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Abstract

Separation functions, so-called Tromp functions, are often used to quantitativley analyze the separation behavior
in particle processing with respect to individual particle descriptors. However, since the separation behavior of
particles is typically influenced by multiple particle descriptors, multivariate Tromp functions are required. This
study focuses on methods that allow for the computation of multivariate parametric Tromp functions by means of
statistical image analysis and copula based modeling. The computations are exemplarily performed for magnetic
separation of Li-bearing minerals, including quartz, topaz, zinnwaldite, and muscovite based on micro-computed
tomography images and scanning electron microscopy with energy-dispersive X-ray spectroscopy analysis. In
particular, the volume equivalent diameter, zinnwaldite fraction, flatness and sphericity are examined as possible
influencing particle descriptors. Moreover, to compute the Tromp functions, the probability distributions of these
descriptors for concentrate and tailing should be used. In this study 3D image data depicting particles in feed,
concentrate and tailings is available for the computation of Tromp functions. However, concentrate particles tend
to be elongated, plate-like and densely packed, making segmentation for extracting individual particles from image
data extremely difficult. Thus, information on the concentrate could not be obtained from the available database.
To remedy this, an indirect optimization approach is used to estimate the distribution of particle descriptors of
the concentrate. It turned out that this approach can be successfully applied to analyze the influence of size,
shape and composition of particles on their separation behavior.

Keywords— Computed tomography, multivariate Tromp function, particle descriptor, probability density, separa-
tion process, statistical image analysis, stochastic modeling, copula

1 Introduction

Physical separation processes are often used to concentrate valuable components , allowing for the recovery of
significant materials from intermediate streams. These processes usually work with a certain primary separation
descriptor. To mention some examples, in the case of density separation this descriptor is the material density
of particles, in magnetic separation it is the magnetizability of particles, and in flotation it is the wettability of
the particle surface. However, the separation processes often do not only depend on a single particle descriptor,
but are often influenced by further particle descriptors such as particle size or shape. The relationships between
particle descriptors and separation behavior are therefore not univariate, but inevitably multivariate [1–4]. Thus,
if a separation process is to be comprehensively characterized or modeled, all relevant particle descriptors must be
taken into account and their interaction must be analyzed.

In many cases, particle systems are characterized by probability distributions of particle descriptors. These
include the distributions of particle size, mass and composition (components) [5]. In general, the particle descriptors
are correlated and the univariate distributions of individual particle descriptors do not capture such correlations.
Thus, to characterize separation processes, the descriptor distributions must therefore be determined before and
after separation and combined with each other. This can either be done directly using suitable multidimensional
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measurement methods (correlative methods) [6,7], or the univariate descriptor distributions can be used to obtain a
multivariate distribution by means of copulas [8, 9].

Once particle-based data is available for the analysis of separation processes, a statistical problem often needs to
be solved first. Even if data of a large number of individual particles is available in the feed and tailings, it is often
the case that there are only a few particles for which certain combinations of descriptors can be determined, thus im-
pairing the reliability of the results. Therefore, various approaches exist, such as virtual sampling through bootstrap
resampling, to determine the coefficient of variation of particle descriptors [10]. In this way, the representativeness
of the separation function can be evaluated, allowing for a quantitative analysis of the separation behavior for each
combination of descriptors. In the present paper, a threshold value is introduced, similar to [11], which defines a
required minimum probability for observing certain combinations of descriptors in the feed. This ensures adequate
information on the separation probability of the considered descriptor combinations.

In recent years, various methods have been developed that enable a multidimensional view on separation pro-
cesses. This goal was pursued in particular in the framework of priority program (PP) 2045 of the German Research
Foundation (DFG) dealing with “Highly specific and multidimensional fractionation of particle systems with tech-
nical relevance”. As already mentioned above, conventional methods characterize separation processes by means
of univariate Tromp curves, where the influence of particle sizes is taken into account, in addition to the primary
separation descriptor [12]. Furthermore, in [13], the flotation constant has been plotted as a function of particle
size and liberation. To achieve this, the particles are sorted into different size categories. For each category, points
are plotted on a graph, with axes representing the flotation constant and liberation classes. Another approach is
to illustrate the recovery of a target component as a function of two descriptors on a two-dimensional grid. In this
grid, each box is colored based on the number of occurrences of the target component, depending on the choice of
descriptors [1]. If one wants to describe the selectivity in several dimensions, one possible approach is to compute
entropy values for separation processes [5]. This enables the complex interactions that influence the separation result
to be reduced to a single characteristic value. However, the multidimensional relationships are neither apparent nor
quantified, and further detailed analysis of relevant data is required to identify them.

In the project “Stochastic modeling of multidimensional particle properties with parametric copulas for the
investigation of microstructure effects on the fractionation of fine particle system” within PP 2045, we have developed
numerous computational methods for statistical image processing (e.g., segmentation of image data into individual
particles), stochastic modeling of particle systems using multivariate probability distributions, and quantitative
characterization of separation processes by means of multivariate Tromp functions, see [8, 9, 11, 14–24]. The present
paper serves as final report of the results obtained in the project of PP 2045 mentioned above. In particular, we
describe a computational workflow for the characterization of particles/separation processes which can be deduced
from the methods developed in this project. Note that this workflow does not depend on the length scale of the
particle system under consideration, i.e., it solely requires image data that adequately resolves particles.

Moreover, in the present paper, new results are presented, by applying this workflow to magnetic separation
processes performed on a Li-containing ore. The mineral ore is a Li-bearing mica (zinnwaldite), which differs in its
magnetic descriptors and particle shape from the other minerals. In order to investigate the influence of the shape,
size and composition of such particles on their magnetic separation behavior, multivariate Tromp functions are com-
puted. Therefore, a parametric approach is presented to determine Tromp functions based on particle descriptor
vectors, which are computed from 3D micro-computed tomography (µ-CT) image data and from 2D scanning elec-
tron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) data of feed and tailings. For this, first,
univariate parametric distributions for individual particle descriptors are fitted and then, in a subsequent step, the
interdependencies between these descriptors are modeled with copulas to obtain a joint multivariate distribution of
all relevant properties of the particle system [11]. Since for the distribution of descriptor vectors with dimension
larger than two, so-called vine copulas have proven to be a flexible modeling tool [9,25], they are used to fit the joint
multivariate distributions of particle descriptor vectors in the presented paper. The resulting parametric distributions
are used to compute multivariate Tromp functions in order to investigate the influence of particle descriptor vectors
on the separation behavior of the particle system under consideration. However, to avoid numerical instabilities
when computing the Tromp function, the distributions of particle descriptor vectors for concentrate and tailings are
required. In the case of missing information regarding the separated fraction, an optimization approach has been
introduced in [11] to nevertheless investigate the separation behavior. This approach is used in the present paper to
compute multivariate Tromp functions for magnetic separation processes.

This paper contains a description of the mineral ore and the magnetic separation process. Additionally, it briefly
covers image acquisition and data post-processing, followed by an explanation of the mathematical methods to
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determine the Tromp functions based on size, shape and particle composition.

2 Materials and Methods

This section outlines the data and magnetic separation process, along with a detailed explanation of the imaging,
segmentation, analysis and modeling used to determine Tromp functions.

2.1 Test Material

The material examined in this study is a Li-bearing ore from the Zinnwald deposit (Erzgebirge, Saxony). The main
components are quartz, zinnwaldite, topaz and muscovite (in decreasing order with respect to their mass/volume
fractions). Smaller amounts of iron oxides and other minerals can also be found in the material. The valuable mineral
zinnwaldite (Li-containing mica, around 1.6% Li) as well as small amounts of muscovite (mica) are paramagnetic
and can be extracted into a magnetic concentrate using high gradient separators. The modal mineralogy of the 3
samples (feed, concentrate and tailings) from magnetic separation is given in Table 1.

Table 1: Simplyfied mineral composition of the sample based on MLA.

Sample Feed Concentrate Tailings
Muscovite 4.57 12.91 1,47
Quartz 61.59 6.85 89.85
Topaz 4.70 1.10 5.34
Zinnwaldite 26.07 74.63 0.67
Others 3,07 4.51 2.66

Due to their different crystal structure and mechanical properties, the mica has a different particle shape (plate-
like) than quartz and topaz (isometric) after comminution. Thus, the components to be separated differ significantly
with respect to these two properties. Furthermore, the minerals considered here also differ in other properties, such as
density or conductivity. However, as these properties are not relevant for the separation process under consideration,
they will not be taken into account any further.

2.2 Magnetic Separation Process

A ring-type magnetic separator was used to separate the crushed ore. This is a dry high gradient magnetic separator
that works according to the lifting principle, see Figure 1. The particle mixture is fed onto a conveyor belt by a
dosing unit and moved into the separation zone of the magnetic system. Magnetizable particles are lifted out in the
separation zone of the magnetic field in the direction of the ring-shaped iron core and adhere to it. The rotation of
the ring-shaped iron core moves the extracted particles laterally out of the separation zone of the magnetic field and
discharges them into a concentrate container. The non-magnetized or only slightly magnetized particles remain on
the conveyor belt and are discharged into a collecting container for the non-magnetic product.

By varying process parameters such as the gap width of the magnet system, the excitation current of the coils,
as well as the speed and loading of the conveyor belt, it is possible to influence the separation process (throughput,
separation efficiency, recovery). These are typically optimized in practical operation with regard to maximize product
quality without knowing the interrelationships of the particle properties and taking these into account.

The ring-type magnetic separator used in this study is a laboratory separator manufactured in the 1980s by
SKET (former GDR). The belt width of the separator is equal to 15 cm, whereas the distance from the flat pole to
the surface of the conveyor belt is equal to 2mm. It was operated using the following parameters: gap width 2mm,
magnetic flux denisty at belt surfac 1.2T and troughput 200 gmin−1. A size fraction of crushed ore from 315µm
to 500 µm was used as sample material. It was choosen in order to achieve a sufficient voxel number for scanned
particles as well as a sufficient number of scanned particles when scanning a MLA sample.
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Figure 1: Sketch of the ring-type magnetic separator. 1 - ring-shaped wedge pole; 2 - conveyor belt; 3 - coils of the
magnetic system.

2.3 Image Acquisition

Since the extraction of target particles is of great interest in the mining industry, the goal of the presented paper is a
3D characterization of particles with respect to their size, shape and fraction of valuable material and the subsequent
investigation of the influence of these particle descriptors on the separation behavior. Therefore, we consider data
that was previously published in [9] and whose post-processing has already been carried out there. For this reason,
the data and post-processing are only briefly summarized in the present paper.

The sample material was prepared such that micro CT-imaging and SEM-EDS analyzes can be performed on the
same sample. In order to achieve a better dispersion of the particles, they are blended with micron-sized graphite and
then embedded in epoxy blocks. [26]. To prevent segregation effects from affecting the results of the 2D SEM-EDS
analysis, the grain mount was cut in the direction of sedimentation, rotated by 90° and then re-embedded [26]. For
SEM-EDS analysis a FEI Quanta 650F (Thermo Fisher Scientific, Waltham, MA, USA) SEM, equipped with two
Bruker Quantax X-Flash 5030 EDS (Bruker Corporation, Billerica, MA, USA) was used. XCT was done using a
Zeiss Xradia 510 Versa X-ray microscope (Carl Zeiss Microscopy GmbH, Jena, Germany). Further details of micro
CT-imaging and SEM-EDS analysis are given in [15], measurement parameters can be found in the Appendix A and
the related data publication (https://dx.doi.org/10.25532/OPARA-684).

2.4 Data post-processing

The imaging methods were applied to samples before separation as well as to samples after separation that are
assigned to the tailings. To compute particle-wise descriptors, the image data must first be segmented and the
results strongly depend on the quality of the segmentation. However, it turned out that conventional methods do
not work sufficiently well, since many particles in the CT-imge are elongated and plate-like. Thus, a convolutional
neural network (CNN) with encoder-decoder architecture based on the 3D U-net of [27] is used. This architecture
has the advantage that only 2D cutouts are required for training and thus, reduces the effort of manually labeling
the data. Moreover, to obtain better results, the origin architecture of [27] is slightly adjusted, see [9].

To train the neural network, a ground-truth, i.e., labeled data, is required. For that purpose, 2D slices of the
CT-image are thresholded and afterwards post-processed to avoid over segmentation. For more details on the labeling
we refer to [9]. Then, for network training, the Adam algorithm [28] with step size α = 10−4 is used to minimize the
binary cross-entropy loss.

The output of the neural network is an image of the same size as the input with values in [0, 1]. The foreground-
background segmentation is obtained by binarization with threshold 0.5. Then, connected components in the bina-
rized image with more than 50 voxels are specified as particles P ⊂ W , where the CT-image is given by I : W → R for
some sampling window W ⊂ Z3, with Z = {. . . ,−1, 0, 1, . . .} denoting the set of integers. Moreover, a marker-based
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watershed algorithm is used afterwards, to improve the shape recognition of the particles, see [9] for further details.
Figure 2 shows a 2D slice extracted from a 3D CT image with the CNN-based particle-wise segmentation and the
corresponding SEM-EDS slice, which is used to determine the mineralogical composition of each particle. Note that
similar segmentation methods, which combine machine learning with conventional watershed algorithms, have been
deployed in further papers within PP 2045, see [9, 14,16,18,21].

CT data Segmentation SEM-EDS slice

Quartz

Zinnwaldite

Topaz

Muscovite

Others

Figure 2: 2D slice of a 3D CT-image with corresponding CNN-based particle-wise segmentation and the corresponding
SEM-EDS slice with color legend.

2.5 Computation of Particle Descriptors

In order to investigate the separation behavior with respect to shape, size and composition of particles, different
particle descriptors are considered. To compute particle descriptors for shape and size, the particle-wise segmentation
of CT-image data, as explained in Section 2.4, is used. However, CT-image data does not provide direct information
about the volume fraction of zinnwaldite. Therefore, we additionally use segmented SEM-EDS data which is available
for three slices of the CT data.

As size descriptor of a particle P ⊂ W , the volume equivalent diameter Mvol(P ) is used. It is determined by
computing the radius of a sphere with the same volume as the particle, where the volume is defined as the number
of voxels belonging to P . More precisely, the volume equivalent diameter is given by

Mvol(P ) =
3

√
6V (P )

π
, (1)

where V (P ) denotes the volume of P . Regarding the shape of a particle P , the flatness Mflat(P ) and the sphericity
Msphe(P ) are used. These descriptors are given by

Mflat(P ) =
a3(P )

a2(P )
and Msphe(P ) =

((36πMvol(P )2)
1
3

Marea(P )
. (2)

Here, a2(P ) and a3(P ) denote the length of the second and third longest axis of the minimum-volume bounding
box of P [29]. Furthermore, Marea(P ) denotes the surface area of P , which is computed by means of the algorithm
described in [30]. Note that a more plate-like particle has a smaller value of Mflat than a more spherical one and a
perfect sphere has a sphericity value of 1.

To correlate the 3D morphological and textural 3D characterization of particles with their volume fraction of
zinnwaldite, SEM-EDS data for some slices Wz ⊂ W with Wz = {(x1, x2, x3) ∈ W : x3 = z} and z ∈ Z are
required. These slices do not necessarily have to be orthogonal to an axis of the coordinate system, but we assume
this for simplicity of notation. The SEM-EDS data within a slice Wz ⊂ W for some z ∈ Z is given by a map
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LSEM : Wz → {0, 1, 2}, where the presence of no particle at voxel x ∈ Wz is indicated by LSEM(x) = 0. On the other
hand, LSEM(x) = 1 indicates that zinnwaldite is identified at x ∈ Wz, whereas L

SEM(x) = 2 means that non-valuable
material is detected at x ∈ Wz. To determine the volume faction of zinnwaldite three slices Wz1 ,Wz2 ,Wz3 ⊂ W
with the corresponding maps LSEM

j : Wzj 7→ {0, 1, 2} for j = 1, 2, 3 are considered. Then, assuming that the
observed particle composition within a slice is representative for the entire 3D particle, for each particle P ⊂ W with
P ∩ (Wz1 ∪Wz2 ∪Wz3) ̸= ∅ the volume fraction Mrat(P ) of zinnwaldite can be determined by

Mrat(P ) =
#
(⋃3

j=1{x ∈ P ∩Wzj : LSEM
j (x) = 1}

)
#
(⋃3

j=1{x ∈ P ∩Wzj : LSEM
j (x) > 0}

) , (3)

where # denotes cardinality [9].

2.6 Multivariate Probabilistic Modeling of Particle Descriptor Vectors

Suppose that for some n > 1 we extracted the particles P1, . . . , Pn ⊂ W from CT-image data, together with the
corresponding SEM-EDS information, as explained in Section 2.4. For each of these particles, we compute the vector
(Mvol(Pi),Mflat(Pi),Msphe(Pi),Mrat(Pi)) of particle descriptors stated in Section 2.5, where i = 1, . . . , n.

Then, to determine various multivariate Tromp functions, we probabilistically model three different datasets of
(sub-) vectors. Namely,

x(i)
vr = (Mvol(Pi),Mrat(Pi)), x(i)

vsr = (Mvol(Pi),Msphe(Pi),Mrat(Pi)), x
(i)
vfr = (Mvol(Pi),Mflat(Pi),Mrat(Pi)) (4)

for i = 1, . . . , n. In the following, instead of writing x
(i)
vr , x

(i)
vsr and x

(i)
vfr, respectively, we refer to these sub-vectors

just as x(i) in order to simplify the notation. Furthermore, for each of the three datasets {x(i), i = 1, . . . , n} we
consider two different cases, one dataset for particles before separation and one for particles in the tailings after

separation, denoting them by Df = {x(i)
f i = 1, . . . , nf} and Dt = {x(i)

t , l = 1, . . . , nt}, respectively. Here, nf is the
number of particles extracted from tomographic image data for the feed, and nt is the corresponding number of
particles associated with tailings.

For modeling purposes, we interpret the particle descriptor vectors stated in Eq. (4) as realizations of random
vectors, which will be denoted byX = (X1, . . . , Xd), where d = 2, 3. Note that the distribution of such random vectors
is uniquely determined by its cumulative distribution function F1,...,d : Rd → [0, 1] with F1,...,d(x1, . . . , xd) = P(X1 ≤
x1, . . . , Xd ≤ xd) for each (x1, . . . , xd) ∈ Rd, and the corresponding probability density f1,...,d : Rd → [0,∞). Since the
segmentation of the concentrate data is difficult due the elongated and plate-like particles, we use an optimization
approach to estimate the density of the concentrate, see Section 2.6.5. Therefore, parametric Tromp functions
are required. Thus, we parametrically model the density f1,...,d, with a copula-based approach [31]. Recently,
in [8, 16, 19, 20], we have deployed Archimedean copulas for modeling bivariate probability densities (i.e., d = 2).
Furthermore, in [9] we showed that so-called R-vine copulas are a particularly suitable modeling tool if d > 2. To
make the paper more self-contained, we provide some mathematical background for this approach in the following.

2.6.1 Sklar’s Representation Formula

A function C : [0, 1]d → [0, 1] with d ≥ 2 is called a copula if it is the cumulative distribution function of a d-
dimensional random vector (U1, . . . , Ud) with standard uniform marginal distributions, i.e., for each j = 1, . . . , d
it holds that C(x) = P(Uj ≤ xj) = xj if x = (1, . . . , 1, xj , 1, . . . , 1) ∈ [0, 1]d. An important tool for modeling
the joint (multivariate) distribution of an arbitrary random vector X = (X1, . . . , Xd) with correlated non-Gaussian
components is Sklar’s representation formula of its cumulative distribution function F1,...,d : Rd → [0, 1] based on
some copula C : [0, 1]d → [0, 1] and the (marginal) distribution functions F1, . . . , Fd : R → [0, 1], see e.g. [31].
Moreover, if the functions C and F1,...,d are differentiable with densities c : [0, 1]d → [0,∞) and f1,...,d : Rd → [0,∞),
respectively, Sklar’s representation formula implies that

f1,...,d(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))

d∏
i=1

fi(xi), (5)
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for each x = (x1, . . . , xd) ∈ Rd, where fi : R → [0,∞) is the density of Fi for each i ∈ {1, . . . , d}.
In the following, we use Eq. (5) in order to fit a parametric multivariate probability density f1,...,d to data for

particle descriptor vectors, i.e., to realizations of a random vector X = (X1, . . . , Xd), where we first fit univariate
densities f1, . . . , fd to realizations of the individual components X1, . . . , Xd. Then, in a second step, a d-dimensional
copula density c : [0, 1]d → [0,∞) is searched to model the dependencies between the random variables X1, . . . , Xd as
good as possible. The construction of multivariate copula densities by bivariate ones and their sequential estimation
is explained in [9].

2.6.2 Adaptation of the Copula-Based Modeling Approach for Descriptor Vectors of Composite
Particles

The copula-based modeling approach stated in Section 2.6.1, cannot directly be used for descriptor vectors of compos-
ite particles. To take into account the mineralogical composition of the particles, the descriptor Mrat is considered.
But, the issue is that we observe a non-neglectable number of particles that are ”pure” , i.e., with Mrat-values being
equal to 0 or 1. This indicates that the distribution of Mrat has atoms at 0 and 1, which means that it cannot be
represented by a probability density as this has been done in Eq. (5). Therefore, we split the data in three disjoint
sets, similarly to the procedure considered in [9]. More precisely, for the feed and tailings, i.e., for j ∈ {f, t}, the
dataset Dj is further divided into three subsets Dj

v, D
j
nv and Dj

co, where

Dj
v = {x(i)

1,...,d−1 ∈ Rd−1 : i = 1, . . . , nj , where (x
(i)
1,...,d−1, x

(i)
d ) ∈ Dj with x

(i)
d ≥ 1− p},

Dj
nv = {x(i)

1,...,d−1 ∈ Rd−1 : i = 1, . . . , nj , where (x
(i)
1,...,d−1, x

(i)
d ) ∈ Dj with x

(i)
d ≤ p},

Dj
co = {x(i)

1,...,d ∈ Dj : i = 1, . . . , nj , where p < x
(i)
d < 1− p},

for some threshold p ∈ (0, 1), which is used to subdivide the data based on the volume fraction of zinnwaldite. In
the following, the cardinalities of the datasets Df

v, D
f
nv and Df

co, will be denoted by nf
v, n

f
nv and nf

co, respectively,
whereas the cardinalities of Dt

v, D
t
nv and Dt

co will be denoted by nt
v, n

t
nv and nt

co.

Recall that x
(i)
d equals Mrat(Pi) for all particle descriptor vectors considered in this paper. Thus, putting p = 0.01,

the subsets Dj
v, D

j
nv ⊂ Rd−1 contain the particles with almost exclusively valuable material, i.e., particles with a

zinnwaldite fraction of at least 1 − p = 0.99, and almost exclusively non-valuable material, i.e., particles with a
zinnwaldite fraction of at most p, respectively. The subset Dj

co ⊂ Rd contains the composite particles, i.e., particles
with significant volume fractions of both valuable and non-valuable material.

Now, using the algorithm described in [9], we can fit (d−1)-variate probability densities f f
v, f

f
n, f

t
n : Rd−1 → [0,∞)

to the datasets Df
v, D

f
nv and Dt

nv, respectively. Similarly, d-variate densities f f
co, f

t
co : Rd → [0,∞) can be fitted to

the datasets Df
co and Dt

co. Note that the d-variate densities f f
co, f

t
co are fitted such that the marginal densities

f f
co,d, f

t
co,d : R → [0,∞) vanish outside of the interval [p, 1−p], which can be achieved by means of a truncated mixed

beta distribution, as shown in [9].
To describe the multivariate probability density f f : Rd → [0,∞) of the d-dimensional particle descriptor vectors

considered in Eq. (4) for the entire dataset Df, we assume that the random variable Mrat is conditionally independent
of the remaining particle descriptors, given that Mrat ∈ [0, p]∪ [1−p, 1]. Moreover, we assume that Mrat is uniformly
distributed on [0, p] ∪ [1− p, 1]. Then, the density f f : Rd → [0,∞) is given by

f f(x) =



nf
nv

nf

1
0.01f

f
nv(x1,...,d−1), if 0 ≤ xd ≤ p,

nf
co

nf
f f
co(x), if p < xd ≤ 1− p,

nf
v

nf

1
0.01f

f
v(x1,...,d−1), if 1− p < xd ≤ 1,

0, otherwise,

(6)

where x = (x1,...,d−1, xd) ∈ Rd, see [9] for details. Similarly to Eq, (6), the density f t : Rd → [0,∞) of the
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d-dimensional particle descriptor vectors considered in Eq. (4) for the dataset Dt is given by

f t(x) =


nt
nv

nt
nv+nt

co

1
0.01f

t
nv(x1,...,d−1), if 0 ≤ xd ≤ p,

nt
nv

nt
nv+nt

co
f t
co(x), if p < xd ≤ 1− p,

0, otherwise.

(7)

Notice that the formulas given in Eqs, (6) and (7) are slightly different from each other. The reason for this is
that, in our case, the set Dt

v contains only two particle descriptor vectors and therefore it is impossible to determine
a density f t

v : R(d−1) → [0,∞), which would be necessary if we proceeded in the same way as in Eq. (6). As
already mentioned above, the densities f f

v, f
f
co, f

f
n, f

t
co, f

t
n will be constructed via the copula-based approach stated

in Eq. (5). Specifically, bivariate Archimedean copulas will be used, with the univariate distributions of individual
particle descriptors fitted by gamma or beta distributions, see Section 3.1 for further details.

Since, in our case, the concentrate almost exclusively consists of elongated and plate-like particles, it is difficult to
obtain a sufficiently accurate segmentation of the particles. As this type of particles only occurs in small quantities
in the tailings, it significantly reduces the effort to reliably segment the CT data of the tailings. That is why, instead
of fitting the density function f c : Rd → [0,∞) for concentrate directly to CT data, in Section 2.6.5 we introduce
an optimization routine to determine the density f c for the concentrate. However, before doing so, we must first
introduce a representation formula for the mass-weighted version f f

m of f f.

2.6.3 Mass-Weighted Probability Densities of Particle Descriptor Vectors

In addition to the number-weighted densities f f, f c, f t considered so far, we consider the mass-weighted probability
densities f f

m, f
c
m, f

t
m : Rd → [0,∞) for feed, concentrate and tailings, which are given by

f f
m(x) =

f f(x)m(x)∫
Rd f f(y)m(y)dy

, f c
m(x) =

f c(x)m(x)∫
Rd f c(y)m(y)dy

, f t
m(x) =

f t(x)m(x)∫
Rd f t(y)m(y)dy

(8)

for each x ∈ Rd. The function m : Rd → [0,∞) in Eq. (8) maps each particle descriptor vector x ∈ Rd to
the corresponding material density m(x), see [11].Since the particles consist mainly of quartz and zinnwaldite, we
assume for the sake of simplicity that all particles are composed of these two components only. Consequently, the
mass function m can be expressed as follows:

m(x) =
4π

3

(
x1

2

)3 (
xd · δZ + (1− xd) · δQ

)
(9)

for each particle descriptor vector x = (x1, . . . , xd) ∈ Rd, which contains the volume equivalent diameter x1 and the
volume fraction of zinnwaldite xd, where δZ = 2.96 and δQ = 2.65 are the mass densities of zinnwaldite and quartz,
respectively.

2.6.4 Representation Formula for the Probability Density f f
m of Particle Descriptor Vectors of Feed

In separation processes, the sum of the numbers of particles in concentrate and tailings should theoretically be equal
to the number of particles in the feed. In practice, however, the measurements of feed, concentrate and tailings
are statistically representative samples for the corresponding particle systems and thus, can violate this equality.
Nevertheless, the mass-weighted probability density f f

m : Rd → [0,∞) of particle descriptor vectors of feed can be
represented as a convex combination of the corresponding densities f t

m : Rd → [0,∞) and f c
m : Rd → [0,∞) of tailings

and concentrate, i.e.,

f f
m(x) = λf c

m(x) + (1− λ)f t
m(x), (10)

for each x ∈ Rd and some mixing parameter λ ∈ [0, 1] given by

λ =
mc

mf
,

where mc and mf denote the total mass of particles in concentrate and feed, see [1].
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2.6.5 Determining the Probability Density fc of Particle Descriptor Vectors of Concentrate

As already mentioned in Section 2.6.2, the segmentation of particles in CT image data is difficult for the concentrate.
Therefore, we aim to indirectly determine the probability density f c of particle descriptor vectors of concentrate
using the representation formula given in Eq. (10). For this, we assume that f c belongs to a parametric family
{fθ : θ ∈ Θ} of d-dimensional probability densities, where Θ ⊂ Rq denotes some set of q-dimensional parameter
vectors for some integer q ≥ 1. Then, similar to Eq. (6), we can write f c as follows:

f c(x) =


θ1

1
0.01f

(θ4)
nv (x1,...,d−1), if 0 ≤ xd ≤ p,

θ2f
(θ5)
co (x), if p < xd ≤ 1− p,

θ3
1

0.01f
(θ6)
v (x1,...,d−1), if 1− p < xd ≤ 1,

0, otherwise,

(11)

for each x = (x1,...,d−1, xd), where θ1, θ2, θ3 ∈ [0, 1] with θ1 + θ2 + θ3 = 1. Additionally, let q1, q2, q3 ≥ 1 with
q1 + q2 + q3 + 3 = q and θ4 ∈ Rq1 , θ5 ∈ Rq2 , θ6 ∈ Rq3 be the parameter vectors of the probability densities

f
(θ4)
nv , f

(θ5)
co , f

(θ6)
v appearing on the right-hand side of Eq. (11). Therefore, the parameter vector θ ∈ Θ that we aim

to optimize is given by θ = (θ1, θ2, θ3, θ4, θ5, θ6). Notice that the probability density f c is not yet mass-weighted, so
this weighting must be carried out during the optimization process. Thus, the optimization problem is given by

θc = arg min
θ∈Θ

∫
Rd

∣∣∣∣f f
m(x)−

(
λ

fθ(x)m(x)∫
Rd fθ(y)m(y)dy

+ (1− λ)f t
m(x)

)∣∣∣∣dx, (12)

where θc is the optimal parameter vector for f c, see also [11]. According to the rule given in Eq. (8), the resulting
density f c can then be transformed into the mass-weighted density f c

m, which is used to determine Tromp functions
as explained in the next section.

2.7 Multivariate Tromp Functions and Their Interpretation

To investigate the separation behavior of particles during separation processes, in [11, 22–24] we utilized copula-
based probability densities of the considered particle descriptor vectors to compute multivariate Tromp functions
T : Rd → [0, 1], where T (x) can be interpreted as separation probability of a particle with descriptor vector x =
(x1, . . . , xd) ∈ Rd. In other words, a feed particle with descriptor vector x will be separated into the concentrate with
probability T (x). Formally, the Tromp function T : Rd → [0,∞) of a separation process is given by the mass-weighted
densities f f

m : Rd → [0,∞) and f c
m : Rd → [0,∞) as follows:

T (x) =


mc

mf

f c
m(x)

f f
m(x)

, if f f
m(x) > 0

0, if f f
m(x) = 0,

(13)

for each x ∈ Rd, see [11]. However, to interpret the value T (x) as separation probability, it must hold that T (x) only
takes values within the interval [0, 1], so that particle descriptor vectors with a value of T (x) close to 1 have a high
probability of being separated into the concentrate, and those with a value of T (x) close to 0 have a low probability
of being separated to the concentrate. Due to numerical instabilities arising from the use of quotients, this can not
always be guaranteed. In particular, the Tromp function is sensitive regarding the denominator in Eq. (13), when
the feed contains only a small number of particles with a particular descriptor vector, i.e., f f

m(x) is close to zero, but
such particles are enriched in the concentrate. For this reason, in [11], the reconstruction of the feed density in Eq.
(10) has been used to rewrite Eq. (13) as follows:

T (x) =


mc

mf

f c
m(x)

λf c
m(x) + (1− λ)f t

m(x)
, if λf c

m(x) + (1− λ)f t
m(x) > 0

0, if λf c
m(x) + (1− λ)f t

m(x) = 0,
(14)

for each x ∈ Rd, where λ = mc

mf
. Thus, the multivariate densities of the concentrate and the tailing are used to

compute a numerically stable Tromp function.
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Formally, the values T (x) of a Tromp function can be defined for all x ∈ Rd, but for descriptor vectors x ∈ Rd

such that f f
m(x) is close to zero, this is not meaningful. Thus, in [11] the set

A = {x ∈ Rd : f f
m(x) > ε} (15)

has been introduced, where ε = inf{s ∈ [0,∞) :
∫
x∈Rd:f f

m(x)≤s
f f
m(x)dx ≥ q} for some q ∈ [0, 1]. The threshold q

is used to indicate how likely it must be that particles with certain descriptor vectors are observed in the feed to
provide sufficient information about the separation probability of such particles. Thus, the value T (x) of a Tromp
function is meaningful only if x ∈ A.

3 Results

As already mentioned above, the separation behavior of particles in the magnetic separation process considered in this
paper will be analyzed with respect to shape, size and composition of the particles. Thus, we analyze the separation
process by means of the three particle descriptor vectors given in Eq. (4). In this section, the corresponding densities
of the particle descriptor vectors are fitted and then used to compute Tromp functions.

3.1 Fitted Univariate and Multivariate Probability Densities

To compute Tromp functions according to Eq. (14), we need to know the multivariate probability densities f c
m and

f t
m. But, since the segmentation of particles in CT image data is difficult for the concentrate, we use the optimization
approach stated in Section 2.6.5 in order to determine f c

m. To achieve this, we first apply the algorithm proposed
in [9] to fit the multivariate probability densities f f

v, f
f
n, f

f
co, f

t
n and f t

co appearing on the right-hand sides of Eqs. (6)
and (7) to image data of feed and tailings for the three particle descriptor vectors considered in Eq. (4), where the
marginal densities are fitted by mixed gamma and beta distributions for the shape and size descriptors, respectively,
as they provide a suitable support, i.e., a support of [0, 1] for shape and composition descriptors and [0,∞) for the
size. Moreover, they are multimodal, which is required since the considered particles are often composites. Note that,
formally, the probability density fmixed : R → [0,∞) of a mixture with two component densities f1, f2 : R → [0,∞)
is given by fmixed(x) = wf1(x) + (1− w)f2(x) for each x ∈ R, where w ∈ [0, 1] denotes the mixing ratio [32].

3.1.1 Univariate Probability Densities of Single Particle Descriptors for Feed and Tailings

To make the paper more self-contained, the formulas for the densities of beta and gamma distributions, which will
be used in the following, are given in Table 2.

Table 2: Parametric families of univariate distributions with corresponding density, support and parameter space,
where B,Γ denote the beta [33] and gamma function [34], respectively.

parametric family probability density support parameters

beta distribution [33]
1

B(α, β)
xα−1(1− x)β−1 [0, 1] α, β > 0

gamma distribution [34]
xα−1 exp(−x

β )

βαΓ(α)
[0,∞) α, β > 0

To fit mixed gamma distributions, the expectation maximization algorithm [32] is used, whereas mixed beta
distributions are fitted by means of the algorithm introduced in [35]. To ensure that the distribution corresponding
to Mrat vanishes outside the interval [0.01, 0.99], we used a truncated mixed beta distribution. The type and
parameter values of the fitted univariate distributions are given in Table 3, see also Figures 3 and 4.
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Table 3: Parametric families of fitted univariate distributions for the data sets Df
v, D

f
co, D

f
nv, D

t
co, D

t
nv and the particle

descriptors Mvol,Mflat,Msphe,Mrat, together with their parameter values (trunc = truncated).

data set descriptor distribution fitted parameter values

Df
v

Mvol mixed gamma w = 0.8989, α1 = 15.8647, β1 = 12.4278, α2 = 6.4938, β2 = 13.8301
Mflat mixed beta w = 0.9265, α1 = 6.1468, β1 = 36.1857, α2 = 310.4800, β2 = 602.7691
Msphe beta α1 = 7.9504, β1 = 10.4121

Df
co

Mvol mixed gamma w = 0.81028, α1 = 15.9421, β1 = 13.1879, α2 = 4.3932, β2 = 58.3942
Mflat mixed beta w = 0.6041, α1 = 5.4094, β1 = 25.9257, α2 = 2.4341, β2 = 2.6553
Msphe mixed gamma w = 0.3328, α1 = 20.3022, β1 = 31.0702, α2 = 7.6441, β2 = 5.7862
Mrat trunc. mixed beta w = 0.2684, α1 = 0.3648, β1 = 1.7342, α2 = 6.7577, β2 = 0.7318

Df
nv

Mvol mixed gamma w = 0.0539, α1 = 4.7095, β1 = 14.7099, α2 = 11.7386, β2 = 21.5318
Mflat mixed beta w = 0.1335, α1 = 9.5198, β1 = 11.2623, α2 = 3.131, β2 = 2.1409
Msphe mixed beta w = 0.1097, α1 = 9.8598, β1 = 9.4948, α2 = 19.6430, β2 = 7.8057

Dt
co

Mvol mixed gamma w = 0.9599, α1 = 13.7417, β1 = 19.3901, α2 = 29.1067β2 = 3.1535
Mflat mixed beta w = 0.2916, α1 = 12.3731, β1 = 11.5920, α2 = 12.6004, β2 = 4.2472
Msphe gamma α1 = 15.01349, β1 = 5.4848
Mrat trunc. mixed beta w = 0.6736, α1 = 1.0630, β1 = 16.4735, α2 = 4.0676, β2 = 0.7839

Dt
nv

Mvol mixed gamma w = 0.9887, α1 = 11.3663, β1 = 24.5910, α2 = 1.1749, β2 = 78.2910
Mflat mixed beta w = 0.4250, α1 = 8.2138, β1 = 7.2888, α2 = 3.5589, β2 = 1.9493
Msphe beta α1 = 20.0204, β1 = 8.0359
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1Figure 3: Histograms and fitted (univariate) densities of volume equivalent diameter, flatness and sphericity of
particles in the feed, which consist almost exclusively of zinnwaldite (upper row), are a composition with significant
fraction of both zinnwaldite and non-valuable material (middle row), and consist almost exclusively of non-valuable
material (lower row).
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1Figure 4: Histograms and fitted (univariate) densities of volume, equivalent diameter, flatness and sphericity of
particles in the tailings which are a composition with significant fraction of both zinnwaldite and non-valuable
material (upper row) and consist almost exclusively of non-valuable material (lower row).

3.1.2 Multivariate Probability Densities of Particle Descriptor Vectors for Feed and Tailings

Using the univariate distributions stated above, we determine the multivariate densities f f
v, f

f
n, f

f
co, f

t
n and f t

co ap-
pearing on the right-hand sides of Eqs. (6) and (7) by means of the algorithm given in [9]. For this, the independence
copula and the following (bivariate) Archimedean copulas are taken into account as candidates. Namely, we consider
the Frank, Joe, Clayton and Gumbel copula given in Table 4 as well as their rotations by 90, 180 and 270 degrees,
see [36].

Table 4: Parametric families {ϕθ : θ ∈ Θ} of Archimedean generators, together with their set of parameters Θ ⊂ R.

copula Frank Joe Clayton Gumbel

ϕθ(u) − ln exp(−θu)−1
exp(−θ)−1

− ln(1−(1−u)θ) 1
θ (u

−θ − 1) (− lnu)θ

Θ R \ {0} [1,∞) (0,∞) [1,∞)

The type and parameter values of the fitted copulas for the particle descriptor vectors of Eq. (4) are given in
Table 5. These copulas are then used to determine the multivariate densities f f and f t by means of Eqs. (6) and
(7), which are transformed according to Eq. (8) to get the mass-weighted densities f f

m and f t
m.

3.1.3 Probability Densities of Particle Descriptors for Concentrate

In the next step, for each x = (x1, . . . , xd) ∈ Rd, the value of f f
m(x) is expressed by the right-hand side of Eq. (10),

where the mixing parameter λ = 0.308 is experimentally measured. Since we do not have full information about the
particles in the concentrate, the minimization problem formulated in Eq. (12) is used to determine the mass-weighted
density f c

m for the three particle descriptor vectors given in Eq. (4), where the densities f f
m and f t

m fitted to segmented
image data are inserted into Eq. (12).

However, due to the large number of parameters in the minimization problem stated in Eq. (12), it turns out
that we have to divide it into several (smaller) minimization problems. Thus, we first fit the parameters of the
univariate distributions of single particle descriptors for three subsets of particles in the concentrate, which consist
of almost exclusively valuable material, almost exclusively non-valuable material, and a significant fraction of both,
respectively. As candidates for families of univariate distributions, the same parametric families as for the feed are
considered. Then, for all i ∈ {1, . . . , d} and k ∈ {v,co,n}, the parameter vector θ(i,k) ∈ Θ(i,k) of the univariate density
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Table 5: Types and parameter values of copulas for the fitted multivariate densities of the particle descriptor vectors
xvr, xvfr, xvsr and the data sets Df

v, D
f
co, D

f
nv, D

t
co, D

t
nv.

data set descriptor vector copula type fitted copula parameter

xvr

Df
co (Mvol,Mrat) Clayton 90◦ 0.1855

Dt
co (Mvol,Mrat) Gumbel 90◦ 1

xvfr

Df
v (Mvol,Mflat) independent

Df
co

(Mvol,Mflat) Clayton 180◦ 0.3779
(Mflat,Mrat) Clayton 90◦ 0.5627

(Mvol,Mrat|Mflat) independent
Df

nv (Mvol,Mflat) Frank 1.7726

Dt
co

(Mflat,Mvol) Frank 1.2837
(Mvol,Mrat) Gumbel 90◦ 1

(Mflat,Mrat|Mvol) independent
Dt

nv (Mvol,Mflat) Gumbel 180◦ 1.2181

xvsr

Df
v (Mvol,Msphe) Clayton 270◦ 0.2446

Df
co

(Mvol,Mrat) Clayton 90◦ 0.1855
(Msphe,Mrat) Clayton 90◦ 0.5471

(Mvol,Msphe|Mrat) independent
Df

nv (Mvol,Msphe) Joe 180◦ 1.1680

Dt
co

(Mvol,Mrat) Gumbel 90◦ 1
(Msphe,Mrat) Gumbel 180◦ 1.0470

(Mvol,Msphe|Mrat) independent
Dt

nv (Mvol,Msphe) independent

fθ(i,k) : R → [0,∞) of the i-th particle descriptor is fitted by solving a similar optimization problem as in Eq. (12).
The type and parameter values of the fitted univariate distributions are given in Table 6.

Then, we optimize the remaining parameters to obtain a probability density as given in Eq. (11), where we
assume that the multivariate densities appearing on the right-hand side of Eq. (11) have the same R-vine structure
and the same bivariate copula types as the corresponding probability densities f f

v, f
f
n, f

f
co and f t

n, f
t
co. Moreover, the

parameters θ1, θ2, θ3 appearing in Eq. (11) are optimized. The obtained results are given in Table 7.

Table 6: Parametric families of fitted univariate distributions for the particle descriptors Mvol,Mflat,Msphe,Mrat of
the concentrate, together with their parameter values (trunc = truncated).

material descriptor distribution fitted parameter values

valuable
Mvol mixed gamma w = 0.9, α1 = 15.86, β1 = 12.4120, α2 = 6.4900, β2 = 13.8244
Mflat beta α1 = 6.1400, β1 = 36.1900
Msphe beta α1 = 7.9704, β1 = 10.4121

composite

Mvol mixed gamma w = 0.7879, α1 = 15.8794, β1 = 12.1410, α2 = 4.4159, β2 = 58.4404
Mflat gamma α1 = 5.1400, β1 = 25.9300
Msphe mixed beta w = 0.6126, α1 = 19.6100, β1 = 29.2378, α2 = 22.7139, β2 = 17.6017
Mrat mixed trunc. beta w = 0.1056, α1 = 3.1270, β1 = 7.6151, α2 = 5.3638, β2 = 0.5996

non-
valuable

Mvol gamma α1 = 19.1034, β1 = 7.0838
Mflat mixed gamma w = 0.0027, α1 = 9.2924, β1 = 11.4265, α2 = 1.0, β2 = 1.4092
Msphe gamma α1 = 44.7555, β1 = 84.8405
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Table 7: Types and parameter values of copulas of fitted multivariate densities for the particle descriptor vectors
xvr, xvfr, xvsr of the concentrate, together with the values of the parameters θ1, θ2, θ3 appearing in Eq. (11).

material θ1, θ2, θ3 descriptor vector copula type fitted copula parameter

xvr (fraction valuable: θ1 = 0.1656)

composite θ2 = 0.6299 (Mvol,Mrat) Clayton 90◦ 0.0599

xvfr

valuable θ1 = 0.0930 (Mvol,Mflat) independent

composite
(Mvol,Mflat) Clayton 180◦ 0.2614

θ2 = 0.8847 (Mflat,Mratio) Clayton 90◦ 0.1359
(Mvol,Mratio|Mflat) independent

non-valuable θ3 = 0.0223 (Mvol,Mflat) Frank 1.0923

xvsr

valuable θ1 = 0.0817 (Mvol,Msphe) Clayton 270◦ 0.2505

composite
(Mvol,Mrat) Clayton 90◦ 0.0651

θ2 = 0.9183 (Msphe,Mratio) Clayton 90◦ 0.2396
(Mvol,Msphe|Mratio) independent

non-valuable θ3 = 0 (Mvol,Msphe) Joe 180◦ 1.1817

In Figure 5, bivariate probability densities of the particle descriptor vector xvr are shown, which have been
obtained for the feed and tailings, as well as for the concentrate by solving Eq. (12). Furthermore, in Figure 5d,
the density of xvr is shown, which has been obtained for the feed via reconstruction, i.e., by computing the convex
combination of the densities for concentrate and tailings as given in Eq.(10). It is clearly visible that the densities
shown in Figures 5a and 5d nicely coincide, although no segmented image data for the concentrate was available and
therefore, the density of xvr for the concentrate had to be determined indirectly, by solving the optimization problem
stated in Eq. (12). Note also that Figure 5b) shows that the tailings consist to a large extent of particles with a low
zinnwaldite fraction, i.e., particles with a high quartz fraction.
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Figure 5: Bivariate probability densities of the particle descriptor vector xvr for feed (a) and tailings (b), as well as
for the concentrate (c) obtained by solving Eq. (12), and for the reconstructed feed (d) by means of Eq. (10).

To visualize the results, which have been achieved by solving the optimization problem stated in Eq. (12) for the
three-dimensional particle descriptor vectors xvfr and xvsr given in Eq. (4), bivariate (marginal) probability densities
are considered. In particular, in Figure 6, bivariate marginal densities are shown, which have been obtained for
the volume equivalent diameter and flatness of particles in the feed, by (partially) integrating the corresponding
trivariate densities of xvfr.
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Figure 6: Bivariate densities of the volume equivalent diameter and flatness of particles in the feed, obtained by
integrating the trivariate densities of xvfr, which have been fitted to segmented image data (a) and reconstructed by
means of Eq. (10) (b), respectively.

Moreover, in Figure 7, bivariate marginal densities are shown, which have been obtained for the volume equivalent
diameter and sphericity of particles in the feed, by integrating the corresponding trivariate densities of the particle
descriptor vector xvsr.
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Figure 7: Bivariate densities of the volume equivalent diameter and sphericity of particles in the feed, obtained by
integrating the trivariate densities of xvsr, which have been fitted to segmented image data (a), and reconstructed
by means of Eq. (10) (b), respectively.

It can be clearly seen that the pairs of bivariate probability densities shown in Figures 6 and 7 agree well with
each other. This suggests that the method described in Section 2.6 works quite well.

3.2 Computed Multivariate Tromp Functions

Using the multivariate probability densities stated in Section 3.1, multivariate Tromp functions T : Rd → [0,∞) are
computed by means of Eq. (14). However, to obtain a meaningful interpretation of Tromp functions, the values T (x)
are only computed for x ∈ A, where the set A ⊂ Rd is given in Eq. (15) with q = 0.01, i.e., the values of Tromp
functions are only computed for particles that are likely to be found in the feed.

For example, the bivariate Tromp function T : R2 → [0,∞) shown in Figure 8 is computed by means of the
mass-weighted densities f f

m : R2 → [0,∞) and f c
m : R2 → [0,∞) of the descriptor vector xvr for particles in the

feed and concentrate. Here, as well as in Figure 9 and 10, white areas consist of x ̸∈ A, i.e., particles that are
not sufficiently often observed in the feed, whereas yellow areas indicate that particles with corresponding volume
equivalent diameter and zinnwaldite fraction have a high probability of being separated into the concentrate. On
the other hand, particles with values of xvr in dark blue areas, i.e., particles with a low zinnwaldite fraction, are
separated into the tailings with high probability.

15



100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1

volume equivalent diameter [µm]

zi
n
n
w
al
d
it
e
fr
ac
ti
on

se
p
ar
at
io
n
p
ro
b
ab

il
it
y

Figure 8: Bivariate Tromp function for the particle descriptor vector xvr.

To investigate the impact of flatness and sphericity on the separation behavior of particles, the bivariate (marginal)
densities of the respective shape descriptors and the zinnwaldite fraction are computed by integrating the trivariate
densities of xvfr and xvsr for feed and concentrate, respectively. The corresponding bivariate Tromp functions are
visualized in Figure 9.
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Figure 9: Bivariate Tromp functions for flatness and zinnwaldite fraction (a), as well as for sphericity and zinnwaldite
fraction (b)

Moreover, using the trivariate probability densities fitted in Section 3.1 for the three-dimensional particle descrip-
tor vectors xvfr and xvsr, trivariate Tromp functions can be computed. In particular, using the bivariate densities
of (Mflat,Mrat) and (Msphe,Mrat) given that Mvol = v for some v > 0, the conditional bivariate Tromp functions
T(Mflat,Mrat|Mvol=v) : R2 → [0,∞) and T(Msphe,Mrat|Mvol=v) : R2 → [0,∞) can be computed. This allows us to obtain
2D Tromp functions conditional on different sizes. Exemplary, conditional Tromp functions for two different particle
sizes, i.e., for a volume equivalent diameters of v = 166µm and v = 332µm, are visualized in Figure 10.
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Figure 10: Conditional bivariate Tromp functions T(Mflat,Mrat|Mvol=v) ((a), (b)) and T(Msphe,Mrat|Mvol=v) ((c), (d)) for
v = 166µm ((a), (c)) and v = 332µm ((b), (d)).

4 Discussion

As shown in Section 3, multivariate probability densities of particle descriptor vectors for the concentrate can be
determined by means of corresponding densities for feed and tailings, where the latter densities are estimated based on
segmented image data. Then, using the probability densities of particle descriptor vectors for feed and concentrate,
bivariate Tromp functions have been established. In previous works [2, 37] bivariate Tromp functions have been
computed based on kernel density estimators and 2D data. The advantage of a kernel density estimator is that
no model assumptions on the distribution of descriptor vectors need to be made. However, in comparison to our
parametric approach, kernel density estimation typically requires more data. Besides, the computational approach
presented in Section 2.6.5 for reconstructing the concentrate distribution via an optimization scheme is not possible
when deploying kernel density estimates. Moreover, the deployment of parametric Tromp functions can allow for
the virtual optimization of process parameters, i.e., to identify parameters of the separation process that result in
concentrates with desirable properties [8]. Recently, in [11] bivariate Tromp functions have been computed by means
of low-parametric models for particle descriptor distributions. However, in [11] particle descriptor vectors have been
computed solely from 2D image data acquired by means of SEM-EDS, which can lead to a stereological problems.
In the present paper, we have combined both 3D µ-CT and 2D SEM-EDS data for our analyses to counteract such
problems.

In the following, it will be discussed in more detail how the Tromp functions demonstrate that the shape, size and
composition of the particles have an influence on the separation behavior. In addition, the results of the concentrate
reconstruction and the limitations of characterizing multivariate Tromp functions from 3D image data are discussed
and some possible solutions to overcome these limitations.
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4.1 Influence of Particle Descriptors on Magnetic Separation Results

It is well known that there is a strong connection between the results of magnetic separation and particle composition,
since magnetizability and composition of particles are strongly correlated. Thus, particles rich in magnetizable
zinnwaldite are more likely to be lifted into the concentrate, as illustrated in Figure 8. Still, the results presented
in Section 3.2 highlight a complex interplay between separation results and the zinnwaldite fraction with further
particle descriptors for their size and shape. For example, Figures 9 and 10 show that for plate-like particles, a
lower zinnwaldite fraction is sufficient to be separated into the concentrate. Thus, plate-like particles are easier to
be separated into the concentrate.

Figure 8 indicates a small decrease in separation probabilities for larger particles with the same zinnwaldite
fraction. However, in previous studies on the same material as that one considered in the present paper, it has
been observed that with increasing size the cut susceptibility decreases (i.e., the susceptibility for which 50% of the
particles are recovered in the concentrate) and thus the separation probabilities of particles increase, see e.g. [12].
This seems to be in contradiction with the results in the presented paper. Initially, this might seem attributable to
the low relative frequency of particles larger than 300µm, as shown in Figure 3, potentially resulting in a less robust
computation of Tromp functions in this region. However, in absolute terms there are 249 particles larger than 300 µm,
and in a comparable study [9], a similar number of particles have been effectively used to fit even higher-dimensional
distributions—indicating that the low frequency of particles larger than 300µm does not have an adverse effect on
the bivariate Tromp functions computed in the present paper.

An alternative explanation could be that in the present paper we quantify particle sizes using a different approach
than that of [12]. More precisely, in [12] different size classes of the greisen materials were acquired by dry sieving.
For size classes associated with larger particles, an overall lower likelihood of separation has been observed, indicating
an influence of size on the separation probability. However, this could be attributed to the shape of the particles
instead, which strongly correlates with their mineralogical composition. Intuitively speaking, a non-magnetizable
quartz particle and a magnetizable zinnwaldite particle of the same volume-equivalent diameter usually have different
spatial dimensions, as zinnwaldite tends to form plate-like shapes. As a result, the zinnwaldite particle would be
classified into a larger size category during sieving than the quartz particle. This could explain the discrepancy
between the results stated in Figure 8 of the present paper and in [12]. Moreover, these observations highlight the
complexity of separation processes, i.e., the multivariate interplay between size, composition, shape and separation
probabilities. In particular, a direct comparison of the results in the present paper and in [12] is not possible, since
the mesh size of a sieve and the volume equivalent diameter cannot be compared.

Nonetheless, the computed Tromp functions provide separation probabilities for different particle descriptor
vectors and can be used to predict the separation outcome for new feed materials. More precisely, the computed
parametric Tromp functions can be used to predict the distribution of particle descriptors in the concentrate for any
given descriptor distribution associated with the feed particles.

4.2 Reconstruction of Feed Distributions from Those of Concentration and Tailings

As outlined in Section 2, the relationship between particle descriptor vectors and separation probabilities can be
analyzed by means of multivariate probability densities of descriptor vectors which in turn can be calibrated to
particle-discrete descriptor vectors. To our knowledge the acquisition of microscopic image data is the most viable
method to gain sufficient information on particle systems to compute multivariate probability densities of descriptor
vectors, although, for some relatively simple geometries, there are computational methods that can determine such
densities from other types of data, instead of using image data [19, 38]. Therefore, we believe that the workflow
described in Section 2, for imaging, image processing, parametric multivariate stochastic modeling, and the compu-
tation of multivariate Tromp functions, is a valuable addition to the characterization toolbox for complex separation
processes. Compared to related non-parametric approaches [37,39], the parametric copula-based modeling approach,
which is considered in the present paper, can address potential complications connected with data acquisition and
data processing.

For example, as already mentioned in Section 2.6.4, the formula given in Eq. (10) for the reconstruction of feed
distributions can be violated in practice, since the measurements of feed and tailings are only representative in a
statistical sense. This effect can be seen in Figures 5, 6 and 7, where the bivariate probability densities of feed
particle descriptors, which have been fitted to segmented image data, slightly differ from those obtained by means
of Eq. (10). Therefore, fitting the probability densities of concentrate particle descriptors from image data would
further improve the accuracy of Tromp functions. But, since in our case the concentrate almost exclusively consists
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of strongly elongated and plate-like particles, it is significantly more difficult to correctly segment the CT data of the
concentrate than it is for feed and tailings. Analyzing the influence of size, shape and composition on the separation
behavior using probability densities of poorly segmented data would not yield sufficiently accurate results. However,
the optimization routine, which heavily relies on our parametric modeling approach, allows us to make a statement
when more precise conclusions cannot be drawn from the image data.

Note that in [12] and [39] similar difficulties have been reported regarding the accuracy of statements based on bad
statistics due to the low number of particles, which are available to determine separation curves from two-dimensional
SEM-EDS data.

4.3 Limitations of µ-CT to Characterize the Composition of Particles

Even though we have demonstrated that 3D imaging by means of µ-CT is exceptionally informative for the char-
acterization of separation processes, it still poses some limitations in comparison to 2D imaging techniques. For
example, µ-CT is not well-suited for detecting different fine-scale phases within the material, a task more effectively
performed by modern 2D SEM-EDS measurement systems. On the other hand, analyses that are based solely on
2D image data are typically subject to a stereological error of unknown extent [12]. Thus, a correlative approach
was presented utilizing the fine-scale phases of the 2D SEM-EDS data as well as the shape and size information
observable in CT-data. This approach, leveraging the advantages of both 3D and 2D imaging, is sufficient for simply
structured ore particles. However, for more complex particles, such as composite particles, the mineralogical com-
position in some 2D slices of the particle may not be representative. Therefore, for more complex particle systems,
where such complex particles occur more frequently, obtaining a three-dimensional particle-wise segmentation might
be necessary. Moreover, the resolution of 3D image data could be increased by deploying super-resolution techniques,
while decorating it with features observable in 2D image data [40].

5 Conclusions

In this paper, particle systems consisting mainly of zinnwaldite and quartz are considered and both bivariate and
trivariate mass-weighted Tromp functions are calculated, which take into account the zinnwaldite fraction of particles
as well as their size and shape. Therefore, a parametric modeling approach is used based on 3D µ-CT image data
and 2D SEM-EDS analyses of feed and tailings. The corresponding multivariate probability distributions of particle
descriptor vectors are fitted by means of copula techniques. To determine these distributions for the concentrate,
an optimization routine is used, since it was not possible to determine the particle descriptors of the concentrate on
the basis of image data. Using multivariate Tromp functions, the impact of shape, size and composition of particles
can be investigated regarding their separation behavior in the magnetic separation process considered in the present
paper, where it can be seen that all three kinds of particle properties have an significant influence on the separation
result. More precisely, a higher zinnwaldite fraction and a flat shape lead to a higher separation probability

In summary we can state that the considered workflow allows for the computation of multivariate probability
distributions of descriptor vectors from image data in order to quantitatively characterize particle systems, inde-
pendently of their length scale. Furthermore, our workflow allows for the characterization of separation processes
using multivariate Tromp functions. Note that Tromp functions can not only be used to characterize the separation
behavior of a process, but they also allow for predictive simulations. More precisely, Tromp functions can be used
to predict the distribution of particle descriptors in the concentrate for any given descriptor distribution associated
with feed particles. This kind of predictive simulation can be the basis for process optimization. More precisely,
in [15] we parameterized Tromp functions with respect to process parameters. This allowed us to virtually optimize
process parameters such that the distribution of descriptor vectors associated with the concentrate had desirable
properties (e.g., a high content of valuable materials). Thus, the presented workflow for deriving a mathematical
characterization of separation processes allows for computer-based process optimization, which can reduce costs in
time and resources for the calibration of processes in particle technology. In forthcoming works, we intend to apply
the proposed method to less ideal systems, such as slags processed with alternative separation techniques, as the
separation quality of the considered data was quite good in the presented paper.
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A Measurement parameters imaging

Table 8: Measurement parameters of the MLA.

Measurement Info
Measurement mode GXMAP
Acceleration voltage 20 kV
Resolution 1 µm/Pixel
Probe current 10 nA
Acquisition time 6ms
Step size 6 Pixel

Table 9: Measurement and reconstruction parameters of the XCT scans.

Measurement Info
Voltage 80kV
Power 7W
Lens 0.4X
Source Position −40mm
Detector Position 120mm
Filter LE5
Binning 1
Pixel Size 8.56 µm
Exposure 15 s
Reconstruction Info
Software Zeiss Reconstructor
Center shift automatic
Beam hardening 0.05
Byte scalinig −0.05 to 0.3
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B Overview of important mathematical symbols:

Symbol Description
W ⊂ Z3 sampling window
Wz ⊂ W 2D slice of W
I : W → R CT-image
P ⊂ W particle
Mvol(P ) volume equivalent diameter of particle P
Mflat(P ) flatness of particle P
Msphe(P ) sphericity of particle P
Marea(P ) surface of particle P
Mrat(P ) volume fraction of zinnwaldite in particle P
xvr particle descriptor vector (Mvol(P ),Mrat(P ))
xvsr particle descriptor vector (Mvol(P ),Msphe(P ),Mrat(P ))
xvfr particle descriptor vector (Mvol(P ),Mflat(P ),Mrat(P ))
x = (x1, . . . , xd) some particle descriptor vector with d = 2 or d = 3 descriptors
Df dataset of particles before separation

Df
v dataset of particles containing almost exclusively valuable material in the feed

Df
nv dataset of particles containing almost exclusively non-valuable material in the feed

Df
co dataset of composite particles in the feed

Dt dataset of particles in the tailing after separation
Dt

v dataset of particles containing almost exclusively valuable material in the tailing
Dt

nv dataset of particles containing almost exclusively non-valuable material in the tailing
Dt

co dataset of composite particles in the tailing
nj number of particles in Dj for j ∈ {f, t}
ni
j number of particles in Dj

i for i ∈ {f, t} and j ∈ {n, nv, co}
p ∈ (0, 1) threshold, which is used to subdivide the data based on the volume fraction of zinnwaldite

F1,...,d : Rd → [0, 1] cumulative distribution function of a random vector with d > 0 entries
Fj : R → [0, 1] marginal distribution function of the j-th component

f1,...,d : Rd → [0,∞) density function of a random vector with d > 0 entries
fj : R → [0,∞) marginal density function of the j-th component

C : [0, 1]d → [0, 1] copula

c : [0, 1]d → [0,∞) copula density

f f : Rd → [0,∞) multivariate density for particle descriptor vectors of the dataset Df

f t : Rd → [0,∞) multivariate density for particle descriptor vectors of the dataset Dt

f i
j : Rd−1 → [0,∞) multivariate density of particle descriptor vectors in Dj

i for i ∈ {f, t} and j ∈ {n, nv}
f i
co : Rd → [0,∞) multivariate density of particle descriptor vectors in Di

co for i ∈ {f, t}
fc : Rd → [0,∞) multivariate density for particle descriptors in the concentrate

f i
m : Rd → [0,∞) mass-weighted density version of f i for i ∈ {f,t,c}
m : Rd → [0,∞) mass function, which maps a particle descriptor vector to the corresponding material density
mc total mass of particles in the concentrate
mf total mass of particles in the feed
λ ∈ [0, 1] mass ratio of concentrate and feed

T : Rd → [0, 1] Tromp function

A ⊂ Rd set of particle descriptor vector for which the Tromp function is meaningful
q ∈ [0, 1] threshold indicating the required probability that particles with certain descriptor vectors are observed

in the feed to sufficiently inform their separation probability.
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