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Abstract

Precise control over nanoparticle synthesis in gas-phase processes such as flame and plasma
reactors remains a significant challenge because of the complex, non-linear particle formation
dynamics governed by coagulation and sintering. This paper presents a computational method-
ology that combines a Monte Carlo (MC) simulation framework and a convolutional neural
network (CNN)-based surrogate model to accelerate predictions of bivariate particle descrip-
tor vector distributions. The MC framework, optimized for computational efficiency, predicts
the evolution of the particle surface area and volume distributions over time under isothermal
conditions. This bivariate description enables accurate representation of particle morphol-
ogy, which in turn influences formation dynamics and final product performance. Evaluation
against established models demonstrates high agreement, emphasizing its precision in captur-
ing particle formation dynamics. Indications and restrictions are identified for the achievement
of a self-preserving size distribution (SPSD) for both aggregate volume and surface area, of-
fering the potential to simplify and facilitate bivariate modeling approaches. The CNN-based
surrogate model leverages bivariate histograms to predict time-dependent distributions for
variable temperatures, achieving a 15 000-fold reduction in computation time compared to the
MC framework and thus reaching real-time capability, while maintaining sufficient accuracy.
In addition, the differentiable nature of the model enables the optimization of temperature
profiles. This paper demonstrates the potential for integrating advanced MC frameworks with
neural networks to balance computational efficiency and predictive accuracy.

Keywords: bivariate probability distribution, time series prediction, convolutional neural network,
particle property, aggregate formation, Monte Carlo simulation



1 Introduction

Precise control over process parameters in gas-phase synthesis of nanoparticles is critical, as
variations in the distributions of particle sizes and shapes profoundly influence their functional-
ity and potential applications [22]. However, achieving this level of control remains a formidable
challenge, particularly in processes that adhere to complex non-linear dynamics, such as spark- or
arc-discharge synthesis [55, [54]. One central challenge is the development of adaptable, real-time
prediction models for particle formation, which can guide effective control strategies in synthesis
reactors.

Various numerical methods have been proposed to predict the dynamics of particle formation
in the gas phase [18| 2 [13] B7, B3], each with varying degrees of complexity, computational cost,
and precision. Among these, bivariate models [69] 67, 1, B5], which track the evolution of both
particle surface area and volume, are particularly well suited for processes dominated by coagulation
and sintering. These models enable the derivation of key morphological descriptors, such as the
primary particle size and fractal dimension, while accounting for the effects of irregular shape
on formation dynamics. Although the self-preserving size distribution (SPSD) of particle volume
is well-established [61] and simplifies predictive modeling, the SPSD of particle surface area has
received comparatively less attention. Notable exceptions include studies reported in [56] and [67].
They suggest indications for the existence of a joint SPSD for surface area and volume, which could
significantly improve predictions and potentially streamline process design.

Efforts to reduce the computational cost of predictive models have resulted in a range of ap-
proaches, each with specific trade-offs. Monodisperse models are computationally efficient but lack
accuracy due to the neglect of polydispersity [35]. Method-of-moments models offer greater speed,
but rely on simplifications and a priori assumptions on underlying distributions, which can limit
their accuracy in capturing complex dynamics [67]. Discrete sectional models, such as that pro-
posed in [69], explicitly resolve the particle size distribution (PSD) by dividing particle sizes into
sections and solving population balance equations for each. This yields accurate results but is com-
putationally demanding. Simplifications, such as reducing sectional resolution or dimensionality
while maintaining accuracy, have been carried out, for example, in [41] and [57]. In [41], a bivariate
1D sectional model has been successfully coupled with computational fluid dynamics simulations,
enhancing its applicability to practical scenarios.

The Monte Carlo (MC) framework offers an alternative approach, using stochastic sampling to
realistically mimic the probabilistic nature of particle coagulation. Furthermore, MC frameworks
enable seamless multi-property tracking of particles, making them a powerful tool for modeling
complex formation dynamics. However, they are traditionally computationally intensive. Recent
advances, such as GPU parallelization [66], weighted particles [21], stochastic resolution concepts,
and particle merging techniques [32], have significantly improved computational efficiency. However,
achieving the level of speed required for real-time applications while maintaining high accuracy
remains a challenge. The present study builds on these advances, focusing on the further acceleration
of particle formation predictions.

To address the computational challenges associated with MC simulations of particle aggrega-
tion, the present paper proposes the use of a surrogate model [64], [40] based on convolutional neural
networks (CNNs) [39]. CNNs have proven effective for fast image-based regression, segmentation,
and classification [30, [16] 17, 27, B34], whereas surrogate models offer a computationally efficient
alternative by approximating the output of detailed simulations with significantly reduced compu-
tational effort. Thus, the primary motivation for developing a CNN-based surrogate model is to
accelerate the simulation process while maintaining high precision in predicting the outcomes of



particle aggregation.

Building on this, CNNs also enable real-time adaptability by providing high-speed predictions
that facilitate real-time feedback-driven adjustments to synthesis conditions. These dynamic ad-
justments are particularly relevant for process control in arc-discharge synthesis, where maintaining
stability under fluctuating plasma conditions is crucial. Previous applications of CNNs in modeling
time-dependent systems, such as gas spreading [43] and differential equation solving [44], highlight
their versatility and effectiveness. Furthermore, recent advances in data-driven process monitoring,
such as deep neural network-aided canonical correlation analysis (DNN-CCA) [9] and canonical
correlation deep neural network (CCDNN) [10], have demonstrated their potential in capturing
multivariate dependencies in dynamic systems, a critical feature for identifying and mitigating dis-
ruptions in real-time. The primary strength of both methods lies in correlation analysis, monitoring
and fault detection, improving feature extraction and multivariate data handling, rather than pre-
dicting high-speed time series.

In particular, so-called autoencoders have been used in process optimization. An autoen-
coder [58] is a neural network that learns to encode input data into a lower-dimensional repre-
sentation and then decodes it back to its original form, capturing essential features in the process.
Advanced approaches, such as variational discriminative stacked autoencoders, have demonstrated
enhanced feature representation capabilities by incorporating a pre-learned discriminator, improving
fault detection and process optimization in industrial settings [26]. Autoencoder methods, widely
explored in industrial process monitoring, provide a solid foundation to capture essential dynamics
while enabling robust fault detection and parameter optimization [3§].

The surrogate model developed in the present paper aims to predict two-dimensional distribu-
tions of surface area and volume of aggregated particles over time, conditioned on temperature.
This allows for the prediction of particle properties over time and temperature optimization to
achieve desired aggregate properties. More precisely, we propose a framework to predict the evo-
lution of the distribution of particle surface area and volume one time step ahead. For this, an
autoencoder is trained to predict a series of two-dimensional histograms of particle sphericity, a
particle descriptor used to quantify the relative aggregate surface area [63], and aggregate volume
for a given reactor temperature. This approach is implemented for the proposed small autoencoder
network architecture (SAN) as well as for two network architectures from the literature which were
designed to perform similar tasks but in very different contexts. The first is an Atari frame predic-
tion network (AFPN) which was designed to predict a series of frames of Atari games, conditioned
on player input [45]. The second network was designed to predict human movement actions in
videos, conditioned on the elapsed time [62], which will be referred to as video frame prediction
network (VEPN).

The purpose of the present paper is to answer the following research questions. Are the bi-
variate formation dynamics accurately described by the present MC framework, and under which
conditions is the attainment of a SPSD for both volume and surface area observed? Is it possible
to accurately predict temperature-dependent particle properties over time in gas-phase synthesis of
nanoparticle aggregates? Can this prediction be performed at a speed that is feasible for applica-
tion in autonomous process control? That is, can even a low-parametric neural network architecture
achieve high predictive accuracy in this task?

The remainder of this paper is organized as follows. First, in Section [2.1], the particle formation
model based on coagulation and sintering is introduced. Afterwards, the MC framework that is
used as a basis for neural network training is summarized in Section 2.2 Next, in Section [2.3]
the surrogate model and, in particular, the acquisition of training data, the data transformation,
the network architecture, and the training procedure are described. The MC framework is then



evaluated in Section [3.1], followed by an investigation of distribution dynamics in Section [3.2] In
addition, in Section [3.3 the predicted time series of particle descriptor vector distributions for
different surrogate model architectures and losses are compared, and their applicability in process
control is discussed. Finally, Section |4] concludes.

2 Methods

2.1 Particle formation dynamics

In gas-phase particle formation, colliding particles adhere upon contact, in a process known
as coagulation. Thermal energy then causes restructuring of material between the individual con-
stituent primary particles in a process referred to as sintering. This results in a reduction of the
surface area of the aggregates, which has a direct influence on their collision radius [35]. The col-
lision radius determines the probability of collisions, influencing the overall growth dynamics [28].
Moreover, the collision radius is influenced by coagulation due to the addition of colliding particle
volumes and surface areas. The interconnected nature of volume and surface area evolution thus
necessitates their simultaneous prediction in synthesis processes with significant thermal energy
input, such as flame spray pyrolysis, hot-wall reactors, spark-discharge, or arc-discharge.

The present study does not explicitly model nucleation, as it assumes that the smallest particles
formed are thermodynamically stable in the absence of a nucleation barrier. This assumption
is supported by studies on gas-phase reactors for materials such as SiOy [59] and TiO, [68]. In
these reactor types, the high degree of supersaturation results in a small critical nucleus size, as
noted by Schmidt-Ott for spark-discharge reactors [50]. In aerosols with high volume fractions,
particle growth is predominantly governed by ballistic and diffusional coagulation, rendering other
mechanisms such as nucleation and condensation negligible [7]. For modeling purposes, initial
primary particles are assumed to be instantaneously introduced into the system and homogeneously
distributed. This simplifies the modeling process by decoupling monomer release dynamics from
particle growth mechanisms. The following sections provide a detailed description of the coagulation
and sintering models used in this paper.

2.1.1 Coagulation

Let N(v,t) denote the (expected) number of particles per unit reactor volume (number concen-
tration) at time ¢ > 0 such that the volume of individual particles does not exceed the threshold
v > 0. Assume that N(v,t) can be written as integral, i.e., for some function n: (0, 00) X [0,00) —
[0, 00) we have

N(v,t) = /OU n(v', t)dv’, (1)

for any v, t > 0, where n(v', t)dv’ represents the (differential) number concentration of particles with
volume between v" and v' 4 dv” at time t. The net rate of change of the values of n(v,t) with respect
to time t is governed by a population balance equation (PBE), which is modeled by the classical
Smoluchowski expression [53] for the coagulation of spherical particles. Under the assumption of
binary collisions and spatial homogeneity, it is given as

dn(v,t)
dt

= % /0 B —v)n(w—v,t)n 1) dv' —n(v,t) /Oooﬁ (0,0 )n(@, ) dv,  (2)



for any v,t > 0, and a particle collision rate 3: (0,00)> — [0,00). Note that in deterministic
approaches such as discrete-sectional schemes [37], the PBE given in Eq. is commonly discretized
in particle volume. In contrast, the stochastic nature of the MC framework considered in the present
work bypasses this by implicitly bounding the domain through sampling, thereby eliminating the
need for an explicit discretization grid of the particle volume [42]. The first term on the right-hand
side of Eq. accounts for all possible combinations of collisions between particles with volumes v’
and v — v’ that result in the formation of particles with volume v, while the second term represents
the loss of particles with volume v due to their collision with other particles. The dynamics of
this process are strongly influenced by the particle collision rate, 5, commonly referred to as the
coagulation kernel 8(v;, v;) for two colliding particles with volumes v; and v;, respectively.

In high-temperature systems, the free-molecular regime dominates. In this regime, 3 is defined
as the product of the relative velocity of the colliding particles and their combined geometric cross-
sectional area. For spherical particles, the cross-sectional area is the smallest, whereas for fractal-like
agglomerates, such as those formed by ballistic cluster-cluster agglomeration (BCCA), the cross-
sectional area increases significantly. These agglomerates are characterized by a fractal dimension
Dy of approximately 1.91 [12]. The fraction of the surface area a of a particle, which is exposed
to the surrounding and therefore accessible for collisions with other particles, is called surface area
accessibility factor s € [%, 1] and needs to be included in the computation of collision cross-section.
In [69], a general formulation of the coagulation kernel has been provided for two colliding particles of
any shape, which is utilized in the present work, ensuring accurate modeling of collision dynamics in
diverse particle systems. This is done by incorporating the additional dependence of 5 on both a and
s. The domain of the coagulation kernel 3 is therefore extended to 8: (0,00)% x (0,00)% x [2,1]* —
[0, 00), where

1 /8kgT  8kpT
ﬁ(vivvﬁaiaajasiasj) = 7 ( 2 + 2

4 \ppvi TP
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for any v;,vj, a;,a; > 0 and s;,5; € [%, 1]. Here, kg > 0 denotes the Boltzmann constant, 7' > 0 is

the temperature, and p, > 0 represents the particle mass density, which corresponds to the bulk
density of the material.

Furthermore, the fractal nature of particles is often incorporated into 8 by predefining a con-
stant Dy, which scales the collision radius according to a power-law relationship [28]. However,
this approach assumes a fixed value of Dy, independent of the size of the agglomerates or its dis-
tribution, which can lead to inaccuracies in modeling complex systems. Following the approach
proposed in [69], we introduce a surface fractal dimension Dy initialized at 2.0. This quantity can
be dynamically computed for each particle based on the ratio of volume to surface area, normalized
by the volume vy and surface area aq of the initial primary particles, i.e., Ds(v,a) is obtained as a

solution of
Dy

()"

However, note that this relationship is only used for large agglomerates with a number of primary
particles n, > 10 [69]. Smaller agglomerates are assumed to be approximately spherical (Dg = 2.0),
therefore their full surface area is accessible for collisions, i.e. s = 1. The lowest accessibility
of s = 2/3 is obtained for close-packed spheres [49], for large n, and a maximum surface fractal
dimension of Dy = 3.0. A linear interpolation between the boundary limits of Dg(v,a) as suggested
in [69] gives a relationship between s and the agglomerate size, represented by n,, yielding



1, if n, < 10,
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s =< (Ds—2) (—) +3—D,, if10<n, <317, (5)
2

3 if n, > 317,
where the surface area scaling factor « is set to 0.92, consistent with the findings given in [49] for
silver agglomerates. While some studies suggest that a may also depend on agglomerate size [3],
this effect primarily influences small agglomerates with n, < 10. For these cases, we assume full
surface area accessibility, i.e. s = 1, as mentioned previously. The dynamic variation of s by
Eq. directly modifies the coagulation kernel in Eq. , thereby influencing the collision rates
and subsequently the temporal evolution of particle concentrations described by the PBE given in
Eq. .

Finally, we consider the approximate characteristic coagulation time 7. that describes the average
time between collisions. Note that the characteristic coagulation time is often approximated by
Temono aSsuming a monodisperse aerosol, where T mono 18 given as the inverse of the initial (total)
concentration Ny = lim,_,+, N (v, 0) multiplied by the uniform, monodisperse collision rate Suono [4],

ie.,
2

Te,mono — 7 5 - 6
7 NOﬁmono ( )

This approximation can be refined for a polydisperse aerosol by estimating the average effective col-
lision rate 3 € (0, 00), instead of Bupeno, Over a short time interval [¢;,¢;. 1] by considering the change
of the total particle concentration from Ny, to Ny, between times ¢; and #;,1, respectively [23], so

that B is computed as
25 - %)
n Ne, Ny,
B = : (7)

Assuming that 7. remains constant over the time period from ¢; to ¢;,1, which is acceptable for
small intervals, from Eq. @ and putting Ny = N;, we obtain

_ Ny (tiy1 —ti)

c 8
= e (®)

i+1
2.1.2 Sintering

The modeling approach presented in Section allows the coagulation dynamics to adjust to
the structural changes experienced throughout the simulation, which makes it suitable and accurate
to predict real-world system applications. In particular, this allows us to consider the following
effect.

At high temperatures, particle formation is accompanied by material restructuring via thermal
energy-driven atomic diffusion, in a process called sintering, which reduces the aggregate surface
area. In [31I], it has been suggested that the rate of changes in the surface area of the particles
should be represented as an exponential relaxation process driven by the thermodynamic tendency
to minimize surface energy. Thus, if no coagulation occurs, the change in the aggregate surface area
a = a(t) over time t is given by

da(t) 1

T = a0 — ), ©




where aspn = aspn(t) is the surface area of a sphere with the volume v = v(t) of the aggregate at
time ¢, and 7, = 75(¢) > 0 is the characteristic sintering time (at time t¢), which is highly sensitive
to temperature. It is defined as the time required to reduce the surface area of an aggregate to
approximately 63%, reaching the equilibrium surface area agp, of a perfect sphere.

Note that from Eq. with Dy = 2.0, we get

2

Gopn = o (3) 3. (10)

Vo

The characteristic sintering time 7y is often given as an effective sintering time by fitting experimental
data from well-defined setups or molecular dynamics simulation results to an Arrhenius equation,
ie.,

Ty = ASTl’d;1 exp (%) : (11)
for some exponents b € {0, 1} and m > 0, where the prefactor A; > 0 and the activation energy E, >
0 are material constants, R > 0 is the universal gas constant and 7" the temperature. Furthermore,
d, > 0 is the effective diameter of the (overlapping) monodisperse primary particles, an aggregate
is considered to be represented by.

Thus, by means of Eq. , the primary sintering mechanism provides a relationship between
7s and d, via the exponent m. The present study considers grain boundary diffusion sintering of
both Si [35] and Fe [47] that leads to m = 4.

The reduction of the surface area is assumed to homogeneously restructure the particle-forming
aggregates through sinter neck formation. In contrast to pure coagulation, where the primary
particle diameter does not change and remains equal to their initial values (vy and ag), sintering
leads to a reduction in aggregate surface area and thus to an increase in volume-to-surface area
ratio. To incorporate this effect into the coagulation model while maintaining the assumption that
an aggregate is composed of monodisperse (spherical) primary particles [57], the increase in volume-
to-surface ratio is represented by a uniform increase in the diameter of the primary particles. As a
result, an aggregate is considered to be represented by overlapping monodisperse primary particles
with an effective diameter d, > 0. For an aggregate with volume v and surface area a, the diameter
dy, is defined as the surface area-equivalent primary particle diameter, with

_6v

dy (12)

a

The number of primary particles n, is computed for each aggregate as the ratio of v and its primary
particle volume vy, corresponding to d, i.e.,

v 6v

N, = — = —.
p 3
Up 7rdp

(13)

The aggregate diameter is often given as the diameter d, of the volume-equivalent sphere, or the
diameter d, of the surface area-equivalent sphere, where

d, = (i—“) and  d, = (%) . (14)

Controlling the ratio
X == (15)



of 7. and 7, during synthesis is crucial in designing the mesostructure of the particles and therefore
influences their desired properties in application [20]. Note that x — oo leads to perfect spheres
by fast sintering (coalescence) while x — 0 yields agglomerates of lightly bonded primary particles.
Usually, aggregates are formed for a value of y between 0.1 and 10 [7]. Error propagation of x is
considered in the supplementary material, see [B]

2.2 Monte Carlo framework

In the event-driven MC framework used in this paper, the particle population is represented by
a set of Ngp > 0 so-called simulation particles (SPs), each given by a tuple of descriptors v; and a;
which are associated with a weight w; that reflects its concentration, where i € {1,..., Ngp}. At
the beginning of the simulation, each of the SPs is initialized with equal w and descriptors vy, ag,
where the total number of simulation particles Ngp remains constant throughout the simulation.
The framework utilizes an operator splitting approach, in which a coagulation event is executed
first, followed by a reduction of the surface area of all particles due to sintering within a given
MC time step. This approach decouples the collision and sintering rates, introducing a small error
that becomes negligible at sufficiently small time scales [18]. A schematic description of the MC
framework is shown in Figure
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Figure 1: Schematic description of bivariate MC simulation.

The univariate, weighted particle MC framework, which predicts the evolution of the particle
volume distribution, is presented in detail in [32], where the key characteristics are summarized
(excluding nucleation). The bivariate generalization to multiple descriptors (v, a) is explained later
in this section. Note that MC frameworks are well suited for multivariate simulations because
of the simplicity in assigning multiple unique properties to each SP (here v and a), allowing a
more accurate representation of particle dynamics [32] than by methods by which only one particle
descriptor is considered.

Simulations are accelerated using the concept of stochastic resolution described in [32], resulting
in optimal allocation of the SP weights wy, . .., wny, after coagulation events while ensuring accurate
representation. It also yields a symmetric coagulation kernel, which is desirable for numerical
consistency. The acceptance-rejection technique of [66] is used to determine the MC time step. In
each coagulation step, a representative sample S C {1,..., Ngp}? of pairs of SP indices (consisting
of Ngample index pairs) is selected at random and evaluated in parallel on GPU threads. For each
pair (i,j) € S, using Eq. the corresponding value of the coagulation kernel f; ; is computed
based on the values of v;, v, a;, aj, s;,s;. Then, for all Ngample pairs, the average Bmean is obtained

as
1

N Sample

ﬁmean - Z ﬂi,j‘ (16)
(1,5)€S
To facilitate rejection sampling, a majorant kernel £, = ¥ Bmean 18 computed by multiplying Srean

by a constant 7 > 1. The latter should be chosen large enough to ensure S, serves as a valid



upper bound for all possible 3; ;, but not so large that it unnecessarily increases the rejection rate
and, therefore, the computational time. Then pairs of SP indices (4, j) € {1,..., Ngp}? are sampled
uniformly at random, and a uniformly distributed number r; ; € (0, 1) is drawn. A chosen pair (4, j)
of SP indices is accepted for coagulation if the inequality

Tig < By

/Bmax
is satisfied. Otherwise, another pair is selected at random and tested. Once a valid coagulation pair
is accepted, the coagulation event is carried out, and the corresponding MC time step is determined,
advancing the simulation. For further details, see [32], [66].

After each coagulation event, the effective diameter d, is computed for each aggregate using
Eq. , and the surface area of the particles is reduced according to Eq. (@, based on the MC
time step previously determined. This modeling sequence introduces several kinds of approxima-
tion. First, while real aggregates typically contain primary polydisperse particles, we reduce this
complexity using a single surface area-equivalent primary particle diameter d,. Furthermore, d,
is computed for the newly formed aggregates despite the potentially large differences of d, in the
previously collided aggregates. It is assumed that d}, is constant during the sintering step for each
aggregate. In Section the MC simulations are benchmarked against literature methods to
assess the inaccuracies arising from the aforementioned assumption. For example, more detailed
approaches towards the primary particle size distribution and sintering dynamics in MC simulations
are given in [48]. However, this kind of complexity significantly increases computational effort, hin-
dering the collection of a comprehensive data set necessary for adequate training of the surrogate
model described in Section 2.3

The solution of Eq. @ is found numerically using the differential equation solver CVode from
the SUNDIALS suite [24]. For constant reactor temperatures (as observed in the present paper),
implementing the analytical solution for Eq. @ is also perfectly sufficient. More information is
given in the supplementary material, see [A]

The accuracy of the proposed method depends on the number of SPs used in the simulations. To
further improve the results, in addition to increasing the number Ngp of SPs, the MC simulation can
also be executed multiple times in parallel, where the number of parallel executions is denoted by
Nsims > 0. This effectively reduces statistical fluctuations. Using GPU-based parallelization enables
the efficient processing of multiple simulations simultaneously with minimal runtime overhead,
significantly improving computational efficiency. All simulations are aligned at predefined export
points in time (100 in total) to ensure consistency. At each point in time, the particle descriptors
are sampled simultaneously across all simulations. These synchronized outputs are then used for
data analysis and training of the surrogate model, as discussed in Section 2.3} In the present paper,
we put Ngp = 1000, Nsample = 256, and v = 1000.

In order to interpret the output of the MC simulation, which consists of the SPs at a given
point in time, we compute a set of well-interpretable scalar metrics. Recall that the MC framework
delivers Ngp triplets (v1, a1, w1), ..., (Ungp, GNgp, Wigp) € (0,00)?, representing the volume, surface
area, and weight of the SPs. For the volumes vy,...,vng € (0,00), the arithmetic average v, as
well as the geometric mean v, and the geometric standard deviation o, ,, are defined as follows:

U= (Z wi> Zwivi, (18)

(17)



Ngp ! Nep
= exp (Z wz> sz In(v;) |, (19)

Nsp ! Ngp
Ogy = €XP (Z wi> Z w; (In(v;) — In(vg))?| - (20)
i=1

Analogously, these descriptors are defined for the surface areas ay,...,ang € (0,00), volume-
equivalent diameters d 1,...,dy Ny € (0,00), surface area-equivalent diameters d, 1, ..., ds N €
(0,00), primary particle diameters d,1,...,dp ng € (0,00), and number of primary particles per
aggregate np 1, ..., My nep € (0,00) of the SPs and are denoted by (@, ag, 044), (dy, dyg, Oga.); (da,
dag, Ogdy)s (dp, dpg, Tga,), and (1, Ny g, Og ) Tespectively.

All settings and material parameters utilized in MC simulations in this work are summarized
in Table [Tl The parameter set in row 1 is employed to validate the MC method against literature
methods in Sections|3.1.1}and [3.1.2} Self-preserving size distribution (SPSD) dynamics discussed in
Section are computed using the parameter set in row 2. The dataset used to train the surrogate
model (Section is generated using the parameter set in row 3.

Table 1: Settings and parameters for the MC simulations performed in the present work, where the
parameters for Si are taken of [35], and those for Fe of [47]. Two rows are shown for Fe because
the surrogate model (Section does not include a dynamic sintering rate and was trained on an
extended temperature range compared to the data used in the distribution dynamics analysis in

Section @

Material pps kg/m? vg, m3 Ng, 1/m?3 T, K Ag, s/m* b m Ea,, J/mol
Si 2330 3.35.1029 1022 773, 1073 1.15 - 1013 1 4 230000
Fe 7874 5.24 - 1028 8-10'9,8. 1022 800 - 1100 1.12 - 1020 0 4 185610
Fe 7874 5.24 .10~ 28 8. 1019 800 - 2120

2.3 Surrogate model

The MC framework for predicting the distributions of particle descriptor vectors (v, a) during
aggregation, summarized in Section [2.2] provides an interpretable physics-based method; however,
it lacks computational efficiency to be applicable in real-time process control. Thus, in this section,
we introduce a CNN-based surrogate model that is a black box, but is suitable for real-time applica-
tions. The use of neural networks as surrogate models for predicting particle aggregation processes
offers significant advantages over the direct application of conventional MC simulations. Primarily,
neural networks provide an enormous increase in computational speed, allowing for almost instant
predictions once trained, compared to the time-intensive nature of MC simulations. In addition, by
predicting distributions of descriptors rather than simulating individual particles, enhanced stabil-
ity and efficiency are offered, making neural networks a robust tool for modeling complex particle
systems.

More precisely, using 2D histograms, the proposed surrogate model predicts the (mass-weighted)
bivariate distributions of an aggregate descriptor vector at time steps ¢ € {1,...,100}, given a 2D
histogram of the descriptor vector at the preceding time step ¢t — 1, and a certain reactor tempera-
ture T' > 0. This means in particular that the proposed surrogate model is able to handle different

10



temperatures without the need for extensive adjustments and, therefore, is suitable for temperature
optimization. Thus, the surrogate model can be used to predict temperatures, leading to distri-
butions of the descriptor vector similar to the desired ones. Moreover, due to the differentiability
of neural networks, this optimization can be performed efficiently through gradient-descent-based
optimization schemes [5].

2.3.1 Acquisition of training data

To develop a data-driven surrogate model, the first step is to collect training data. This is
accomplished using the MC framework described in Section which predicts the distributions of
the aggregate volume v and surface area a for various reactor temperatures 7' > 0 over time. The
material parameters used for data acquisition are provided in row 3 of Table For the reactor
temperatures T used during data acquisition, it holds that T" € {800, 810, ...,2120}. As this paper
aims to demonstrate a proof-of-concept for CNN-based surrogate models, the sintering dynamics is
simplified for now by considering a constant characteristic sintering time of 7, = 10~*s. Future work
will extend the surrogate model to predict the particle formation process using dynamic sintering
rates.

The training data for the surrogate model consists of descriptor data generated by the MC sim-
ulation framework with a temporal resolution of 0.01 s over a total duration of 1 s. Specifically, the
MC framework is used to compute the evolution of the descriptor vector distribution at 100 equidis-
tant points in time for different temperatures T'. The collected data is then divided into two subsets,
training data (90%) and evaluation data (10%), where each temperature 7' € {800, 810, ...,2120}
appears in only one of these sets.

2.3.2 Data preprocessing

The surrogate model considered in this paper operates on bivariate histograms of descriptor
vectors. Since these can be represented as images, they allow for the use of widely studied methods
of computer vision [39)].

Note that there is a strong correlation between the volume v and the surface area a of the
aggregates. As a result, when building a bivariate histogram based on both v and a, only a few
bins exhibit heights larger than 0, particularly for small values of v. This sparsity leads to a low
precision in these ranges, as observable in Figure[2|a. To address this issue, the descriptor vectors are
transformed in a preprocessing step prior to histogram computation. Thus, the sphericity ® € (0, 1]
of particles [63] is considered instead of the surface area a € (0,00), where the sphericity ® of an
aggregate with volume v and surface area a is given by

73 (60)3

a

o = (21)
This transformation is invertible with respect to a and, using a 2D histogram-based representation
of descriptor vectors, offers a more precise depiction of low-volume particles by considering the
descriptors v and ® that are less correlated than v and a, see Figure [2| b. However, one problem
remains; i.e., the stochastic nature of the MC framework introduces variability. Running the MC
simulation twice and comparing the resulting histograms bin by bin can result in significant errors,
particularly for large but rarely occurring aggregates (% > 40) with similar but slightly different
sphericities, which would be assigned to different bins.
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Figure 2: (a) Scatter plot of volume v and surface area a, (b) corresponding scatter plot of volume
v and sphericity ¢, and (c) bivariate histogram S®7) corresponding to the scatter plot shown in
(b). The values of the histogram entries are given in logarithmic scale for visualization purposes.

To reduce the noise in the simulated histograms, we distribute the probability mass of each
aggregate between neighboring bins within the same volume v, rather than assigning it to a single
bin. Specifically, let X®*T) C (0,00) x (0,1] be the set of descriptor vectors (v, ®) obtained from
the MC simulation at temperature 7" and time ¢t. Furthermore, for each i € N = {1,2,...}, let

fi(t’T): R — [0,00) denote the probability density, obtained by kernel density estimation [52], of
the univariate distribution of sphericities ® for aggregates in X ®7) consisting of i particles, i.e.,
aggregates with volume v = fvy.

Based on X7 we consider the bivariate (relative) histogram S®T) € [0, 1]%4*64 of aggregate
volumes and sphericities. The height S®*7) (4, 7) of bin (i,5) € {1,...,64}2, where 4, j specifies the

bin positions of volume and sphericity, respectively, is given by

64+7
128
. . T
§EN G g) =" D) [ L), dy, (22)

128

with g7 (i) = ivg #{(v, @) € XD : v = ivg}/ > (wp)exn v denoting the mass-weighted fraction
of descriptor vectors in X*7) corresponding to aggregates of volume ivy, where # denotes cardi-
nality. Since sphericities have been observed to take values only in the interval [0.5, 1], the limits of
the integral in Eq. are chosen such that the histogram partitions this interval into 64 equally

spaced bins. A visualization of the bivariate histogram S®T) is shown in Figure .

2.3.3 Network architecture

We now explain the architecture of the neural network, i.e., a high-parametric function, which
will be trained to predict S®T) based on S¢~5T) and T. For this, a neural network is needed that
can process both a bivariate histogram and a scalar temperature 7' at the same time, and can
output a (predicted) bivariate histogram P®T) € [0, 00)%**%* corresponding to the time step ¢.

To the best of the authors’ knowledge, there are no previous studies in the literature that address
the particular task considered in the present paper, and therefore, no pre-existing architectures
specifically designed for this purpose. However, there are similar efforts in image sequence prediction
using surrogate models in video games [45] (Atari frame prediction network), where future frames
are predicted from user input, and in predicting movement in video sequences [62] (video frame
prediction network), where a person’s pose is predicted after a given time interval. These networks
will be used in the following as baselines, referring to them as AFPN and VFPN] respectively.

Furthermore, we consider a third small autoencoder network, denoted by SAN. Note that not
only this network, but also AFPN and VFPN can be considered as autoencoders [58]. However,
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SAN stands out because of its very small number of parameters (=~ 14% with respect to AFPN and
~ 1% with respect to VFPN), designed specifically to learn the concepts of coagulation and sintering
while avoiding overfitting, thereby ensuring feasibility, i.e., computational efficiency for real-time
applications. The proposed network given by the function SAN: [0, 1]%4%% x [0, 0c0) — [0, 1]54%4 can
be decomposed into three parts: an encoder network E: [0,1]64%64 — R8192 that extracts relevant
features of the input histogram (at time step ¢t — 1), a fully connected network F': R¥92 x [0, c0) —
R!28 that incorporates the temperature 7' into the features, and a decoder network D: R —
[0, 1]64%64 that spatially expands these features to a bivariate histogram, predicting the histogram
at time step t.Thus, for a histogram S®~17) and a temperature 7', the prediction P®T) of S®T) ig
given by

PET) = SAN(SE1D ) = D (F (E(S“ ), T)) . (23)

A schematic representation of the network architecture of SAN is shown in Figure 3] A more
detailed description of this network can be found in [C]

T
y
— p(t-1.7) D - - - Q pth ——

D Convolutional layer Q Transposed conv. layer - Linear layer

Recurrent connection for multiple time step prediction

Figure 3: Architecture of the surrogate model SAN.

Recall that the networks AFPN and VFPN have a much larger number of parameters than SAN,
especially VFPN. The numbers of trainable parameters per network are given in Table 2] For more
details on the architecture of these two networks, see [45], 62].

In order to ensure that the outputs of the networks AFPN, VFPN, and SAN are proper bivariate
histograms of relative frequencies, i.e., all entries are non-negative and sum up to one, normalization
is implicitly applied to the network output. More precisely, every output matrix O € R*64 ig
transformed as follows:

a(0)
>_(0(0))’
where 0: R — [0, 1] denotes the sigmoid activation function. Note that in Eq. the activation
function o is evaluated on a matrix, where the scalar activation is evaluated on each entry of the
matrix, resulting in a new matrix o(O) given by ¢(0)(i,j) = m for any 7,7 € {1,...,64}
and the summation ) in Eq. extends over all entries O, ; of O. Thereby, the sigmoid function
ensures non-negativity of the bin heights, whereas the denominator in Eq. ensures that the
sum of all entries equals one.

O — (24)

2.3.4 Training procedure

To compare the similarity of histograms, especially those predicted by (untrained) network
models and those derived from the MC simulations, and thus to be able to train the networks,
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i.e. to fit their parameters, a loss function that quantifies the dissimilarity of histograms is needed.
Furthermore, to enable efficient network training, the differentiability of this loss function is required.

Let @ and R denote histograms of descriptors, which can be either univariate (1D) or bivariate
(2D). In the univariate case we consider histograms of the form Q, R € [0, 1]%%, while in the bivariate
case, we have Q, R € [0, 1]°464, Furthermore, let Q(i) and R(i) denote the height of the bin specified
by i. Note that in the case of univariate histograms, i € {1,...,64} is a scalar value, while in the
case of bivariate histograms we have ¢ € {1,...,64}% i.e., i is a two-dimensional vector of indices.
However, for simplicity, this distinction will not be further mentioned if the context is clear.

The Kullback-Leibler divergence loss Dk, (Q, R) of @, R is defined as

D@ 1) = Qs (5 ) (25)

where the sum in Eq. extends over all feasible values of 7, i.e. {1,...,64} or {1,...,64}%
Note that in the context of neural networks, the Kullback-Leibler divergence is frequently used to
measure the difference between predicted probability distributions and ground truth probability
distributions [26]. To avoid numerical issues such as taking the logarithm of zero, in practical
applications of this similarity measure, a small constant ¢ = 107! is added to Q(i) and R(i),
modifying the definition given in Eq. to

Di(Q, R) = ZQ log( ) + ) (26)

R(i)+¢

The latter formula will be used in the following to evaluate the prediction quality of the networks.

The histogram S®T) resulting from the MC simulation and the histogram P®T) resulting from
the network prediction are compared in three steps: First, the univariate (marginal) histograms
Sq(,t’T), P of volume v are compared to each other. Second, the univariate histograms Sg ’T), Pq(f’T)
of sphericity ® are compared, and third, the bivariate histograms S*T) and P®T) of (v, ®) are

compared. Thus, the total loss L(S®T), P&1) is given by
L(S®D, PEDY = Dy, (84D, PEDY 4 Dy, (SE, PEDY) + Dy (SE1, PED), (27)

where @, € [0,1]% and Qo € [0,1]% for Q@ € {S®T), PET} denote the marginal histograms
corresponding to v and ®, respectively, which are given by

64

Qu(i) =D QG.j)  and  Qulj) = Q). (28)

j=1

for any 7,5 € {1,...,64}. Based on minimizing the loss given in Eq. (27), the neural networks’
trainable parameters are updated using an Adam optimizer [6] with a learning rate of 0.0001, a
batch size of 32, and 20000 epochs.

The intention behind the construction of the loss L given in Eq. is to improve the con-
vergence of the trained network. That is, predicting marginal distributions is a much simpler task
than predicting the whole bivariate distribution. After the network is able to predict the univari-
ate distributions well, it will focus on the next, more complicated task, predicting the bivariate
distribution, resulting in faster and more stable convergence.
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3 Results and discussion

This section presents results, which have been obtained for the evaluation of the MC framework,
analyzes the distribution dynamics and attainment of self-preserving size distributions, and evalu-
ates the performance of the CNN-based surrogate model for predicting particle formation processes.

3.1 Evaluation of the Monte Carlo framework

The evaluation of the MC framework considered in this paper is performed in two steps. Ini-
tially, pure coagulation is compared with a simple fixed-node method. Second, the combination of
coagulation and sintering is compared with bivariate models from the literature. To ensure gener-
ality in the presented data, the temporal evolution is given in terms of dimensionless time 7, which
is defined for the free-molecular regime [61] as

6]{5 T 1/2 3 1/3
T:( pB ) (E) va/® Not, (29)
p

where Ny and v, denote the initial number and volume of primary particles, respectively, and kg, p,
and T are the quantities introduced in Section 2.1 All MC simulations considered in this chapter
are carried out using the parameter set in Table [1| row 1. Exceptions regarding the sintering rate
are noted for the edge cases of compact spheres and fractal-like agglomerates.

3.1.1 Univariate evaluation

In a first step, the dynamics of coagulation is benchmarked using the fixed-node sectional method
proposed in [46]. It consists of a simplified numerical algorithm for solving the PBE where particle
sizes are represented only at discrete nodes on a logarithmic scale, which simplifies computation.
The model initializes primary particles with size vy at a single node and then redistributes the
particle volumes dynamically according to the coagulation kernel given in Eq. . The fixed-node
method is solved for the two extreme cases of pure agglomeration (D; = 3.0) and full coalescence
(Ds = 2.0) of Si particles. The MC framework is compared to the solution of the fixed-node method
by setting the characteristic sintering time 7, to the constant values of 10'®s and 10™%s, respectively,
which effectively correspond to the extreme cases stated above [57].

In the fixed-node method of [46] the volume grid is defined for all nodes ¢ by v; = v ¢'. Grid
refinement with the spacing factor g is assessed using the convergence of the geometric standard de-
viation oy 4, of the number-weighted self-preserving size distribution (SPSD) of the particle volume-
equivalent diameter d,. The numerical solution is deemed converged when |0y 4, — 0% |/or%h <1,
where the reference ag’cflv is determined using a highly resolved grid (=~ 20 nodes per decade). In
addition, close agreement of o, 4 with the values in the literature (og4, = 1.46 [I1]) is required.
The above stated criteria are met for ¢ < 1.4, which corresponds to approximately 7 nodes per
decade. The number of nodes is chosen so that the PSD is fully contained in the volume grid.

The temporal evolution of the normalized number concentration N/Ny, defined as the concen-
tration of aggregates N = lim,_,, N (v, 7) at time 7 divided by the initial concentration of primary
particles Ny, the volume-equivalent geometric mean diameter d, . (Egs. and ) and the ge-
ometric standard deviation o, 4, (Egs. and (20))), obtained from the MC framework described
in Section [2.2] closely follows the fixed-node method for pure coagulation. The maximum deviation
between the values produced by the two methods is at most 1%, providing a robust benchmark for
the MC framework; see Figure [4
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Figure 4: Temporal evolution of normalized number concentration N/Ny (a), volume-equivalent
geometric mean diameter d, 4(b), and geometric standard deviation o, 4, (c) for comparison of the
results obtained by the MC framework considered in this paper (lines) and the fixed-node benchmark
(symbols) for coagulation of Si fractal-like agglomerates (Ds = 3.0) and perfect spheres (Ds = 2.0).
Figures 4b and 4c display data generated for T' = 773 K. The shaded region visible in Figure 4c
represents twice the standard deviation of 044, between all Ngjpys.

Elevated temperatures slightly increase the collision rate of particles. In the dimensionless time
domain 7, this difference is compensated (Figure 4p). However, irregular particle shapes (such
as those seen in fractal-like agglomerates), on the other hand, strongly facilitate particle growth,
yielding bigger particles and a fast decay in total concentration. The distributional descriptors
dy g and o, 4, are only shown for the single temperature value of 773 K (Figures dp and ) due to
temperature insensitivity.

The literature reports values of the geometric standard deviation o, 4, characterizing SPSDs for
D¢ = 3 (compact spheres) and Dy = 1.8 (fractal-like agglomerates) [11]. For compact spheres, the
MC framework converges to a o, 4, of 1.46 and 1.33, for a number-weighted and volume-weighted
distribution, respectively, consistent with the literature [I1]. Fractal-like agglomerates reach a
broader distribution with o, 4, of 1.57 and 1.39. In comparison, the literature reports o, 4, values of
1.63 and 1.42 [I1]. The discrepancy is small and may be attributed to differences in the underlying
coagulation kernel formulations. The SPSD is reached when the particles have grown to about three
times their initial diameter d, 4, consistent with a common rule of thumb [7]. Thereby, a geometric
mean number of primary particles of n,, = 15 is attained. This is consistent with [I9] and also
indicates the convergence of the fractal dimension at that point in time [29]. The time delay to
reach the SPSD is often given in a dimensionless form equivalent to the definition in Eq. [60].
Fractal-like agglomerates reach the SPSD faster than spheres at dimensionless times of about 3.2
(for D¢ = 2) and 4.3 (for D¢ = 3) [61] respectively, which is consistent with the findings of this work
in Figure [.

3.1.2 Bivariate evaluation

To our knowledge, there is no established benchmark for the evolution of surface area during
sintering. Therefore, the present MC framework is evaluated by comparison with the (precise)
bivariate discrete-sectional model of [41], which is based on [69]. Since the latter involves a non-
instantaneous precursor release, our MC framework is compared to the approach proposed in [41],
which describes a slightly simplified version of [69], designed to reduce computational effort. In
particular, their implementation employs a coagulation kernel 8 given in [51], which is applicable
throughout the entire Knudsen regime but assumes a constant Dy a priori. For further evaluation,
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the monodisperse model presented in [35], which simplifies the coagulation kernel by assuming all
particles to be identical in size (v and a), is included in the comparison. Finally, the stochastic
model considered in [42], which implements the coagulation kernel described in the present work
(Eq. ), is also used for comparison. The material parameters for Si and the simulation settings
are consistent with those of [41] and are listed in the first row of Table

The results provided by our MC framework are directly compared with the temporal evolution
data of normalized concentration N/Ny, normalized, number-weighted average volume /vy, surface
area-equivalent primary particle diameter d,, and number of primary particles per aggregate 1,
(Figurel5)). The results obtained are compared with the findings of [41] (see Figure 6 in [41] including
the monodisperse model of [35]), and [42] (see Figure 1 in [42]) for Si aggregates under isothermal
conditions. In accordance with the literature, number averages (computed using Eq. ) are
used instead of geometric averages. To enhance comparability, the coagulation kernel of [51] is
additionally implemented in our MC framework under the assumption of Dy = 1.8.

Good agreement is found for all methods. At a temperature of 1073 K, the coalescence limit
is reached, as indicated by a constant 1, = 1 (Figure [5d). The MC framework is closely aligned
with the 2D sectional model for normalized concentration (Figure pa) and volume (Figure [5b). For
d, (Figure ), the results match the monodisperse model more closely, although d, is generally
insensitive to the choice of the underlying model. However, the monodisperse model predicts lower
collision rates due to its simplifying assumptions, resulting in higher concentrations and smaller
volumes.

The deviations between models are more pronounced at 773 K, where aggregates are formed.
The influence of different coagulation kernels is evident, with significant discrepancies observed
between the MC framework and the sectional models, particularly in the evolution of normalized
concentration N/Ny and normalized average volume v/v,. However, the implementation of an iden-
tical kernel yields strong agreement between these methods, evaluating the approach and attributing
the deviations solely to differences in the underlying models. In [41] a constant fractal dimension
is assumed, independent of temperature and aggregate size, whereas the present model dynami-
cally determines the surface fractal dimension Ds(v,a) for each individual particle. This dynamic
approach reduces the average collision cross section of the aggregate population at elevated tem-
peratures. In general, close agreement is observed between the MC simulations and the stochastic
model of [42], which employs the same coagulation kernel as given in Eq. . The monodisperse
model of [35] shows close agreement with the present MC simulations, despite its simplified dynam-
ics and differing coagulation kernel. This consistency presumably arises from two opposing effects
that effectively counteract each other. As noted previously, the use of a constant fractal dimension
Dy in the coagulation kernel leads to an overestimation of the overall collision frequency compared
to the variable Dg(v,a). Moreover, the monodisperse assumption causes a reduction in collision
frequency compared to polydisperse systems [25].
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Figure 5: Temporal evolution of normalized number concentration (a), normalized volume (b),
primary particle diameter (¢) and number of primary particles per aggregate (d) of Si aggregates
for evaluation of the present bivariate MC framework (dark solid). Direct comparison to the 2D
discrete-sectional model (2D-DS) presented in [41] (dashed), the stochastic model (Stoch) of [42]
(dotted) and the monodisperse model of [35] (short dotted) is shown. The coagulation kernel of the
present framework with dependency on variable Dg(v,a) (given in Eq. (dark lines) by [69]) is
also used in the stochastic model [42] but data is only available for the evolution of concentration
and volume. The other two comparative models employ another coagulation kernel (given by [51])
dependent on a constant Dy = 1.8 (light lines), which is also implemented in the present MC
framework (light solid) for a more accurate comparison to those models. Two different cases for
T = 773K (blue) and T'= 1073 K (red) are given.

3.2 Self-preserving size distributions of volume and surface area

Under Brownian coagulation, the number distribution of volume-equivalent diameters d, evolves
toward an asymptotic self-preserving size distribution (SPSD) [36] [I5]. In this regime, the distribu-
tion attains a self-similar form, such that its shape remains time-invariant when normalized by the
total particle concentration N and scaled by the geometric mean volume-equivalent diameter d, .
This concept is widely accepted and frequently used, for example, in conjunction with monodisperse
models to predict particle size distribution formation dynamics [20]. In contrast, surface area-based
SPSDs have received comparatively little attention. Joint volume and surface area distributions
have been proposed and studied for both the continuum [56] and the free-molecular regimes [67].
These studies have been carried out under the assumption of constant fractal dimensions Dy and
constant characteristic sintering times 74, thereby neglecting the variability of Dy in distributed sys-
tems and the strong size dependence of the primary particle size on 7,. The present study focuses
on Fe aggregates, examining the conditions under which SPSDs are attained for both volume v and
surface area a and thus, providing a framework for improved, simplified prediction of the formation
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dynamics of aggregate systems. Additionally, the correlation of PSD shapes for volume-equivalent
d, and surface-area equivalent diameters d, with an ideal lognormal distribution is investigated.
The settings and material parameters used for the evaluations in this chapter are given in Table
row 2.

The dimensionless temporal evolution of the geometric standard deviations oy 4., 0g.4,, and oy q,
based on the volume-equivalent diameter d,, surface area-equivalent diameter d,, and the primary
particle diameter dj, respectively, is shown in Figures [f|I and [6]II for Ny = 8 - 10" 1/m?* and
Ny = 8-10* 1/m3. Simulations were conducted at various temperatures. As expected, the ratio of
characteristic times, x (see Eq. ), increases with temperature due to accelerated sintering (see
Figures @Ia and |§|.Ha) and is strongly influenced by particle concentration. Figure @I corresponds
to sintering-dominated dynamics (x > 1), while Figure @II corresponds to coagulation-dominated
growth (x < 1). Over time, y converges to intermediate values between 0.1 and 1, reflecting
concurrent increases in both characteristic coagulation 7. (due to reduction of N) and characteristic
sintering time 75 (due to growth in d,). These intermediate values of y are typical for aggregate
formation [7].

« 1000 br a ~ 1 -
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Figure 6: Temporal evolution of the ratio of characteristic timescales y, geometric standard devia-
tions 0y 4,, 0g.d,, and oz 4., as well as the Pearson correlation T?lv and T?la of d, and d, distributions
to their corresponding lognormal probability density functions. Results are shown for initially low
(I) and high concentrations (II) of Fe primary particles, which result in initially large x > 1 and

small y < 1 respectively.

The parameter y has substantial impact on the evolution of the distributions and attainment
of constant 0,4, and ogq,. The classical SPSD theory predicts a time delay for the d, number
distribution between 3 and 4.3 [61], depending on Dy in the free-molecular regime. As shown in
Figures @.Ib and |§|.Hb, such rapid asymptotic behavior of o, 4, occurs only for extreme values of
x (Figures @Ia and @Ha). For example, Figures @.Ib@.ld display rapid attainment of 0,4, =
Ogd, = Og4, = 1.46 associated with a perfect SPSD for spherical particles near the coalescence
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limit at 1000 K, which stays approximately constant until 7 ~ 1000 when x decreases. Similarly,
Figures [6}1Ib and [6l1Ic show 0,4, = 1.57 and 044, = 1.98, which are quickly attained at lower
temperatures (800 K—900 K), where x < 1. However, in intermediate cases of x, achieving constant
0g.4, takes significantly longer and slightly longer for o, 4,, which coincides with convergence to
a monodisperse primary particle size in the aggregate population. Although the rule of thumb
suggests that d,-based SPSD is reached when the initial diameter triples [7], this does not hold for
intermediate cases of x. For example, at low initial concentration (and 900 K), constant o, 4, occur
only after a 400-fold increase in diameter at a dimensionless time of approximately 50 000.

Next, we discuss how well the distribution of d, and d, can be represented by a lognormal
distribution, as this assumption is frequently postulated [14] and applied in numerical prediction
methods, such as the method of moments [65], to facilitate the modeling of particle dynamics.
Despite its widespread use, the validity of the lognormal assumption is rarely examined or quantified.
For example, deviations from lognormal distribution shapes have been reported in [70], where fractal
collision models indicate reduced collision rates between small and large aggregates, broadening
the distributions and amplifying deviations from the lognormal shape. In the present study, the
similarity to a fitted lognormal distribution is quantified using the square of the Pearson correlation
coefficient r2. Here, r? is employed as a quantitative measure of distribution shape similarity, rather
than as a formal statistical goodness-of-fit metric, as it provides a simple and scale-independent basis
for comparing the temporal evolution of distribution shapes. It quantifies the similarity between
two empirical cumulative distribution functions (CDFs) Fyc and Flognormal, 88

2
2 COV(FM07 Eognormal)
r (FMC; Eognormal) - ) (30)
UFMC UFlognormal
where Cov(Fiuc, Flognormal) 15 the empirical covariance of Fyc and Flognormal, and 0rye, OFpoma

are the empirical standard deviations of Fyic and Flognormai- At each time point, a lognormal
distribution is fitted to the weighted MC particle data, and a synthetic sample of size Ngp is
drawn from the fitted distribution. The empirical CDFs Fyic and Fiognormal are then evaluated on
a common logarithmically spaced grid with size Ngiq = 500 with d,1,...,d,, Ngia € [dy min, dv max]
and da1, ..., daNyy € [damin, damax], for dy and d, distribution data respectively.

The evolution of the correlation between both d, and d, distributions to ideal lognormal shape
is largely independent of temperature and initial concentration once time is expressed in the dimen-
sionless form (Eq. ) as seen for example in Figures @.Ie and @.He. The temporal evolutions of
rﬁa and rgv also match well, allowing to judge the influence of sintering on the distribution shape as
negligible. As coagulation sets in, size-dependent collision efficiencies and the emergence of aggre-
gates lead to asymmetric broadening and driving r? slightly down to r? ~ 0.940.01, consistent with
the qualitative findings of [70]. As the characteristic coagulation time proceeds to increase, due to
the falling concentration, the particle system converges to an asymptotic distribution shape, which
is reflected by an increase in r? and stabilization at r? ~ 0.95+0.02 at 7 ~ 0.2 independent of oy 4, ,
Ogd, O 0gq, convergence. The 13 for a perfect d,-based SPSD can therefore also be associated
with a value of approximately 0.95 displaying a slight skewness compared to an ideal lognormal dis-
tribution. The findings suggest that the lognormal assumption is approximately accurate for fully
developed distributions within the present parameter range but slightly erroneous in early growth
stages.

The key findings of this chapter are summarized as follows. The SPSD of d, and d, are attained

under three conditions:

1. Sufficiently large x >> 1 (near the coalescence limit), leading to spherical particles.
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2. Sufficiently small y << 1 (negligible sintering), leading to agglomerates.

3. Aggregates with uniform d}, throughout the population, which requires significantly more time
than the first two cases, and the classical SPSD theory suggests.

These results demonstrate that a d,-based SPSD coincides with the classical d,-based SPSD
in the present observations. Furthermore, independent of the attainment of SPSDs, lognormal
distribution shapes for both d, and d, distributions are reached and remain stable over time.
These insights simplify the prediction of bivariate aggregate system distributions, particularly in
conjunction with monodisperse formation models [35] if x can be estimated.

Note that the presented investigations consider isothermal conditions, which are often not appli-
cable in real-world scenarios and synthesis methods such as spark ablation, arc-discharge, or flame
spray pyrolysis, but they apply well to, for example, hot-wall reactors. While both d, and d, size
distributions attain self-preserving forms, this does not imply self-preservation of the corresponding
joint distribution, as correlations between volume and surface area may evolve over time.

3.3 Evaluation of the surrogate model

During the training process, the networks AFPN, VEPN and SAN introduced in Section
were only trained to predict the distribution of the bivariate descriptor vector consisting of the
volume and surface area of aggregates for the next time step. However, in applications, it is
desired to use the surrogate model for predicting the entire time series of histograms. In other
words, the networks are used to predict a time series of histograms over 1 second, resulting in a

series of 101 bivariate histograms, all at a constant temperature 7. More precisely, for a network
f € {AFPN, VFPN, SAN}, the series of histograms P®T) ... PU00T) is computed, where

poD ift=0
pn) - : ’ (31)
FPELD) Ty else,

for t € {0,...,100}. Note that PT) is the histogram of monodisperse primary particles, i.e.,
aggregates consisting of one perfectly spherical primary particle.

The time series POT) ... PAOT) given in Eq. is computed for all temperatures 7' considered
in the evaluation dataset and for all three network architectures AFPN, VFPN and SAN. In Table[2]
the mean time necessary for the computation of a P©T) . PU0OT) her network is displayed. It
can be observed that the surrogate models terminate significantly faster than the MC simulation
and, thus, are more suitable for autonomous process control. Thereby, SAN shows the highest
computational efficiency.

To quantify the quality of the network predictions, five different characteristics are considered.
Namely, the Bhattacharyya distance Dp, the chi-square distance D,2, the symmetric Kullback-
Leibler divergence Dgkr,, the Li-distance, and the Lo-distance [8]. For two histograms @, R €
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[0, 1]64%64 these characteristics are given by

Dp(Q,R) = —In (Z \/@@')R(i)) : (32)
(Q(i) — R(i))?
Qi) + R(i)

Dsk1(Q, R) = %(DKL(Qa R) + DxiL(R, Q)), (34)

Li(Q, R) = Z Q) = R(@))I, (35)

D2 (Q,R) = Z

L(Q.F) = \/DQ@ ~ (i) (30

where Dyy, is given by Eq. and 7 extends over all values of i € {1,...,64}%.

In Figure [7] the prediction qualities of the different network architectures and some MC-based
reference (colors) are shown for different distance measures (individual plots) over time (x-axis).
The shaded areas indicate the standard deviations across simulations at different temperatures;
their narrow widths suggest that predictive performance varies weakly with temperature. All con-
sidered measures show the same qualitative trend. Overall, SAN seems to outperform both AFPN
and VFPN. To evaluate this more quantitatively, the mean accuracy over all time steps and tem-
peratures is shown in Table The low accuracy of VFPN could be due to its high number of
parameters whereby it tends to overfit, creating artifacts in its time series predictions, as can be
seen in Figure [7] for later time steps.
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Figure 7: Comparison of network architectures: The graphs show the distance between predicted
and simulated histograms. The x-axis indicates the time span into the future being predicted;
the color encodes the prediction method. The bold line represents the mean distance across all
temperatures in the training dataset at a given time span. The transparent shaded region shows the
0.1 and 0.9 quantiles of the distances. Green, blue, and red correspond to the network predictions.
The black line represents a second independent MC simulation of 10 000 particles, used to quantify
the uncertainty present in the MC simulation. This line provides a lower bound on the prediction
accuracy. Each plot corresponds to a different distance measure, see Eqs. f.

network | parameters ct Dp D, Dgi, Ly Lo
MC - 1883s | 2.893e-04 | 7.835e-04 | 3.900e-03 | 6.157e-03 | 7.205e-03
SAN 2442368 | 0.118s | 8.386e-04 | 2.455e-03 | 9.520e-03 | 1.754e-02 | 2.211e-02
AFPN | 13206349 | 0.207s | 1.512e-03 | 4.441e-03 | 1.698e-02 | 2.847e-02 | 3.530e-02
VFPN | 177536640 | 0.315s | 1.350e-02 | 3.785e-02 | 1.635e-01 | 1.961e-01 | 2.152e-01

Table 2: Comparison of network architectures: As a baseline, the MC framework is displayed.
The computer time (ct) corresponds to the prediction of a series of 100 bivariate histograms. The
computer time is given as a arithmetic mean over all temperature T" of the validation data set.
The losses correspond to the mean loss over all time series predictions for all temperatures in the
evaluation data split, see Figure m

In Figure 8 we show the cumulative distribution functions (CDFs) of the predicted marginal
distributions ®, v, and a (see Eq. ) for several time steps and temperatures, together with a
reference from the MC simulation. A high similarity between all the CDFs of SAN, AFPN and the
ground truth data for all time steps and temperatures can be observed.
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Figure 8: Cumulative distribution functions of (a) volume, (b) sphericities and (c) surface areas of
time series predictions for all network architectures (decoded by colors), time steps given on the
x-axis, and two different temperatures: (I) 7= 820K, (II) 7" = 2120 K.

Beyond the accuracy of these surrogate models, prediction speed is a crucial factor. If the model
is not significantly faster, it cannot be effectively utilized in autonomous process control. Table
presents the prediction speeds for all network architectures, as well as for the MC simulation. It is
evident that a substantial increase in prediction speed is achieved across all network architectures,
with the most significant improvement observed in the case of SAN. Additionally, predictions are
performed on a GPU, enabling easy parallelization for multiple simultaneous predictions. However,
whether the prediction speed is sufficient to support gradient-based temperature optimization during
an arc synthesis process remains a topic for future investigation.

In order to control a process predicted by the proposed surrogate model approach, the surrogate
model must be feasible in predicting temperatures T that lead to a desired particle descriptor
vector distribution at a specified time step ¢. That is, an inverse problem should be solved. The
applicability of the presented surrogate model to solve such an inverse problem is investigated next.
In order to quantitatively evaluate the result, the desired particle descriptor vector distributions are
chosen as S'°%7 for T in the evaluation data split. Then, for each of these desired descriptor vector
distributions, an optimal temperature 7' € R is determined as the temperature that maximizes the
similarity of the predicted histogram P°*T and the desired one S1%T) e

T = argmin DKL(S(loo’T), P(wo’w)), (37)

>0

where P(1902) ig given by Eq. . Due to the (almost everywhere) differentiability of the surrogate
model (see ReLU activation function), this minimization problem can be efficiently solved using
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gradient descent. In Figure[] the resulting optimized temperature per architecture can be observed.
Both SAN and AFPN perform well on this task, whereas VFPN does not achieve satisfying results.
The whole optimization procedure for all visible data points took 25s, 50s, and 180s, respectively.

However, for this type of inverse problem, the optimization is not limited to constant tempera-
tures T'. Instead, time-dependent temperatures T'(¢) can also be optimized, offering a more flexible
and potentially more effective solution. For simplicity and practicality, we propose to assume that
the temperature gradient follows a polynomial of degree d. This assumption reduces the optimiza-
tion problem to adjusting d + 1 parameters. The resulting temperature profile function is smooth,
reflecting real-world applications where abrupt changes in temperature are infeasible. However, an
investigation of this approach, as well as its application in autonomous process control, will be the
subject of future work.
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Figure 9: Predicted temperature: The predicted temperature T is shown, which maximizes the
similarity between predicted P10%T) and S10T) for all values of T' of the evaluation data set. The
shape and color of the points, correspond to the different considered neural network architectures.

4 Conclusion

This study presents a bivariate Monte Carlo (MC) framework optimized for computational
efficiency. The framework is benchmarked against established literature models, demonstrating
high agreement in the prediction of particle formation dynamics during coagulation and sintering.

To further accelerate computation and achieve real-time predictive capability, a CNN-based sur-
rogate model is introduced. This model predicts 2D probability distributions of particle properties
as a function of temperature, representing the predictions as bivariate histograms. These histograms
form time series that are differentiable, enabling efficient optimization of temperature profiles for
process control. The CNN demonstrates high predictive accuracy, including for temperatures not
seen during training. However, a limitation is that the bins for the histograms must be fixed a
priori, requiring predefined ranges for aggregate volume and surface area.

The present MC framework offers insights into the attainment of self-preserving size distributions
(SPSDs). Beyond the classical volume-based SPSD, this study identifies and characterizes condi-
tions for attaining a surface area SPSD, which is rarely observed in the literature. Both SPSDs are
rapidly attained in cases of coalescence (044, = 044, = 1.46) and pure agglomeration (0,4, = 1.57
and 0,4, = 1.98), consistent with classical SPSD theory for d,-based, number-weighted distribu-
tions. However, for aggregates in intermediate stages, the SPSDs require reaching uniform primary
particle sizes across the aggregate population, which can take significantly more time. Additionally,
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it is observed and quantified that the d, and d, distribution shapes align closely with a lognormal
distribution but slight deviations are observed in the early growth stages. These findings suggest
the potential for simplified bivariate modeling approaches as a framework to enhance surrogate
model performance in later time steps, where accuracy typically diminishes.

Future work will focus on extending the surrogate model to be trained on data with dynamic
sintering times and adding another input dimension in the form of variable initial concentrations,
which is necessary to capture the dynamics of precursor evaporation rates in processes such as
arc-discharge synthesis. Additionally, incorporating temporal temperature gradients into the model
will further enhance its applicability to real-world scenarios. Such advancements could transform
arc-discharge synthesis from a semi-controlled process to a fully optimized and reliable one, reduc-
ing variability, enhancing the sustainability of nanoparticle production and laying the groundwork
for closed-loop control systems capable of real-time optimization. The surrogate model could be
integrated within the canonical correlation deep neural network (CCDNN) framework, which is
suited for monitoring and correlation analysis, to provide robust insights into temperature-property
interactions and validate predictive outcomes.
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A Analytical solution for the Koch and Friedlander model

The reduction of surface area by sintering, defined in Eq. @, is analytically solvable under
certain conditions. For sufficiently small time steps At = ¢,,; — t; we assume the characteristic
sintering time 75 to be constant, such that

at; 4 1 1 Lit1
[ [ (33)
a, @~ Qsph s Ju,

= a At
In (M) - = (39)

|ati - asph | Ts

Solving the integrals yields

Here, a4, = aspn and ay, = agpn are introduced as exceptions. In those cases, the particle surface
area is simply set to its theoretical minimum agy,. Rearranging yields the solution

At
oy (A1) = aggn + (a1, — agpn) exp (——) . (40)

Ts

Problems with this implementation could arise when applying to big temperature gradients as
typically observed in flame or arc reactors since the analytical method could be incapable of yielding
a continuous solution for these cases. Inaccuracies are also obtained at large time steps At, which
is unlikely in settings with a lot of coagulation events as observed in the present work.

B Error propagation for y

The ratio y of characteristic coagulation and sintering time, defined in Eq. , is erroneous
due to the deviations of 7. and 7y across all simulations Ngj,s, which is computed through error

propagation with
o\ 67\ °
sy () + (22) m

Here 67 is simply derived from twice the standard deviation between all simulations Ngj,s. From
the definition of the average characteristic coagulation time 7. (Eq. ), we compute the error
propagation for 67, from the errors (twice the standard deviation) between all simulations Ngjs of
the concentrations NV;, and Ny corresponding to the arbitrary time step At = t;,,1 — t;. Error
propagation for 7. yields

i+17

5= (Ton ) e (7, ) (42)
e =\ oW, O 0Ny, )

The partial derivatives for d7./0Ny, and 67./6 N, , are defined as
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N, Ng
or. _ ( At) S 1 S Y (43)
6Nti 6Ntl Nti - Nti+1 (Ntl — Nti+1)
and 5 5 N N ON
Tc _ < tit1 At) — t; — ti+12At. (44)
6Nt 0Ny, \ Ny — Ny, (N, — Ni,y )

C Network architecture

This appendix provides an explicit definition of the neural network architecture of SAN. Table
presents a detailed overview of the number of layers and their respective parameters. In the follow-
ing, each of these layers is formally defined. For simplicity, let [K] = {1,..., K} denote the set of
positive integers less than or equal to K, and let X; denote the value of a matrix X at position i.

The considered two-dimensional convolutional layer Conv: RCmHxW _y RCoux 535 with ker-

H w

nel size 4 and stride 2, is defined for (c,4,j) € [Cow] % [5] X [5] as

4 4

C1in
Conv(x)c,i,j = Z Z Z We,c! uwle 2i4u,2j+v- (45)

c/=1u=1 v=1

This layer applies a learnable kernel w € RCutxCinx4x4 4 jtg input, detecting spatial patterns and
reducing its spatial size (H — £, W — ).

In contrast, the transposed convolution ConvTranspose: RCn*HxW _y RCoutx2HX2W " with stride
2 and kernel size 4, expands the spatial size of its input (H — 2H,W ~ 2W). This operation
is sometimes referred to as inverse convolution, although it is not the mathematical inverse of
convolution. For (c,4,j) € [Cow) X [2H]| x [2W], it is defined as

Cn 4 4
ConvTranspose(z);; = Z Z Z Weo oy, izu| j=v s (46)
il bl

c/=1u=1 v=1

where |-|: R —-Z ={...,—1,0,1,...} denotes rounding to the greatest integer less than or equal to
the argument. The transposed convolution layer redistributes feature information onto a larger spa-
tial grid, reconstructing structural details. Its trainable parameters are given by w € RCoutXCinx4x4,

The third type of layer with learnable parameters is the linear layer Linear: R™ — R", defined
by

Linear(z); = Z W, jz;, (47)
=1

for i € [n]. Each output entry is thus a weighted sum of all input entries. The learnable parameters
are given by W e R™™,

To enable the network to represent non-linear functions, a non-linear activation layer is intro-
duced. More precisely, the rectified linear unit activation layer ReLU: REXHXW _y REXHXW g
defined as

ReLU(z).;; = max {0, xc;;}, (48)

for (c,i,75) € [C] x [H] x [W]. This operation suppresses negative values while preserving positive
activations.
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To allow the network to process both an input image /histogram and a scalar-valued temperature,
a concatenation layer is employed. For x € R™ and v € R, it is given by

Concat(z,v) = (21,Z2, ..., Tm, V). (49)

Finally, to bridge the representations of linear layers (operating on flat vectors) and convolutional
layers (operating on three-dimensional tensors), flattening and reshaping layers are introduced.
They are formally defined as

Flatten: RO*W 5 REHW - Rlatten(r), = vc.ij, (50)
where (c,1,7) € [C] x [H] x [W] is the unique solution of p = (¢ — 1)HW + (i — 1)WW + j, and
Reshape: RO — ROHW - Roshape(z)eij = (e 1) HW+(—1)W 4 (51)
which is the inverse transformation of Flatten.

Table 3: Architecture of the Autoencoder Network

Layer Type Input Dimension | Output Dimension | Number of Parameters
Conv (1, 64, 64) (32, 32, 32) 512
ReLU (32, 32, 32) (32, 32, 32) 0
Conv (32, 32, 32) (64, 16, 16) 32768
ReLU (64, 16, 16) (64, 16, 16) 0
Conv (64, 16, 16) (128, 8, 8) 131072
ReLLU (128, 8, 8) (128, 8, 8) 0

Flatten (128, 8, 8) (3192) 0
Linear (3192) (128) 1048576
ReLU (128) (128) 0
Concat (128) , (1) (129) 0
Linear (129) (128) 16512
Linear (128) (8192) 1048576
ConvTranspose (128, 8, 8) (64, 16, 16) 131072
ReLLU (64, 16, 16) (64, 16, 16) 0
ConvTranspose (64, 16, 16) (32, 32, 32) 32768
ReLU (32, 32, 32) (32, 32, 32) 0
ConvTranspose (32, 32, 32) (1, 64, 64) 512
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