tomographic image data which has been
used for the calibration of model parameters, i.e., the resolution is 10 nm/voxel. These realizations

constitute the database of virtual high-resolution nanostructures and are denoted by Is,i800 for each
experimentally measured scenario s ∈ {1, . . . , 5} and for each statistically equivalent model realization
i ∈ {1, . . . , 10}. Note that for training a neural network to perform super-resolution, we will require
pairs of low- and high-resolution image data of the same morphologies. Therefore, in order to generate
virtual low-resolution image data of the nanostructure, we down-sample the high-resolution image data
by deleting every second slice along each of the three major axes, see Figure 2.

tomography HR model sim LR model sim LR diffusion solid LR diffusion pore

Figure 2. 2D slices of image data for two different samples: Medium-grained primary
particles that have been sintered at 850 ◦C (top row), and coarse-grained primary par-
ticles sintered at 900 ◦C (bottom row). Columns from left to right: Tomographic image
data, high-resolution (HR) model realization, low-resolution (LR) model realization, LR
simulation of diffusive transport in the solid phase, LR simulation of diffusive transport
in the pore phase. For the binary images in the first three columns, the solid phase is in-
dicated in white. In the remaining two columns, the gray scale values of individual voxels
indicate the value of the solution to the diffusion problem described in Section 2.1.4.
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More precisely, the down-sampled image Is,i400 : {1, . . . , 400}3 → {0, 1} of the high-resolution image

Is,i800 : {1, . . . , 800}3 → {0, 1} is given by

Is,i400(j, k, l) = Ii800(2j − 1, 2k − 1, 2l − 1), (3)

for any j, k, l ∈ {1, . . . , 400}, i ∈ {1, . . . , 10} and s ∈ {1, . . . , 5}. In this way, we obtain a coarser version
of each realization with 4003 voxels, with a resolution of 20 nm/voxel. Furthermore, the procedure

described in Eq. (3) is repeated twice, resulting in low-resolution images Is,i200 and Is,i100, i = 1, . . . , 10,
s = 1, . . . , 5, with 2003 and 1003 voxels, and corresponding resolutions of 40 nm/voxel and 80 nm/voxel,
respectively. This method of direct downsampling is often used in super-resolution studies to generate
a database of low- and high-resolution image pairs [28–33]. As we are only interested in the super-
resolution of binary images, we chose to omit the commonly used blurring step before the downsampling,
so that no additional thresholding is necessary.

2.1.4. Numerical simulation of diffusive transport. To enhance the performance of the CNNs, which
will be introduced in Section 2.2 below for super-resolving image data of nanostructures, additional
information is provided to the networks through 3D transport simulations. These simulations capture
crucial physical properties of the nanostructure and are expected to offer valuable insights into voxel
connectivity. As the resolution decreases, certain transport paths may become misrepresented because
of voxels being assigned to only one material phase, although in reality both phases might be present
in finer resolutions within the volume of the corresponding lower resolved voxel. Note that we only
provide the networks with transport information on the low-resolution images, which might not be
fully representative for the high-resolution image for the above-mentioned reason. Nevertheless, the
simulations can be interpreted as a voxel-wise weighting based on their contribution to the overall flow,
thereby guiding the networks towards important bottlenecks or connections within the transporting
phase. Although this is not a replacement for the high-resolution information of the ground-truth
images, we believe that it improves training efficiency and accuracy in effectively reconstructing the
percolation paths.

The transport phenomena considered here are relevant to the physical processes occurring in battery
electrodes, which involve two primary types of diffusive transport: ion transport through the electrolyte
and electron transport through the conductive additives. The former is modeled by Fick’s law of
diffusion, while electron transport is governed by the stationary potential equation, where the electron
flow is driven by an electric field, which is proportional to the gradient of the electrical potential.
Both transport processes can be mathematically described by the Laplace equation [34, 35]. Thus, the
transport simulations are performed by solving the Laplace equation on voxel-based domains extracted
from 3D image data of the material. The computational domain is then defined as follows. Given
a binary image I : W → {0, 1}, we first construct the continuous domains Ωref,1,Ωref,0 ⊂ R3 from
the voxelized image representation, where Ωref,1 corresponds to the solid phase and Ωref,0 to the pore
phase. For this, let the position vector p(j,k,l) ∈ R3 associated with the voxel at (j, k, l) ∈ W be

defined as p(j,k,l) = (j − 1, k − 1, l − 1) ∈ R3. The corresponding (embedded) voxel is then denoted by

V(j,k,l) = p(j,k,l) + [0, 1]3. The domain corresponding to a certain phase is given by the union of voxels
assigned to that phase. In particular, for the the domain Ωref,1 of the solid phase, we have

Ωref,1 =
⋃

(j,k,l)∈I−1(1)

V(j,k,l), (4)

and for the domain Ωref,0 of the pore phase, it holds that

Ωref,0 =
⋃

(j,k,l)∈I−1(0)

V(j,k,l), (5)

where I−1(1) and I−1(0) denote the sets of voxels associated with the solid and pore phase, respectively.
The transport simulations are conducted separately for the solid phase, on Ωref,1, and for the pore

phase, on Ωref,0. This is done by numerically solving the Laplace equation in combination with certain
boundary conditions by means of a finite element method [26, 27]. More precisely, for each phase
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i ∈ {0, 1}, the Laplace equation is given by

−∆u = 0 in Ω̊ref,i, (6)

where Ω̊ref,i denotes the interior of the domain Ωref,i. Dirichlet boundary conditions are prescribed on
two opposing external surfaces of the cuboidal domain, setting the value of the function equal to 0 on
one surface, and equal to 1 on the opposite surface. Zero-flux boundary conditions are imposed on all
remaining surfaces, which include the remaining external faces as well as the internal interfaces between
the solid and pore phases. This setup induces a gradient in the solution along the direction perpendicular
to the Dirichlet boundary surfaces, which represents a concentration gradient in diffusion problems or a
potential gradient in electrical conductivity problems. The solution in both material phases is depicted
in Figure 2 in the last two columns.

After performing the above-described transport simulations for both the solid and the pore phase,
we generate a discretized two-channel gray scale image Diffu(I) : W × {0, 1} → (0, 1) that contains the
solution for each respective phase. Let xc(j, k, l) = (j − 1/2, k − 1/2, l − 1/2) denote the center of the
embedded voxel V(j,k,l) for each (j, k, l) ∈ W . Let upore : Ωref,0 → (0, 1) denote the piecewise linear
function resulting from solving the diffusion problem in the pore phase by means of a finite element
method. Then, the first channel of the image is defined as

Diffu(I)(j, k, l, 0) =

{
upore

(
xc(j, k, l)

)
, if xc(j, k, l) ∈ Ωref,0,

0, otherwise.
(7)

Similarly, if usolid : Ωref,1 → (0, 1) represents the solution in the solid phase, the second channel is
defined as

Diffu(I)(j, k, l, 1) =

{
usolid

(
xc(j, k, l)

)
, if xc(j, k, l) ∈ Ωref,1,

0, otherwise.
(8)

The resulting two-channel image encodes the transport characteristics of the material, capturing the
spatial voxel-level solution of the transport problem across both phases, see Figure 3. This enriched
dataset is used later on to guide the CNNs in accurately identifying critical transport paths, leading to
an improved reconstruction of the nanostructure during super-resolution.

(a) (b)

Figure 3. Solution to the diffusion problem within the reference volumes Ωref,0 of pore
phase (a) and Ωref,1 of solid phase (b). The renderings in (a) and (b) correspond to a
3D view of the two right-most columns in Figure 2.

2.1.5. Effective tortuosity. Super-resolution techniques increase the resolution of 3D nanostructure data
considered in the present paper. This enables a more precise representation of the underlying physi-
cal structures, which in turn improves the accuracy of transport simulations. These simulations can
be either spatially resolved microscopic processes or macroscopic simulations in which homogenization
techniques are used to average the properties across scales. When evaluating super-resolution in trans-
port simulations, we focus on the effective tortuosity as a key metric. This metric is used to quantify
how the nanostructure affects transport properties such as ion diffusion or electrical conductivity. In
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the context of transport processes such as diffusion or conduction, tortuosity reflects how the struc-
ture of the material impedes transport and increases the effective resistance to diffusion or conduction
compared to that of an idealized, homogeneous medium. A high tortuosity indicates convoluted paths
and greater resistance to transport, while a low tortuosity indicates more direct paths. Effective tortu-
osity is particularly important when modeling transport behavior on larger scales, where the detailed
nanostructure is averaged by homogenization processes.

In the literature [36–38], the effective tortuosity is commonly expressed as

τeff = ε
D

Deff
, (9)

where ε is the volume fraction of the material phase in question. Here, D denotes the intrinsic transport
coefficient, such as the diffusion or conductivity coefficient, depending on the specific transport process,
while Deff refers to the effective transport coefficient, which captures the averaged transport behavior
within the heterogeneous microstructure. It accounts for the influence of the microstructure on the
overall transport rate and is computed from transport simulations based on Eq. (6) and the boundary
conditions described above. The value of Deff has been computed following [12]. The ratio D/Deff

reflects the increase in path length or transport resistance imposed by the microstructural complexity
of the material relative to a homogeneous medium.

By using super-resolution methods, finer details of the nanostructure that affect the transport paths,
such as bottlenecks or percolation paths, can be captured more accurately. This leads to a more precise
calculation of τeff and enables better predictions in both microscopic and macroscopic simulations.
Hence, improved resolution is thus crucial for accurately determining the relationship between the
structure of materials and their effective transport properties.

2.2. Neural networks for super-resolution. In this section we describe the network architecture
used for upsampling the virtual FIB/SEM image data of nanostructured active material in lithium-ion
batteries. For super-resolving a low-resolution 3D input image, we consider three different up-scaling
factors α ∈ {2, 4, 8}. In addition, we consider two different types of input scenarios. In both cases, the
input image is of the form

Iinput : W × {1, . . . , c} → [0, 1], (10)

where the number of channels c is either equal to 1 or to 3. The first case is the standard setting in
which c = 1 and the network only receives a low-resolution binary image ILR : W → {0, 1} to super-

resolve. We denote this neural network by Nbin,α
θ depending on the scale factor α, where θ ∈ Rm is

the weight vector for some m ∈ N. More precisely, in the following we consider Nbin,α
θ as a mapping

which receives a single-channel 3D image Iinput as input, defined as in Eq. (10) with c = 1, where Iinput
coincides with the low-resolution image ILR , i.e.,

Iinput(j, k, l, 1) = ILR(j, k, l), (11)

for each (j, k, l) ∈ W . Then, the output Nbin,α
θ (Iinput) of the neural network Nbin,α

θ is a super-resolved
image

Nbin,α
θ (Iinput) : Wα → [0, 1], (12)

whereWα is defined as in Eq. (2). In the second case, we consider a network Ndiffu,α
θ for any α ∈ {2, 4, 8}

and θ ∈ Rm, which additionally receives two further channels as input, namely, the solutions to the
diffusion problem on solid and pore phase of the low-resolution image ILR, as described in Section 2.1.4.

More precisely, the input image Iinput of the network Ndiffu,α
θ , defined as in Eq. (10) with c = 3, is given

by

Iinput(j, k, l, c) =


ILR(j, k, l), if c = 1,

Diffu(ILR)(j, k, l, 0), if c = 2,

Diffu(ILR)(j, k, l, 1), if c = 3,

(13)

for each (j, k, l, c) ∈ W × {1, 2, 3}, where the image Diffu(ILR) is defined as in Eqs. (7) and (8). Then,

the network Ndiffu,α
θ returns the high-resolution image Ndiffu,α

θ (Iinput) : Wα → [0, 1]. In places where it

is not relevant, we will omit the weight vector θ and only write Nbin,α and Ndiffu,α, respectively.
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In both scenarios the first channel of the input image is always binary, while the output of the neural
network is a gray scale image that can be interpreted as a fuzzy classification map, where a value closer
to 0 or 1 indicates a larger certainty of membership towards the pore or solid phase, respectively. A
thresholding will be applied to the output images of the neural networks after training to ensure that
the final results are also binary. Details on the determination of the thresholding parameter are given
at the end of Section 2.2.3.

2.2.1. Network architecture. The architecture of the neural networks considered in the present paper
is a slight modification of SRResNet [39], which has already been used as a generator in a generative
adversarial network (GAN) for super-resolving microscopic image data [40]. More precisely, the net-
works Nbin,α, α ∈ {2, 4, 8}, introduced above deploy a total of 8 residual blocks [41], which consist of
convolutional layers followed by an element-wise addition of the output of the convolutional layer and
the input to the residual block. This type of element-wise addition is called a skip connection, which is
used to counteract the problem of vanishing gradients during training. Upsampling is achieved using
a PixleShuffle3D layer [42] followed by a ReLU layer [43]. Depending on the desired scaling factor
α ∈ {2, 4, 8} of the super resolution, pairs of PixleShuffle3D and ReLU layers are deployed one, two, or
three consecutive times before the output layer. A schematic overview of the network architecture is
shown in Figure 4.

For each α ∈ {2, 4, 8}, the first layer of the network Ndiffu,α differs slightly compared to Nbin,α. In
this scenario, the input is a three-channel image in which the first channel is the binary image, and the
remaining two channels are given by the solution to the diffusion problem in the solid and in the pore
phase given in Eq. (13), see Section 2.1.4. In this case, the size of the first convolutional layer needs to
be adapted. The remaining network architecture is unchanged.

In
p
u
t

C
on

v

k9n64s1

R
eL

U

C
on

v

k3n64s1

R
eL

U

C
o
n
v

k3n64s1

E
le

m
e
n
t
w
is
e

s
u
m

. . .

C
o
n
v

k3n64s1

E
le

m
e
n
t
w
is
e

s
u
m

C
on

v
k3n256s1

P
ix

e
lS

h
u
ff
le

R
eL

U

C
o
n
v

k3n256s1

C
on

v

k9n1s1

S
ig
m
o
id

skip connection

8 residual blocks repeated log2 α times

Figure 4. Schematic overview of network architecture.

2.2.2. Training, validation and testing sets. The artificially generated binary images presented in Sec-
tion 2.1.3 and their corresponding two-channel gray scale images containing the solutions to the diffusion
problem on solid and pore phase presented in Section 2.1.4 constitute our database of simulated image
data. More precisely, pairs of low-resolution and high-resolution images for training, validation, and
testing super-resolution with a scaling factor of α ∈ {2, 4, 8} are comprised as follows. For any given

s ∈ {1, . . . , 5} and i ∈ {1, . . . , 10}, we set the target (or ground truth) image IHR to the realization Is,i800
of the stochastic 3D model, as described in Section 2.1.2; the corresponding low-resolution image is

given by ILR = Is,i800/α, see Eq. (3) for α = 2. Then, the input image Iinput for the networks Nbin,α and

Ndiffu,α, α ∈ {2, 4, 8}, is given by means of Eqs. (11) and (13), respectively. In this manner, for each
network to be trained (i.e., two networks Nbin,α and Ndiffu,α are considered for each α ∈ {2, 4, 8}), we
can derive a pair (Iinput, IHR) of input and target images for any s ∈ {1, . . . , 5} and i ∈ {1, . . . , 10}.

We split this data into training, validation, and testing sets as follows: For each s ∈ {1, . . . , 5},
the model realizations Is,i800, i ∈ {1, . . . , 7}, are used to determine pairs (Iinput, IHR) of training data,

resulting in 7× 5 = 35 pairs. Similarly, the realizations Is,i800, for s ∈ {1, . . . , 5} and i ∈ {8, 9}, are used
for the validation set, i.e., the corresponding pairs (Iinput, IHR) will be used to validate the network
performance during training and to define an early-stopping criterion. More information on this will be

given in Section 2.2.3. Finally, the remaining realizations Is,i800, for s ∈ {1, . . . , 5} and i = 10, are used to
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define the testing set, i.e., the corresponding pairs of images will be used to test the performance of the
networks after training using the descriptors presented in Section 2.3. Furthermore, we will assess the
quality of the super-resolution results not only with respect to the testing set comprised of simulated
image data, but also with respect to the experimentally measured tomographic image data described
in Section 2.1.1. The results of this analysis of network performance on simulated and tomographic
image will be presented separately in Section 3.

2.2.3. Network training. For the optimization of the weights θ ∈ Rm of the neural networks, we train
the networks based on pairs of virtual low- and high-resolution images, as described in Section 2.2.2.
The loss function that we consider is the so-called binary cross-entropy loss function λ : {0, 1}×(0, 1) →
[0,∞), given by

λ(y, ỹ) = −y log ỹ − (1− y) log(1− ỹ), (14)

for any y ∈ {0, 1} and ỹ ∈ (0, 1). This loss function will be applied voxel-wise to the image predicted
by the neural networks and the corresponding target image of the training data. Note that the second
argument of the binary cross-entropy loss function λ is a real number of the interval (0, 1), as these are
the possible values of images predicted by the neural networks considered in the present paper. They
can be interpreted as the probability that a voxel belongs to the solid phase. Then, in order to quantify

the discrepancy between some binary image I and a (0,1)-valued image Ĩ defined over the same domain
W , as given in Eq. (1), we use the loss function Λ given by

Λ(I, Ĩ) =
∑
w∈W

λ
(
I(j, k, l), Ĩ(j, k, l)

)
, (15)

for any I : W → {0, 1} and Ĩ : W → (0, 1). Then, the corresponding optimization problem for training

a neural network denoted by Nθ (i.e., Nbin,α
θ or Ndiffu,α

θ , α ∈ {2, 4, 8}) is given by

θ∗ = argmin
θ∈Θ

E
(
Λ
(
Nθ(Iinput), IHR

))
, (16)

where Iinput and IHR are randomly chosen matching sub-images of the training data, i.e., the random
images Iinput and IHR depict the same morphology at different resolutions. The expectation in the
optimization problem given in Eq. (16) is taken over the random images Iinput and IHR.

The optimization algorithm used to solve the minimization problem given in Eq. (16) is Adam [44].
Training is performed on random 24×24×24 cutouts of the low-resolution training data, i.e., in Eq. (1)
we set m1 = m2 = m3 = 24. More precisely, during training, we first select a random training pair(
Iinput, IHR

)
from the training data defined in Section 2.2.2. Then, a random 24 × 24 × 24 cutout is

chosen from the (single- or three-channel) image Iinput. The corresponding α24×α24×α24 cutout of the
image IHR is used as the target image. Subsequently, data augmentation is performed by mirroring the
cutouts with a 50% chance and applying a random rotation from the symmetry group of the cube, e.g.,
rotations around the coordinate axes by multiples of π/2. For the latter, note that the chosen rotation
can also be the identity. In the scenario where the CNN also receives information from numerical
simulations, we apply the chosen transformation to all image channels. After augmentation, we obtain
a random pair

(
Iinput, IHR

)
of images. One training step consists of generating b > 0 (referred to as

batch size) such pairs, which are used to compute an estimate of the expectation given in Eq. (16) by
means of Monte-Carlo simulation. Based on this estimate of expected loss, the weights θ of the network
are adapted using the Adam optimization method, which concludes an individual training step.

Overall, the training procedure consists of a maximum of 1000 epochs, in each of which 400 training
steps are performed. After every epoch, an early stopping check is performed by estimating the expected
loss by generating pairs of random images from the validation data set instead of the training data set,
see Section 2.2.2. For this, 30 random cutouts of size 24× 24× 24 are chosen to compute an estimate
for the expected loss by Monte-Carlo simulation. If the estimate of the expected loss does not improve
during 10 consecutive epochs, the training is stopped. The batch size b of each step is equal to 8
for the cases α ∈ {2, 4} and equal to 1 in the case α = 8 due to memory limitations. The networks
corresponding to different scaling factors α ∈ {2, 4, 8} share most of their network architecture and
therefore have nearly identically structured weight vectors, enabling us to use transfer learning. For

example, the weights θ of the network Nbin,α
θ are partially initialized—for coinciding layers—with the



11

weights of the trained network with scaling factor α/2 for α ∈ {4, 8}. Similarly, transfer learning is

deployed for training Ndiffu,α
θ with α ∈ {4, 8}.

Recall that the output of the neural networks is a gray scale image with values in (0, 1), which can be
interpreted as the probability of the respective voxel belonging to the solid phase. This image needs to
be thresholded in order to obtain a proper binary high-resolution version of the binary low-resolution
input. Let I≥µ : W → {0, 1} denote the binary image resulting from the thresholding of a gray scale
image I : W → [0, 1] at the level µ ∈ (0, 1), given by

I≥µ(x) =

{
1, if I(x) ≥ µ,

0, otherwise.
(17)

The optimal thresholding parameter µ∗ ∈ (0, 1) to be deployed on network outputs is determined by
minimizing the average error in porosity. If ε(I) ∈ [0, 1] is the porosity of a binary image I : W → {0, 1},
i.e., the fraction of voxels belonging to the pore phase, then we define µ∗ ∈ (0, 1) by

µ∗ = argmin
µ∈(0,1)

E
∣∣ε(N(Iinput)

≥µ)− ε(IHR)
∣∣. (18)

In order to solve this minimization problem, all possible 24× 24× 24 cutouts of low-resolution images
in the validation set Eα are used. The optimal thresholding parameter is then found by use of the
Nelder-Mead method [45].

Note that the minimization problem given in Eq. (18) is solved for each neural network that has
been trained, i.e., for each Nbin,α and Ndiffu,α with α ∈ {2, 4, 8}. The corresponding thresholds µ∗ that
have been identified for the individual trained network architectures are denoted by µbin,α and µdiffu,α

for α ∈ {2, 4, 8}, respectively.

2.3. Metrics for validation. In this section, we describe the metrics that we use to assess the quality
of the super-resolution results achieved by the neural networks Nbin,α and Ndiffu,α, with α ∈ {2, 4, 8}.
For the definition of the metrics, we assume that we are given a pair

(
Iinput, IHR

)
of images consisting

of the low-resolution input Iinput and the high-resolution ground truth image IHR : W → {0, 1} defined
over some rectangular cuboid W ⊂ Z3. Let ISR denote the super-resolved image given by either

ISR = Nbin,α(Iinput)
≥µbin,α

or ISR = Ndiffu,α(Iinput)
≥µdiffu,α

, depending on the considered scenario.

2.3.1. Accuracy. The accuracy is a straightforward validation of the training procedure. We just de-
termine the relative number of correctly assigned voxels in the ISR, that is

acc(ISR, IHR) =
1

|W |
∑
x∈W

1{x′∈W : ISR(x′)=IHR(x′)}(x), (19)

where |W | denotes the cardinality of W , and 1A is the indicator over some set A, i.e., 1A(x) = 1 if
and only if x ∈ A; otherwise 1A(x) = 0 holds. Note that this concept of accuracy is closely linked to
the metric used for network training in the optimization problem (16), as the function Λ defined in
Eq. (15) also performs a voxel-wise comparison between artificial super-resolution and ground truth.

2.3.2. Surface accuracy. The task of correctly classifying a voxel in a super-resolved image is typically
easier if the voxel belongs to a larger area contained within the same phase. On the other hand, voxels
belonging to boundary regions where two phases meet are harder to classify correctly because it is not
clear where precisely the phase boundary runs in the high-resolution image. For this reason, we consider
a modified notion of the voxel-wise accuracy defined above, which only counts correctly classified voxels
that are near the boundary of the solid and pore phase. In order to determine the boundary region of
the high-resolution image IHR, we make use of morphological erosion [46], which is defined as follows.
Given a so-called structuring element S ⊂ R3, the erosion IHR ⊖ S is defined by(

IHR ⊖ S
)
(x) = min

y∈S∩Z3
IHR(x+ y), (20)

for each x ∈ W , where we put IHR(z) = 1 for all z ∈ Z3 \W . For our application, we choose S to be a
ball centered at the origin with a radius of 1.1α/2.0 = 0.55α voxels, where α ∈ {2, 4, 8} is the scaling
factor of the super-resolution task. The image IHR−

(
IHR⊖S

)
labels the voxels within the solid phase



12

with a distance of less than 0.55α voxels to the boundary. Furthermore, we apply the same process to
the pore phase and combine the results. The binary image ∂IHR given by

∂IHR = IHR −
(
IHR ⊖ S

)
− (1− IHR)

((
1− IHR

)
⊖ S

)
, (21)

satisfies ∂IHR(x) = 1 if and only if x ∈ W is a voxel with a distance of less than 1.1α voxels to the

boundary of the pore and solid phase. Thus, the set B =
(
∂IHR

)−1
(1) ⊂ W contains precisely those

voxels that belong to the boundary region of the image IHR. We can now define the surface accuracy
by

surfacc(ISR, IHR) =
1

|B|
∑
x∈B

1{x′∈W : ISR(x′)=IHR(x′)}(x). (22)

2.3.3. Relative error of mean geodesic tortuosity. In order to assess the quality of the super-resolved
images not only with respect to voxel-wise comparisons, but also with respect to more global properties
of the nanostructure, we consider the mean geodesic tortuosity τgeod which is a geometric descriptor
that quantifies the length of transport paths through the material within a given phase [22]. In the
present paper, we always consider paths that traverse the sampling window along an arbitrarily chosen
direction. Under the assumption of isotropy, the choice of this direction does not influence the resulting
error statistic. At first, the geodesic tortuosity is defined for each voxel within the starting plane that
belongs to a given phase as the length of a shortest path traversing the material through the chosen
phase, divided by the thickness of the material. The mean geodesic tortuosity is then computed by
averaging over all values of geodesic tortuosity for all voxels in the starting plane that belong to the
chosen phase. For a formal description of geodesic tortuosity in the context of random closed sets, we
refer to [47]. Now let τgeod(I

SR) and τgeod(I
HR) denote the values of mean geodesic tortuosity of the

super-resolved image and the high-resolution ground truth image, respectively. Then the accuracy of
the super-resolved image with respect to mean geodesic tortuosity is given by the relative error

τaccgeod(I
SR, IHR) = 1−

|τgeod(ISR)− τgeod(I
HR)|

τgeod(IHR)
. (23)

2.3.4. Relative error of effective tortuosity. In addition to the purely geometric notion of geodesic
tortuosity, we also consider the effective tortuosity. As stated in Section 2.1.5, the effective tortuosity
τeff quantifies the influence of the microstructure on the overall transport rate based on the Laplace
equation given in Eq. (6). Unlike geodesic tortuosity, which only considers shortest paths through the
nanostructure for any given starting point, effective tortuosity considers the influence of nanostructure
globally through transport simulations on the entire domain Ωref . Therefore, aspects such as bottleneck
effects that restrict flow through tight spaces are also quantified by effective tortuosity, whereas geodesic
tortuosity neglects them. Analogously to the case of mean geodesic tortuosity, we define the accuracy
of the super-resolved image with respect to effective tortuosity by the relative error

τacceff (ISR, IHR) = 1− |τeff(ISR)− τeff(I
HR)|

τeff(IHR)
. (24)

3. Results and Discussion

We evaluate the effectiveness of the trained neural networks in performing super-resolution with
respect to the validation metrics stated in Section 2.3. On the one hand, we carry out this validation
on the test set consisting of simulated image data that was not used for training as explained in
Section 2.2.2. On the other hand, we also consider the final application of interest, which is to super-
resolve experimentally measured tomographic image data. Furthermore, as a baseline reference for the
neural networks considered in this study, we determine super-resolved images by means of classical
tri-quadratic interpolation [21] in each case and compute the validation metrics for these images.

Figure 5 shows a visual comparison between the super-resolved image data for a scaling factor of
α = 8 and the ground truth, where the voxels displayed in blue are incorrectly classified as pore
phase, while the voxels displayed in magenta are incorrectly classified as solid phase. We can clearly
observe that the image data super-resolved by means of a neural network heavily outperforms the
super-resolution by interpolation with respect to incorrecly classified voxels. However, the difference in
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performance between networks Nbin,α and Ndiffu,α is not so clear. Further 2D slices of super-resolved
tomographic image data are provided in Figure A1 of the appendix.
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Figure 5. Planar sections through 3D images visualizing the voxel-wise error in arti-
ficially super-resolved image data in comparison to ground truth. Top row: Simulated
image data. Bottom row: Experimentally measured image data. Voxels that are cor-
rectly classified as solid or pore voxels are displayed in white and black, respectively,
while voxels that are incorrectly classified as solid and pore voxels are displayed in ma-
genta and blue, respectively. Super-resolution by a scaling of α = 8 has been performed
by (a) Nbin,8, (b) Ndiffu,8 and (c) tri-quadratic interpolation.

We now turn to the quantitative comparison of the quality of the super-resolution results, using
the metrics stated in Section 2.3, see the box plots shown in Figure 6. For experimentally measured
image data, the 3D images of each of the 5 measured samples are first downsampled, analogously to
the procedure stated in Eq. (3), to obtain ground truth images at lower resolutions. Subsequently,
the resulting images are subdivided into 8 equally sized, non-overlapping images. Starting from the
lowest resolution, super-resolved images with scaling factors α ∈ {2, 4, 8} were computed. For simulated

image data, the same subdivision was applied to the realizations of the stochastic model Is,10800/α, for each

s ∈ {1, . . . , 5} and α ∈ {1, 2, 4, 8}. The validation metrics stated in Section 2.3 are then evaluated on
the super-resolved sub-images for each scaling factor α ∈ {2, 4, 8}. Note that these images have not
been used during the training process of the neural networks. This results in a total of 8× 5 = 40 data
points entering each individual box in Figure 6.

Figure 6a depicts the results obtained for the validation metric acc given in Eq. (19), which is
essentially a quantification of the differences shown in Figure 5. We observe that the interpolation
approach performs much worse than super-resolution by use of the neural networks. This result is
obviously expected, as interpolation is a general approach that does not require any training data.
However, the increase in performance when these additional steps are taken is impressively significant.
Furthermore, as the scaling factor increases, the accuracy of the interpolation decreases. This might
be expected, as the difficulty of the super-resolution problem naturally increases with a higher scaling
factor. On the other hand, both neural network approaches show a much more stable performance
across the scenarios α ∈ {2, 4, 8}. In Figure 6b, we see that, as expected, the values for the surface
accuracy are lower compared to values for the accuracy in all scenarios. However, the qualitative
relationship between the considered cases is similar to that of Figure 6a. With respect to accuracy and
surface accuracy, the performance of the neural networks Nbin,α and Ndiffu,α is fairly similar.
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Figure 6. Validation metrics of super-resolutions for each scaling factor α ∈ {2, 4, 8}.
Top row: Simulated image data. Bottom row: Tomographic image data. Shown are the
results obtained for accuracy (a), surface accuracy (b), and the relative error of mean
geodesic (c) and effective (d) tortuosity. Box plots display the mean value as well as
lower and upper quartiles. The whiskers extending from the boxes show the minimum
and maximum values. Outliers are detected using inter-quartile range and marked by a
circle.

It should be noted that the performance of the interpolation with respect to the voxel-wise metrics
shown in Figures 6a and 6b significantly decreases with an increasing scaling factor α, while the perfor-
mance of the two neural networks remains almost constant for different values of α. Furthermore, recall
that the values of mean geodesic and effective tortuosity depend on the considered phase. The box plots
shown in Figures 6c and 6d depict the relative errors of these tortuosities with respect to the ground
truth, averaged over all analyzed cutouts for both the pore phase and the solid phase. A visualization
showing the relative errors separately for the pore and solid phase can be found in Figure A2 of the
Appendix.

When comparing the results obtained by the two neural networks, we see that Ndiffu,α outperforms
Nbin,α at the scaling factors α ∈ {2, 4}. However, a slightly worse performance is observed at the
highest scaling factor α = 8. This is consistent across all validation metrics considered in Figure 6.
In order to investigate this contrary behavior for α = 8 more closely, we have retrained the involved
neural networks to check whether this is caused by the random initialization of trainable weights before
the training process. The metrics have also been evaluated on the training and testing data in order
to investigate whether possible over-fitting phenomena are present. If that were the case, we would
have observed different behavior in the accuracies for the super-resolved training data. However, the
comparison between the two networks remained almost identical in all the cases considered. Therefore,
we believe that neither random weight initialization nor a possible occurrence of over-fitting has caused
the discrepancy at scale α = 8, so that the reason for this behavior ultimately remains unclear.

The neural networks considered in this study have only been trained on artificial image data gener-
ated by means of the stochastic 3D nanostructure model described in Section 2.1.2. There are some
differences between model realizations and tomographic image data that can be visually detected by
the eye, see Figure 2. In particular, as hierarchically structured NMC111 particles are an agglomerate
of many smaller primary particles, one can still observe rough edges of the original primary particles’
shapes. These rough edges are not properly represented in realizations of the stochastic model, in which
the interface between solid and pore phase forms a relatively smooth boundary surface. However, this
effect is only a visual detail, as the quantitative validation performed in [12], based on geometrical
descriptors and effective transport properties, showed a high agreement. Moreover, note that for all
metrics considered in Figure 6, the validation with respect to tomographic image data leads to values
which are nearly identical to those obtained for simulated image data. This shows that the predictive
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power of the neural network applied to experimentally measured tomographic image data is not limited
by the difference between simulated image data and measured tomographic image data, but rather by
the complexity of the super-resolution problem itself.

4. Conclusions

This study presents an innovative approach to generate high-resolution 3D image data of porous
materials by integrating super-resolution techniques with spatially resolved transport simulations. By
using a stochastic model to simulate virtual samples, we were able to efficiently generate digital twins
of nanostructured materials that were used to train CNNs for super-resolution tasks. This method
significantly reduces the dependence on large amounts of high-resolution experimental data, as virtual
data sets serve as effective training data for neural networks.

The integration of transport simulations was found to be advantageous in supporting CNNs in
the accurate identification of important transport pathways only for scaling factors α ∈ {2, 4}, while
for α = 8 the network without transport simulations performed better. It remains unclear whether
CNNs trained with additional transport information can truly perform better in classifying boundary
voxels and correctly representing material transport properties at high scaling factors. Additional
investigations will be necessary to come to a clear conclusion. Our analysis is based on validation
metrics that include a voxel-wise accuracy as well as two notions of tortuosity that quantify the length
of transport paths through the material.

The results show that the networks trained on artificially generated data generalize well to measured
tomographic data, confirming the robustness of this approach. The framework developed in this study
is applicable not only to battery materials but also to other porous structures in various energy storage
and conversion technologies. Furthermore, the virtual training data generated in this study paves
the way for additional computer experiments, that can be explored in future work. In particular, one
promising direction would be to investigate how insights from high-resolution numerical solutions during
training can improve a neural network’s ability to super-resolve domain morphologies. More precisely,
neural networks could be trained to receive low-resolution multi-channel images of domain geometry
and associated numerical solutions as input and output corresponding high-resolution multi-channel
images of both morphology and numerical solutions. Consequently, neural networks are provided with
high-resolved numerical solutions during training. Once trained, their performance can be evaluated
with respect to (i) their ability to super-resolve the morphology and (ii) their capability to reconstruct
the corresponding numerical solution. In addition to this future investigation, one can explore how
effectively super-resolving neural networks can learn to ‘solve’ the diffusion problem considered here,
without the additional information of the low-resolution numerical solution. For this purpose, networks
can be trained that receive only low-resolution images of the morphology as input, with the output
being high-resolution numerical solutions. Such an approach could reduce both the time and resources
required for high-resolution imaging and numerical simulations of diffusion problems.
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netić. Simulation of microstructures and machine learning. In F. Willot, J. Dirrenberger, S. Forest,
D. Jeulin, and A. V. Cherkaev, editors, Continuum Models and Discrete Systems, pages 243–256.
Springer, 2024.

[9] C. Fend, A. Moghiseh, C. Redenbach, and K. Schladitz. Reconstruction of highly porous structures
from FIB-SEM using a deep neural network trained on synthetic images. Journal of Microscopy,
281:16–27, 2021.

[10] A. Tsamos, S. Evsevleev, R. Fioresi, F. Faglioni, and G. Bruno. Synthetic data generation for au-
tomatic segmentation of X-ray computed tomography reconstructions of complex microstructures.
Journal of Imaging, 9:22, 2023.
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Appendix

Figure A1 shows exemplary 2D slices of super-resolved tomographic image data together with the
corresponding ground truth image. Figure A2 shows the relative errors of mean geodesic and effective
tortuosity, separately for the solid and pore phase, as additional information to Figure 6 of the main
text.
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Figure A1. Exemplary 2D slices of super-resolved tomographic image data, obtained
by means of a given method (columns) and at a given scaling factor α (rows) together
with the corresponding ground truth. This sample consists of medium-grained primary
particles that have been sintered at 900 ◦C.
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Figure A2. Relative errors of mean geodesic tortuosity and effective tortuosity, sepa-
rately plotted for pore and solid phase. Top row: Simulated image data: Bottom row:
Tomographic image data. Shown are the relative errors of mean geodesic tortuosity for
solid phase (a) and pore phase (b), as well as the relative errors of effective tortuosities
for solid phase (c) and pore phase (d).


