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tWe 
onsider spatially homogeneous marked point patterns in an unboundedly expand-ing 
onvex sampling window. Our main obje
tive is to identify the distribution of thetypi
al mark by 
onstru
ting an asymptoti
 χ2-goodness-of-�t test. The 
orrespond-ing test statisti
 is based on a natural empiri
al version of the Palm mark distributionand a smoothed 
ovarian
e estimator whi
h turns out to be mean square 
onsistent.Our approa
h does not require independent marks and allows dependen
es between themark �eld and the point pattern. Instead we impose a suitable β-mixing 
ondition onthe underlying stationary marked point pro
ess whi
h 
an be 
he
ked for a number ofPoisson-based models and, in parti
ular, in the 
ase of geostatisti
al marking. In orderto study test performan
e, our test approa
h is applied to dete
t anisotropy of spe
i�
Boolean models.Keywords : β-mixing point pro
ess, empiri
al Palm mark distribution, re-du
ed fa
torial moment measures, smoothed 
ovarian
e estimation, χ2-goodness-of-fit testMSC 2000 : Primary 62 G 10, 60 G 55; Se
ondary 60 F 05, 62 G 201 Introdu
tionMarked point pro
esses (MPPs) are versatile models for the statisti
al analysis of datare
orded at irregularly s
attered lo
ations. The simplest marking s
enario is independentmarking, where marks are given by a sequen
e of independent and identi
ally distributedrandom elements, whi
h is also independent of the underlying point pattern of lo
ations. Amore 
omplex 
lass of models 
onsiders a so-
alled geostatisti
al marking, where the marksare determined by the values of a random �eld at the given lo
ations. Although the random�eld usually exhibits intrinsi
 spatial 
orrelations, it is assumed to be independent of thelo
ation point pro
ess (PP). However, in many real datasets intera
tions between lo
ationsand marks o

ur. Moreover, many marked point patterns arising in models from sto
hasti
geometry su
h as edge 
enters in (anisotropi
) Voronoi-tessellations marked by orientation or1
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 goodness-of-�t tests for stationary point pro
essesPPs marked by nearest-neighbour distan
es do not �t the setting of geostatisti
al marking.For re
ent asymptoti
 approa
hes to mark 
orrelation analysis based on mark variogram andmark 
ovarian
e fun
tions we refer to [7, 8, 10℄. The main goal of this paper is to investi-gate estimators of the Palm mark distribution P o
M in point patterns exhibiting 
orrelationsbetween di�erent marks as well as between marks and lo
ations. The probability measure

P o
M 
an be interpreted as the distribution of the typi
al mark whi
h denotes the mark of arandomly 
hosen point of the pattern. For any mark set C we 
onsider the s
aled deviations

Zk(C) =
√

|Wk|
(
(P̂ o

M )k(C) − P o
M (C)

) as measure of the distan
e between P o
M and an em-piri
al Palm mark distribution (P̂ o

M )k . In [12℄ we prove asymptoti
 normality of the s
aleddeviation ve
tor Zk = (Zk(C1), . . . , Zk(Cℓ))
T under appropriate strong mixing 
onditionswhen the observation window Wk with volume |Wk| grows unboundedly in all dire
tions as

k → ∞. In this study we in parti
ular dis
uss 
onsistent estimators for the 
ovarian
e matrixof the Gaussian limit of Zk. This enables us to 
onstru
t asymptoti
 χ2-goodness-of-�t testsfor the Palm mark distribution P o
M . In a simulation study we apply our testing methodologyto the dire
tional analysis of random surfa
es. For this purpose, we 
onsider Cox pro
esseson the boundary of Boolean models, mark them with the lo
al outer normal dire
tion andtest for a hypotheti
al dire
tional distribution. This allows to identify the rose of dire
tionsof the surfa
e pro
ess asso
iated with the Boolean model and represents an alternative toa Monte-Carlo test for the rose of dire
tion suggested in [1℄. The o

urring MPPs di�erfundamentally from the setting of independent and geostatisti
al marking, for whi
h fun
-tional 
entral limit theorems (CLTs) and 
orresponding tests have been derived in [14, 19℄.In general, they also do not represent m-dependent MPPs.Our paper is organized as follows. Se
tion 2 introdu
es basi
 notation and de�nitions. InSe
tion 3 we present our main results, whi
h are proved in Se
tion 4. In Se
tion 5 we brie�ydis
uss some models satisfying the assumptions needed to prove our asymptoti
 results. Inthe �nal Se
tion 6 we study the performan
e of the proposed tests by simulations.2 Stationary marked point pro
essesAn MPP XM =

∑
n≥1 δ(Xn,Mn) is a random lo
ally �nite 
ounting measure (see [4℄ Vol. II,Chapt. 9.1) on the Borel sets of Rd × M with atoms (Xn,Mn) , where the mark spa
e Mis Polish endowed with its Borel σ-algebra B(M). Formally, XM is a random element withvalues in the spa
e NM of lo
ally �nite 
ounting measures ϕ(·) on B(Rd ×M), where NM isequipped with the σ-algebra generated by all sets of the form {ϕ ∈ NM : ϕ(B × C) = j} for

j ≥ 0, bounded B ∈ B(Rd) , and C ∈ B(M) . Throughout we assume that XM is simple, i.e.all lo
ations Xn in R
d have multipli
ity 1 regardless whi
h mark they have. In what followswe only 
onsider stationary MPPs, whi
h means that

XM
D
=
∑

n≥1

δ(Xn−x,Mn) for all x ∈ R
d .We always assume that the intensity λ = EXM ([0, 1)d ×M) is �nite.2.1 Palm mark distributionFor a stationary MPP XM the probability measure P o

M on B(M) de�ned by
P o
M (C) =

1

λ
EXM ([0, 1)d × C) , C ∈ B(M) , (2.1)2
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essesis 
alled the Palm mark distribution of XM . It 
an be interpreted as the 
onditional distri-bution of the mark of an atom of XM lo
ated at the origin o . A random element M0 in Mwith distribution P o
M is 
alled typi
al mark of XM .De�nition 2.1. An in
reasing sequen
e {Wk} of 
onvex and 
ompa
t sets in R

d su
h that
̺(Wk) = sup{r > 0 : B(x, r) ⊂ Wk for some x ∈ Wk} → ∞ as k → ∞ is 
alled a 
onvexaveraging sequen
e (brie�y CAS). Here B(x, r) denotes the 
losed ball (w.r.t. the Eu
lideannorm ‖ · ‖) with midpoint at x ∈ R

d and radius r ≥ 0 .In the following | · | denotes d-dimensional Lebesgue measure and Hd−1 is the surfa
e 
ontent(i.e. (d− 1)-dimensional Hausdor� measure). Some results from 
onvex geometry applied toCAS {Wk} yield the following inequalities (see [2℄ and [14℄)
1

̺(Wk)
≤ Hd−1(∂Wk)

|Wk|
≤ d

̺(Wk)
and 1− |Wk ∩ (Wk − x)|

|Wk|
≤ d ‖x‖

̺(Wk)
(2.2)for ‖x‖ ≤ ̺(Wk) . Moreover, using the notation Hk = {z ∈ Z

d : |Ez ∩ Wk| > 0} , where
Ez = [−1/2, 1/2)d + z for z ∈ Z

d, we have shown in [11, 12℄ that for a CAS {Wk}

1 ≤ #Hk

|Wk|
≤ 1 +

|Wk +B(o,
√
d)| − |Wk|

|Wk|
−→
k→∞

1, (2.3)whi
h follows from Steiner's formula (see [20℄, p. 197), and (2.2). If XM is ergodi
 (for apre
ise de�nition see [4℄ Vol. II, p. 194), the individual ergodi
 theorem applied to MPPs (seeTheorem 12.2.IV and Corollary 12.2.V in [4℄ Vol. II) provides the P− a.s. limits
λ̂k =

XM (Wk ×M)

|Wk|
P−a.s.−→
k→∞

λ and (P̂ o
M )k(C) =

XM (Wk × C)

XM (Wk ×M)
P−a.s.−→
k→∞

P o
M (C) (2.4)for any C ∈ B(M) and an arbitrary CAS {Wk} .2.2 Fa
torial moment measures and the 
ovarian
e measureFor any integer m ≥ 1, the mth fa
torial moment measure α

(m)
XM

of the MPP XM is de�nedon B((Rd ×M)m) by
α
(m)
XM

( m
×
i=1

(Bi × Ci)
)
= E

∑6=

n1,...,nm≥1

m∏

i=1

(
1IBi

(Xni
)1ICi

(Mni
)
)
, (2.5)where the sum∑ 6=

n1,...,nm≥1 runs over all m-tuples of pairwise distin
t indi
es n1, . . . , nm ≥ 1for bounded Bi ∈ B(Rd) and Ci ∈ B(M) , i = 1, . . . ,m. We also need the mth fa
torialmoment measure α
(m)
X

of the unmarked PP X(·) = XM ((·) ×M) =
∑

n≥1 δXn(·) de�ned on
B((Rd)m) by

α
(m)
X

(
m
×
i=1

Bi

)
= α

(m)
XM

( m
×
i=1

(Bi ×M)
) for bounded B1, . . . , Bm ∈ B(Rd) .The stationarity of XM implies that α(m)

X
is invariant under diagonal shifts, whi
h allows tode�ne themth redu
ed fa
torial moment measure α(m)

X,red uniquely determined by the followingdesintegration formula
α
(m)
X

(
m
×
i=1

Bi

)
= λ

∫

B1

α
(m)
X,red

( m
×
i=2

(Bi − x)
)
dx , see [4℄, Vol. II, Chapt. 12.1 . (2.6)3
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essesThe weak 
orrelatedness between parts of X over distant Borel sets may be expressed by the(fa
torial) 
ovarian
e measure γ
(2)
X

on B((Rd)2) de�ned by
γ
(2)
X

(
B1 ×B2

)
= α

(2)
X

(
B1 ×B2

)
− λ2 |B1| |B2| .The redu
ed 
ovarian
e measure γ

(2)
X,red : B(Rd) → [−∞,∞] is in general a signed measurede�ned in analogy to (2.6) with γ
(2)
X

instead of α(2)
X
, whi
h shows that

γ
(2)
X,red(B) = α

(2)
X,red(B)− λ |B| for bounded B ∈ B(Rd) .2.3 m-point Palm mark distributionFor �xed mark sets C1, . . . , Cm ∈ B(M) , m ≥ 1 , the mth fa
torial moment measure α

(m)
XM

ofthe MPP (see (2.5)) 
an be regarded as a measure on B((Rd)m), whi
h is absolutely 
ontinuousw.r.t. α(m)
X

. Thus, there exists a Radon-Nikodym density P x1,...,xm

M (C1×· · ·×Cm), su
h thatfor any B1, . . . , Bm ∈ B(Rd),
α
(m)
XM

( m
×
i=1

(Bi × Ci)
)
=

∫
m
×
i=1

Bi

P x1,...,xm

M

(
m
×
i=1

Ci

)
α
(m)
X

(d(x1, . . . , xm)). (2.7)Sin
e the mark spa
e M is Polish, this Radon-Nikodym density 
an be extended to a regular
onditional distribution of the mark ve
tor (M1, . . . ,Mm) given that the 
orresponding atoms
X1, . . . ,Xm are lo
ated at pairwise distin
t points x1, . . . , xm, i.e.,

P x1,...,xm

M (C) = P((M1, . . . ,Mm) ∈ C | X1 = x1, . . . ,Xm = xm) for C ∈ B(Mm) .For details we refer to [16℄, p. 164. The above 
onditional distribution is 
alled the m-pointPalm mark distribution of XM . In 
ase of a stationary simple MPP XM , it is easily 
he
kedthat the one-point Palm mark distribution 
oin
ides with the Palm mark distribution de�nedin (2.1).The next result is indispensable to study asymptoti
 properties of varian
e estimators forthe empiri
al mark distribution. It extends a formula stated in [15℄ for unmarked PPs to the
ase of marked PPs. The proof of this extension relies essentially on (2.7). Details are left tothe reader.Lemma 2.1. Let XM =
∑

n≥1 δ(Xn,Mn) be an MPP satisfying EXM (B × M)4 < ∞ for allbounded B ∈ B(Rd), and let f : R
d × R

d × M
2 7→ R

1 be a Borel-measurable fun
tion su
hthat the se
ond moment of ∑ 6=
p,q≥1 | f(Xp,Xq,Mp,Mq) | exists. Then,
Var
( ∑ 6=

p,q≥1

f(Xp,Xq,Mp,Mq)
) (2.8)

=

∫

(Rd)2

∫

M
2

f(x1, x2, u1, u2)
[
f(x1, x2, u1, u2)+f(x2, x1, u2, u1)

]
P x1,x2

M

(
d(u1, u2)

)
α
(2)
X

(
d(x1, x2)

)

4
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+

∫

(Rd)3

∫

M
3

f(x1, x2, u1, u2)
[
f(x1, x3, u1, u3) + f(x3, x1, u3, u1)

+ f(x2, x3, u2, u3) + f(x3, x2, u3, u2)
]
P x1,x2,x3

M

(
d(u1, u2, u3)

)
α
(3)
X

(
d(x1, x2, x3)

)

+

∫

(Rd)4

∫

M
4

f(x1, x2, u1, u2)f(x3, x4, u3, u4)
[
P x1,x2,x3,x4

M

(
d(u1, u2, u3, u4)

)
α
(4)
X

(
d(x1, x2, x3, x4)

)

− P x1,x2

M

(
d(u1, u2)

)
P x3,x4

M

(
d(u3, u4)

)
α
(2)
X

(
d(x1, x2)

)
α
(2)
X

(
d(x3, x4)

)]
.2.4 β-mixing 
oe�
ient and 
ovarian
e inequalityFor any B ∈ B(Rd), let AXM

(B) denote the sub-σ-algebra of A generated by the restri
tionof the MPP XM to the set B×M. For any B,B′ ∈ B(Rd), a natural measure of dependen
ebetween AXM
(B) and AXM

(B′) 
an be formulated in terms of the β-mixing (or absoluteregularity, respe
tively weak Bernoulli) 
oe�
ient
β
(
AXM

(B),AXM
(B′)

)
=

1

2
sup

{Ai},{A′
j}

∑

i,j

∣∣ P(Ai ∩A′
j) − P(Ai)P(A

′
j)
∣∣ , (2.9)where the supremum is taken over all �nite partitions {Ai} and {A′

j} of Ω su
h that Ai ∈
AXM

(B) and A′
j ∈ AXM

(B′) for all i, j , see [5℄ or [3℄ for a detailed dis
ussion of this andother mixing 
oe�
ients. To quantify the degree of dependen
e of the MPP XM on disjointsets Ka = [−a, a]d and Kc
a+b = R

d \ Ka+b, where b ≥ 0, we introdu
e non-in
reasing ratefun
tions β∗
XM

, β∗∗
XM

: [12 ,∞) → [0,∞) depending on some 
onstant c0 ≥ 1 su
h that
β
(
AXM

(Ka),AXM
(Kc

a+b)
)
≤





β∗
XM

(b) for 1
2 ≤ a ≤ b/c0 ,

ad−1 β∗∗
XM

(b) for 1
2 ≤ b/c0 ≤ a .

(2.10)A stationary MPP XM is 
alled β-mixing or absolutely regular, respe
tively weak Bernoulliif both β-mixing rates β∗
XM

(r) and β∗∗
XM

(r) tend to 0 as r → ∞. Note that any stationary
β-mixing MPP XM is mixing in the usual sense and thus also ergodi
, see Lemma 12.3.II andProposition 12.3.III in [4℄ Vol. II, p. 206. Our proofs of the asymptoti
 results in Se
tion 3require at least polynomial de
ay of β∗

XM
(r) and β∗∗

XM
(r) expressed byCondition β(δ): Let the MPP XM satisfy (2.10) and EXM ( [0, 1]d ×M )2+δ < ∞ su
h that

∫ ∞

1
rd−1

(
β∗
XM

(r)
)δ/(2+δ)

dr < ∞ and r2d−1 β∗∗
XM

(r) −→
r→∞

0 for some δ > 0 .A 
ondition of this type based on (2.9) and (2.10) has been �rst veri�ed for stationary(Poisson-) Voronoi tessellations in [9℄. It has proven adequate to derive CLTs via Bernstein'sblo
king te
hnique for spatial means related with these tessellations observed in expanding
ubi
 observation windows. The proof of the below stated Theorem 3.1, whi
h is given in [12℄,extends Bernstein's method to observation windows forming a CAS. The following 
ovarian
ebound in terms of the β-mixing 
oe�
ient (2.9) emerged �rst in [21℄, see also [3℄.Lemma 2.2. Let Y and Y ′ denote the restri
tions of the MPP XM to B ×M and B′ ×Mfor some B,B′ ∈ B(Rd) , respe
tively. Furthermore, let Ỹ and Ỹ ′ be independent 
opies of5
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Y and Y ′, respe
tively. Then, for any NM ⊗NM-measurable fun
tion f : NM × NM → [0,∞)and, for any η > 0 ,

∣∣Ef(Y, Y ′)− Ef(Ỹ , Ỹ ′)
∣∣ ≤ 2β(AXM

(B),AXM
(B′))

η
1+η

× max
{(

Ef1+η(Y, Y ′)
) 1

1+η ,
(
Ef1+η(Ỹ , Ỹ ′)

) 1

1+η

}
. (2.11)If f is bounded, then (2.11) remains valid for η = ∞ .3 Results3.1 Central limit theoremWe 
onsider a sequen
e of set-indexed empiri
al pro
esses {Yk(C) , C ∈ B(M) } de�ned by

Yk(C) =
1√
|Wk|

∑

n≥1

1IWk
(Xn)

(
1IC(Mn)−P o

M (C)
)
=
√

|Wk| λ̂k

(
(P̂ o

M )k(C)−P o
M(C)

)
, (3.1)where {Wk} is a CAS of observation windows in R

d. We will �rst state a multivariate CLTfor the joint distribution of Yk(C1), . . . , Yk(Cℓ). For this, let ` D−→' denote 
onvergen
e indistribution and Nℓ(a,Σ) be an ℓ-dimensional Gaussian ve
tor with expe
tation (
olumn)ve
tor a ∈ R
ℓ and 
ovarian
e matrix Σ = (σij)

ℓ
i,j=1.Theorem 3.1. Let XM be a stationary MPP with λ > 0 satisfying Condition β(δ). Then

Yk =
(
Yk(C1), . . . , Yk(Cℓ)

)⊤ D−→
k→∞

Nℓ(oℓ,Σ) for any C1, . . . , Cℓ ∈ B(M) , (3.2)where oℓ = (0, . . . , 0)⊤ and the asymptoti
 
ovarian
e matrix Σ = (σij)
ℓ
i,j=1 is given by thelimits

σij = lim
k→∞

EYk(Ci)Yk(Cj). (3.3)This CLT, whi
h is proved in [12℄ in detail, 
an be reformulated for the empiri
al set-indexedpro
ess {Zk(C), C ∈ B(M)}, where
Zk(C) = ( λ̂k )

−1Yk(C) =
√

|Wk|
(
(P̂ o

M )k(C)− P o
M (C)

)
.In other words, as re�nement of the ergodi
 theorem (2.4), we derive asymptoti
 normality ofa suitably s
aled deviation of the ratio-unbiased empiri
al Palm mark probabilities (P̂ o

M )k(C)from P o
M (C) de�ned by (2.1) for any C ∈ B(M) . Sin
e Condition β(δ) ensures the ergodi
ityof XM , the �rst limiting relation in (2.4) 
ombined with Slutsky's lemma yields the followingresult as a 
orollary of Theorem 3.1.Corollary 3.2. The 
onditions of Theorem 3.1 imply the CLT

Zk = (Zk(C1), . . . , Zk(Cℓ))
⊤ D−→

k→∞
Nℓ(oℓ, λ

−2 Σ) .

6
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esses3.2 β-mixing and integrability 
onditionsIn this subse
tion we give a 
ondition in terms of the mixing rate β∗
XM

(r) whi
h implies �nitetotal variation of the redu
ed 
ovarian
e measure γ(2)
X,red and a 
ertain integrability 
ondition(3.5) whi
h expresses weak dependen
e between any two marks lo
ated at far distant sites.Both of these 
onditions enable us to show the unbiasedness resp. asymptoti
 unbiasednessof two estimators for the asymptoti
 
ovarian
es (3.3). Note that the total variation measure

|γ(2)
X,red| of γ(2)X,red is de�ned as sum of the positive part γ(2)+

X,red and negative part γ(2)−
X,red of theJordan de
omposition of γ(2)

X,red, i.e.,
γ
(2)
X,red = γ

(2)+
X,red − γ

(2)−
X,red and |γ(2)

X,red| = γ
(2)+
X,red + γ

(2)−
X,red ,where the positive measures γ(2)+

X,red and γ
(2)−
X,red are mutually singular, see [6℄, p. 87.Lemma 3.1. Let XM be a stationary MPP satisfying

EXM( [0, 1]d ×M )2+δ < ∞ and ∫ ∞

1
rd−1

(
β∗
XM

(r)
)δ/(2+δ)

dr < ∞ for some δ > 0with β-mixing rate β∗
XM

(r) de�ned in (2.10). Then
|γ(2)

X,red|(Rd) < ∞ (3.4)and
∫

Rd

∣∣∣P o,x
M (C1 × C2)− P o

M (C1)P
o
M (C2)

∣∣∣α(2)
X,red(dx) < ∞ for any C1, C2 ∈ B(M) . (3.5)3.3 Representation of the asymptoti
 
ovarian
e matrixIn Theorem 3.1 we stated 
onditions for asymptoti
 normality of the random ve
tor Yk.Clearly, (2.1) and (3.1) immediately imply that EYk(C) = 0 for any C ∈ B(M). A represen-tation formula for the asymptoti
 
ovarian
e matrix Σ is given in the following theorem.Theorem 3.3. Let XM be a stationary MPP satisfying (3.5) and let {Wk} be a CAS. Then,the limits in (3.3) exist and take the form

σij = λ
(
P o
M (Ci ∩ Cj)− P o

M (Ci)P
o
M (Cj)

)
+ λ

∫

Rd

(
P o,x
M (Ci ×Cj) (3.6)

− P o,x
M (Ci ×M)P o

M (Cj)− P o,x
M (Cj ×M)P o

M (Ci) + P o
M (Ci)P

o
M (Cj)

)
α
(2)
X,red(dx) .In parti
ular, if XM is marked independently, then

σij = λ
(
P o
M (Ci ∩Cj)− P o

M (Ci)P
o
M (Cj)

)
. (3.7)

7
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esses3.4 Estimation of the asymptoti
 
ovarian
e matrixIn Se
tion 6 we will exploit the normal 
onvergen
e (3.2) for statisti
al inferen
e of the typi-
al mark distribution. More pre
isely, assuming that the asymptoti
 
ovarian
e matrix Σ isinvertible, we 
onsider asymptoti
 χ2-goodness-of-�t tests, whi
h are based on the distribu-tional limit
Tk = Y⊤

k Σ̂
−1
k Yk

D−→
k→∞

χ2
ℓ , (3.8)whi
h is an immediate 
onsequen
e of (3.2) and Slutsky's lemma, provided that Σ̂k is a
onsistent estimator for Σ. As in (3.1), we use the notation Yk =

(
Yk(C1), . . . , Yk(Cℓ)

)⊤,and the random variable χ2
ℓ is χ2-distributed with ℓ degrees of freedom. In the following wewill dis
uss several estimators for Σ. Our �rst observation is that the simple plug-in estimator

Σ̂
(0)
k =

(
Yk(Ci)Yk(Cj)

)ℓ
i,j=1

for Σ is useless, sin
e the determinant of Σ̂(0)
k vanishes. Insteadof Σ̂(0)

k we take the edge-
orre
ted estimator Σ̂(1)
k =

(
(σ̂

(1)
ij )k

)ℓ
i,j=1

with
(σ̂

(1)
ij )k =

1

|Wk|
∑

p≥1

1IWk
(Xp)

(
1ICi∩Cj

(Mp)− P o
M (Ci)P

o
M (Cj)

) (3.9)
+

∑ 6=

p,q≥1

1IWk
(Xp)1IWk

(Xq)
(
1ICi

(Mp)− P o
M (Ci)

)(
1ICj

(Mq)− P o
M (Cj)

)

|(Wk −Xp) ∩ (Wk −Xq)|
.As an alternative, whi
h 
an be implemented in a more e�
ient way, we negle
t the edge
orre
tion and 
onsider the naive estimator Σ̂(2)

k =
(
(σ̂

(2)
ij )k

)ℓ
i,j=1

for Σ with
(σ̂

(2)
ij )k =

1

|Wk|
∑

p≥1

1IWk
(Xp)

(
1ICi∩Cj

(Mp)− P o
M (Ci)P

o
M (Cj)

)

+
1

|Wk|
∑ 6=

p,q≥1

1IWk
(Xp)1IWk

(Xq)
(
1ICi

(Mp)− P o
M (Ci)

) (
1ICj

(Mq)− P o
M (Cj)

)
.Theorem 3.4. Let XM be a stationary MPP satisfying (3.5) and let {Wk} be a CAS. Then

(σ̂
(1)
ij )k is an unbiased estimator, whereas (σ̂

(2)
ij )k is an asymptoti
ally unbiased estimator for

σij , where i, j = 1, ..., ℓ .Remark: In general, neither (σ̂ (1)
ij )k nor (σ̂ (2)

ij )k are L2-
onsistent estimators for σij , even ifstronger moment and mixing 
onditions are supposed.A

ording to Lemma 3.1, the integrability 
ondition (3.5) in Theorems 3.3 and 3.4 
an berepla
ed by the stronger Condition β(δ). In order to obtain an L2-
onsistent estimator, weintrodu
e a smoothed version of the unbiased estimator in (3.9), whi
h is based on somekernel fun
tion and a sequen
e of bandwidths depending on the CAS {Wk}.Condition (wb): Let w : R 7→ R be a non-negative, symmetri
, Borel-measurable kernelfun
tion satisfying w(x) −→ w(0) = 1 as x → 0 . In addition, assume that w(·) is boundedby mw < ∞ and vanishes outside B(o, rw) for some rw ∈ (0,∞). Further, asso
iated with
w(·) and some given CAS {Wk}, let {bk} be a sequen
e of positive bandwidths su
h that

̺(Wk)

2 d rw |Wk|1/d
≥ bk −→

k→∞
0 , bdk |Wk| −→

k→∞
∞ and b

3

2
d

k |Wk| −→
k→∞

0 . (3.10)8



Asymptoti
 goodness-of-�t tests for stationary point pro
essesTheorem 3.5. Let {Wk} be an arbitrary CAS and w(·) be a kernel fun
tion with an asso
iatedsequen
e of bandwidths {bk} satisfying Condition (wb). If the stationary MPP XM satis�es
EXM ( [0, 1]d ×M )4+δ < ∞ and ∫ ∞

1
rd−1

(
β∗
XM

(r)
)δ/(4+δ)

dr < ∞ (3.11)for some δ > 0 with β-mixing rate β∗
XM

(r) de�ned in (2.10), then E
(
σij − (σ̂

(3)
ij )k

)2 −→
k→∞

0 ,where (σ̂
(3)
ij )k is a smoothed 
ovarian
e estimator de�ned by

(σ̂
(3)
ij )k =

1

|Wk|
∑

p≥1

1IWk
(Xp)

(
1ICi∩Cj

(Mp)− P o
M (Ci)P

o
M (Cj)

)

+
∑ 6=

p,q≥1

1IWk
(Xp) 1IWk

(Xq)
(
1ICi

(Mp)− P o
M (Ci)

)(
1ICj

(Mq)− P o
M (Cj)

)

|(Wk −Xp) ∩ (Wk −Xq)|
w
(‖Xq −Xp‖

bk|Wk|1/d
)
.Remark: The full strength of 
ondition (3.11) imposed on the β-mixing rate β∗

XM
(r) intro-du
ed in (2.10) is only needed to prove the 
onsisten
y result of Theorem 3.5. In order toprove (3.4), (3.5), and Theorem 3.1 it su�
es to take the somewhat smaller non-in
reasingrate fun
tion

β∗
XM

(r) = β
(
AXM

(Ka),AXM
(Kc

a+r)
) for r ≥ a = 1/2 . (3.12)Moreover, as shown in [11℄, the assertions of Theorem 3.1 and Theorem 3.3 remain validif in Condition β(δ) the rate fun
tions β∗

XM
and β∗∗

XM
(de�ned by the β-mixing 
oe�
ient(2.9)) are repla
ed by the 
orresponding rate fun
tions derived as in (2.10) from the smaller

α-mixing 
oe�
ient
α
(
AXM

(B),AXM
(B′)

)
= sup{

∣∣P(A ∩A′)− P(A)P(A′)
∣∣ : A ∈ AXM

(B), A′ ∈ AXM
(B′)} ,whi
h results in a slightly weaker mixing 
ondition on XM , see [3℄ for a 
omparison of α- and

β-mixing. A 
ovarian
e inequality for the α-mixing 
ase similar to (2.11) 
an be found in [5℄,see [11℄ for an improved version. Sin
e for most of the MPP models the subtle di�eren
esbetween α- and β-mixing are irrelevant we present our results under the uni�ed assumptionsof Condition β(δ) and (3.11) with β-mixing rate fun
tions as de�ned in (2.10).Con
erning the shape of the observation windows {Wk}, the relations (2.2) and (2.3) areessential in the proofs of our results. However, there exist sequen
es of not ne
esssarily
onvex sets {Wk} whi
h satisfy (2.2) and (2.3), see referen
es in [11℄.4 Proofs4.1 Proof of Lemma 3.1By de�nition of the signed measures γ(2)
X

and γ
(2)
X,red in Se
tion 2.2 and using algebrai
 indu
-tion, for any bounded Borel-measurable fun
tion g : (Rd)2 → R

1 we obtain the relation
λ

∫

Rd

∫

Rd

g(x, y) γ
(2)
X,red(dy) dx =

∫

(Rd)2

g(x, y − x) γ
(2)
X

(d(x, y)). (4.1)9



Asymptoti
 goodness-of-�t tests for stationary point pro
essesLet H+,H− be a Hahn de
omposition of Rd for γ(2)
X,red, i.e.,

γ
(2)+
X,red(·) = γ

(2)
X,red(H

+ ∩ (·)) and γ
(2)−
X,red(·) = −γ

(2)
X,red(H

− ∩ (·)) .We now apply (4.1) for g(x, y) = 1IEo
(x) 1IH+∩Ez

(y) , where Ez = [−1
2 ,

1
2)

d + z for z ∈ Z
d .Combining this with the de�nition (2.6) of the (redu
ed) se
ond fa
torial moment measures

α
(2)
X

and α
(2)
X,red of the unmarked PP X =

∑
i≥1 δXi

and using the relation
γ
(2)
X

(A×B) = α
(2)
X

(A×B)− λ2 |A| |B| for all bounded A,B ∈ B(Rd) ,we obtain
λ γ

(2)
X,red(H

+ ∩ Ez) =

∫

(Rd)2

1IEo
(x)1IH+∩Ez

(y − x)α
(2)
X

(d(x, y)) − λ2 |Eo| |H+ ∩Ez|

= E

∑6=

i,j≥1

1IEo
(Xi)1IH+∩Ez

(Xj −Xi)− EX(Eo)EX(H+ ∩ Ez).Sin
e o /∈ H+ ∩ Ez for z ∈ Z
d with |z| ≥ 2 we may 
ontinue with

λ γ
(2)
X,red(H

+ ∩ Ez) = E

∑

i≥1

δXi
(Eo)X

(
(H+ ∩ Ez) +Xi

)
− EX(Eo)EX(H+ ∩ Ez)

= Ef(Y, Y ′
z)− Ef(Ỹ , Ỹ ′

z) for |z| ≥ 2 , (4.2)where
f(Y, Y ′

z) =
∑

i≥1

δXi
(Eo)X

(
(H+ ∩ Ez) +Xi

)
≤ X

(
Eo

)
X
(
Ez ⊕ Eo

) (4.3)with Y (·) = ∑i≥1 δXi

(
(·) ∩ Eo

) resp. Y ′
z(·) =

∑
j≥1 δXj

(
(·) ∩ (Ez ⊕ Eo)

) being restri
tionsof the stationary PP X =
∑

i≥1 δXi
to Eo resp. Ez ⊕ Eo = [−1, 1)d + z . Further, let Ỹ and

Ỹ ′
z denote 
opies of the PPs Y and Y ′

z , respe
tively, whi
h are assumed to be independentimplying that Ef(Ỹ , Ỹ ′
z ) = EX(Eo)EX(H+ ∩ Ez) . Sin
e Y is measurable w.r.t. AX(Eo),whereas Y ′

z isAX(R
d\[−(|z|−1), |z|−1]d)-measurable, we are in a position to apply Lemma 2.2with β

(
AX(Eo),AX(Rd\[−(|z|−1), |z|−1]d

)
≤ β∗

XM
(|z|− 3

2 ) for |z| ≥ (c0+3)/2 ≥ 2 . Hen
e,the estimate (2.11) together with (4.2) and (4.3) yields
∣∣λ γ(2)

X,red(H
+ ∩ Ez)

∣∣ ≤ 2
(
β∗
XM

(|z| − 3

2
)
) η

1+η
(
max

{
Ef1+η(Y, Y ′

z ) , Ef
1+η(Ỹ , Ỹ ′

z )
}) 1

1+η
,where the maximum term on the rhs has the �nite upper bound 2d(1+η)

EX(Eo)
2+2η for

δ = 2 η > 0 in a

ordan
e with our assumptions. This is seen from (4.3) using the Cau
hy-S
hwarz inequality and the stationarity of X giving
Ef1+η(Y, Y ′

z ) ≤
(
EX(Eo)

2+2η
EX([−1, 1]d)2+2η

)1/2
≤ 2d(1+η)

EX(Eo)
2+2ηand the same upper bound for Ef1+η(Ỹ , Ỹ ′

z) . By 
ombining all the above estimates with
λ γ

(2)
X,red(H

+ ∩ [−3
2 ,

3
2)

d) ≤ 3d EX(Eo)
2 we arrive at

λ γ
(2)
X,red(H

+) ≤ 3d EX(Eo)
2 + 2d+1

(
EX(Eo)

2+δ
) 2

2+δ
∑

z∈Zd:|z|≥(c0+3)/2

(
β∗
XM

(|z| − 3

2
)
) δ

2+δ
.10



Asymptoti
 goodness-of-�t tests for stationary point pro
essesBy the assumptions of Lemma 3.1 the moments and the series on the rhs are �nite and thesame bound 
an be derived for −λ γ
(2)
X,red(H

−) whi
h shows the validity of (3.4).The proof of (3.5) resembles that of (3.4). First we extend the identity (4.1) to the (redu
ed)se
ond fa
torial moment measure of the MPP XM de�ned by (2.5) and (2.7) for m = 2 whi
hreads as follows:
λ

∫

Rd

∫

Rd

g(x, y)P o,x
M (C1 × C2)α

(2)
X,red(dy)dx =

∫

(Rd)2

g(x, y − x)P x,y
M (C1 × C2)α

(2)
X

(
d(x, y)

)

= E

∑6=

i,j≥1

g(Xi,Xj −Xi)1IC1
(Mi)1IC2

(Mj) .For the disjoint Borel sets G+ and G− de�ned by
G+(−) =

{
x ∈ R

d : P o,x
M (C1 × C2) ≥ (<)P o

M (C1)P
o
M (C2)

}we repla
e g(x, y) in the above relation by g±(x, y) = 1IEo
(x) 1IE±

z
(y) , where E±

z = G±∩Ez for
|z| ≥ 2 , and 
onsider the restri
ted MPPs Yo(·) = XM

(
(·)∩ (Eo ×C1)

), Y ′
z,±(·) = XM

(
(·)∩

((E±
z ⊕ Eo) × C2)

) and their 
opies Ỹo and Ỹ ′
z,± , whi
h are assumed to be sto
hasti
allyindependent. Further, in analogy to (4.3), de�ne

f(Yo, Y
′
z,±) =

∑

i≥1

δ(Xi,Mi)(Eo ×C1)XM

(
(E±

z +Xi)× C2

)
≤ X

(
Eo

)
X
(
Ez ⊕ Eo

)
.It is rapidly seen that, for |z| ≥ 2 ,

Ef(Yo, Y
′
z,±) = λ

∫

E±
z

P o,x
M (C1 × C2)α

(2)
X,red(dx) and

Ef(Ỹo, Ỹ
′
z,±) = EXM(Eo × C1) EXM (E±

z × C2) = λ2 P o
M (C1)P

o
M (C2) |E±

z |and in the same way as in the foregoing proof we �nd that, for |z| ≥ (c0 + 3)/2 ,
|Ef(Yo, Y

′
z,±)− Ef(Ỹo, Ỹ

′
z,±) | ≤ 2d+1

(
EX(Eo)

2+δ
) 2

2+δ
(
β∗
XM

(|z| − 3

2
)
) δ

2+δ .Finally, the de
omposition α
(2)
X,red(·) = γ

(2)
X,red(·) + λ | · | together with the previous estimateleads to

λ

∫

Ez

∣∣∣P o,x
M (C1 × C2)− P o

M (C1)P
o
M (C2)

∣∣∣α(2)
X,red(dx) = Ef(Yo, Y

′
z,+)− Ef(Ỹo, Ỹ

′
z,+)

−
(
Ef(Yo, Y

′
z,−)− Ef(Ỹo, Ỹ

′
z,−)

)
− λP o

M (C1)P
o
M (C2)

(
γ
(2)
X,red(E

+
z )− γ

(2)
X,red(E

−
z )
)

≤ 2d+2
(
EX(Eo)

2+δ
) 2

2+δ
(
β∗
XM

(|z| − 3

2
)
) δ

2+δ + λ |γ(2)
X,red|(Ez) for |z| ≥ (c0 + 3)/2 .Thus, the sum over all z ∈ Z

d is �nite in view of our assumptions and the above-provedrelation (3.4) whi
h 
ompletes the proof of Lemma 3.1. 211



Asymptoti
 goodness-of-�t tests for stationary point pro
esses4.2 Proof of Theorem 3.3It su�
es to show (3.6), sin
e independent marks imply that P o,x
M (C1×C2) = P o

M (C1)P
o

M (C2)for x 6= o and any C1, C2 ∈ B(M) so that the integrand on the rhs of (3.6) disappears whi
hyields (3.7) for stationary independently MPPs. By the very de�nition of Yk(C) we obtainthat
Cov

(
Yk(Ci), Yk(Cj)

)
=

1

|Wk|
E

∑

p≥1

1IWk
(Xp)

(
1ICi

(Mp)− P o
M (Ci)

)(
1ICj

(Mp)− P o
M (Cj)

)

+
1

|Wk|
E

∑

p,q≥1

6=
1IWk

(Xp)1IWk
(Xq)

(
1ICi

(Mp)− P o
M (Ci)

)(
1ICj

(Mq)− P o
M (Cj)

)
. (4.4)Expanding the di�eren
e terms in the parentheses leads to eight expressions whi
h, up to
onstant fa
tors, take either the form

E

∑

p≥1

1IWk
(Xp)1IC(Mp) = λ|Wk|P o

M (C) or E

∑

p,q≥1

6=
1IWk

(Xp)1IWk
(Xq)1ICi

(Mp)1ICj
(Mq)

=

∫

(Rd)2

1IWk
(x)1IWk

(y)P o,y−x
M (Ci × Cj)α

(2)
X

(d(x, y)) = λ

∫

Rd

P o,y
M (Ci × Cj) γk(y)α

(2)
X,red(dy) ,where y 7→ γk(y) = |Wk ∩ (Wk− y)| denotes the set 
ovarian
e fun
tion of Wk . Summarizingall these terms gives

Cov
(
Yk(Ci), Yk(Cj)

)
= λ

(
P o
M (Ci ∩Cj)− P o

M (Ci)P
o
M (Cj)

)
+ λ

∫

Rd

γk(x)

|Wk|
(
P o,x
M (Ci × Cj)

− P o
M (Ci)P

o,x
M (Cj ×M)− P o

M (Cj)P
o,x
M (Ci ×M) + P o

M (Ci)P
o
M (Cj)

)
α
(2)
X,red(dx) .The integrand in the latter formula is dominated by the sum

∣∣P o,x
M (Ci × Cj)− P o

M (Ci)P
o
M (Cj)

∣∣+
∣∣P o,x

M (Cj ×M)− P o
M (Cj)

∣∣+
∣∣P o,x

M (Ci ×M)− P o
M (Ci)

∣∣ ,whi
h, by (3.5), is integrable w.r.t. α
(2)
X,red . Hen
e, (3.6) follows by (2.2) and Lebesgue'sdominated 
onvergen
e theorem. 24.3 Proof of Theorem 3.4We again expand the parentheses in the se
ond term of the estimator (σ̂

(1)
ij )k de�ned by(3.9) and express the expe
tations in terms of P o,y

M and α
(2)
X,red. Using the obvious relation

γk(y) =
∫
Rd 1IWk

(x)1IWk
(y + x) dx we �nd that, for any Ci, Cj ∈ B(M) ,

E

∑6=

p,q≥1

1IWk
(Xp)1IWk

(Xq)1ICi
(Mp)1ICj

(Mq)

|(Wk −Xp) ∩ (Wk −Xq)|
=

∫

(Rd)2

1IWk
(x)1IWk

(y)P x,y
M (Ci × Cj)

γk(y − x)
α
(2)
X

(d(x, y))

= λ

∫

Rd

P o,y
M (Ci × Cj)

γk(y)

∫

Rd

1IWk
(x)1IWk

(y + x) dxα
(2)
X,red(dy) = λ

∫

Rd

P o,y
M (Ci × Cj)α

(2)
X,red(dy) .12



Asymptoti
 goodness-of-�t tests for stationary point pro
essesAs in the proof of Theorem 3.3 after summarizing all terms we obtain that
E(σ̂

(1)
ij )k = λ

(
P o
M (Ci ∩Cj)− P o

M (Ci)P
o
M (Cj)

)
+ λ

∫

Rd

(
P o,x
M (Ci × Cj)

− P o,x
M (Ci ×M)P o

M (Cj)− P o,x
M (Cj ×M)P o

M (Ci) + P o
M (Ci)P

o
M (Cj)

)
α
(2)
X,red(dx) ,whi
h by 
omparison to (3.6) yields that E(σ̂

(1)
ij )k = σij . The asymptoti
 unbiasednessof (σ̂

(2)
ij )k is rapidly seen by (3.3) and the equality E(σ̂

(2)
ij )k = Cov

(
Yk(Ci), Yk(Cj)

)
=

EYk(Ci)Yk(Cj) , whi
h follows dire
tly from (4.4). 24.4 Proof of Theorem 3.5Sin
e E
(
σij − (σ̂

(3)
ij )k

)2
= Var(σ̂

(3)
ij )k +

(
σij − E(σ̂

(3)
ij )k

)2 we have to show that
E(σ̂

(3)
ij )k −→

k→∞
σij and Var(σ̂

(3)
ij )k −→

k→∞
0 . (4.5)For notational ease, we put m(u, v) =

(
1ICi

(u)−P o
M (Ci)

)(
1ICj

(v)−P o
M (Cj)

)
, ak = bk|Wk|1/d ,

rk(x, y) =
1IWk

(x)1IWk
(y)

γk(y − x)
w

(‖y − x‖
ak

) and τk =
∑

p,q≥1

6=
rk(Xp,Xq)m(Mp,Mq) .Hen
e, together with (2.4) and (3.1) we may rewrite (σ̂

(3)
ij )k as follows:

(σ̂
(3)
ij )k =

1√
|Wk|

Yk(Ci ∩ Cj) + λ̂k

(
P o
M (Ci ∩ Cj)− P o

M (Ci)P
o
M (Cj)

)
+ τk . (4.6)Using the de�nitions and relations (2.5) � (2.7) and ∫

Rd rk(x, y + x)dx = w
(
‖y‖/ak

) we �ndthat the expe
tation E τk 
an be expressed by
∫

(Rd×M)2

rk(x, y)m(u, v)α
(2)
XM

(
d(x, u, y, v)

)
= λ

∫

Rd

∫

M
2

m(u, v)P o,y
M

(
d(u, v)

)
w
(‖y‖
ak

)
α
(2)
X,red

(
dy
)
.The inner integral ∫

M2 m(u, v)P o,y
M

(
d(u, v)

) 
oin
ides with the integrand o

urring in (3.6)and this term is integrable w.r.t. α(2)
X,red due to (3.5) whi
h in turn is a 
onsequen
e of (3.11)and Lemma 3.1. Hen
e, by Condition (wb) and the dominated 
onvergen
e theorem, wearrive at

E τk −→
k→∞

λ

∫

Rd

∫

M
2

m(u, v)P o,y
M

(
d(u, v)

)
α
(2)
X,red

(
dy
)
= σij −λ

(
P o
M (Ci ∩Cj)−P o

M (Ci)P
o
M (Cj)

)
.The de�nitions of λ̂k and Yk(·) by (2.4) and (3.1), respe
tively, reveal that E λ̂k = λ and

EYk(Ci ∩ Cj) = 0 . This 
ombined with the last limit and (4.6) proves the �rst relation of(4.5). To verify the se
ond part of (4.5) we apply the Minkowski inequality to the rhs of (4.6)whi
h yields the estimate 13
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esses
(
Var (σ̂

(3)
ij )k

)1/2 ≤ |Wk|−1/2
(
Var Yk(Ci ∩ Cj)

)1/2
+
(
Var λ̂k

)1/2
+
(
Var τk

)1/2
.The �rst summand on the rhs tends to 0 as k → ∞ sin
e EYk(C)2 has a �nite limit for any

C ∈ B(M) as shown in Theorem 3.3 under 
ondition (3.5). The se
ond summand is easilyseen to disappear as k → ∞ if (3.4) is ful�lled, see e.g. [9℄, [14℄ or [15℄. Condition (3.11)implies both (3.4) and (3.5), see Lemma 3.1. Therefore, it remains to show that Var τk −→ 0as k → ∞ . For this purpose we employ the varian
e formula (2.8) stated in Lemma 2.1in the spe
ial 
ase f(x, y, u, v) = rk(x, y)m(u, v) . In this way we get the de
omposition
Var τk = I

(1)
k + I

(2)
k + I

(3)
k , where I

(1)
k , I(2)k and I

(3)
k denote the three multiple integrals onthe rhs of (2.8) with f(x, y, u, v) repla
ed by the produ
t rk(x, y)m(u, v) . We will see thatthe integrals I

(1)
k and I

(2)
k are easy to estimate only by using (3.4) and (3.5) while in orderto show that I(3)k tends to 0 as k → ∞, the full strength of the mixing 
ondition (3.11) mustbe exhausted. Among others we use repeatedly the estimate

1

γk(aky)
≤ 2

|Wk|
for y ∈ B(o, rw) , (4.7)whi
h follows dire
tly from (2.2) and the 
hoi
e of {bk} in (3.10). The de�nition of I(1)ktogether with (4.7) and α

(2)
X,red(dx) = γ

(2)
X,red(dx) + λdx yields

|I(1)k | ≤ 2

∫

(Rd)2

(
rk(x1, x2)

)2
α
(2)
X

(
d(x1, x2)

)
= 2λ

∫

Rd

1

γk(y)
w2
(‖y‖
ak

)
α
(2)
X,red(dy)

≤ 4λ

|Wk|
(
m2

w |γ(2)
X,red|(Rd) + λadk

∫

Rd

w2(‖y‖)dy
)
−→
k→∞

0 ,where the 
onvergen
e results from Condition (wb) and (3.11), whi
h implies |γ(2)
X,red|(Rd) <

∞ by virtue of Lemma 3.1. Analogously, using besides (4.7) and Condition (wb) the relations
w
(‖x‖

ak

)
≤ mw 1I[−⌈akrw⌉,⌈akrw⌉]d(x) and Wk ⊆

⋃

z∈Hk

Ezwith the notation introdu
ed in Se
tion 2.1 we obtain that
|I(2)k | ≤ 4

∫

(Rd)3

rk(x1, x2) rk(x1, x3) α
(3)
X

(
d(x1, x2, x3)

)

≤ 16m2
w

|Wk|2
∑

z∈Hk

α
(3)
X

(
(Ez ⊕ [−⌈akrw⌉, ⌈akrw⌉]d)× (Ez ⊕ [−⌈akrw⌉, ⌈akrw⌉]d)× Ez

)
.Sin
e the 
ube Ez ⊕ [−⌈akrw⌉, ⌈akrw⌉]d de
omposes into (2⌈akrw⌉ + 1)d disjoint unit 
ubesand α

(3)
X

(Ez1 × Ez2 × Ez3) ≤ E(X(Eo))
3 by Hölder's inequality, we may pro
eed with

|I(2)k | ≤ 16m2
w

|Wk|2
#Hk (2⌈akrw⌉+ 1)2d E(X(Eo))

3 ≤ c1 b2dk |Wk| −→
k→∞

0 .14



Asymptoti
 goodness-of-�t tests for stationary point pro
essesHere we have used the moment 
ondition in (3.11), (2.3), and the assumptions (3.10) imposedon the sequen
e {bk} .In order to prove that I(3)k vanishes as k → ∞, we �rst evaluate the inner integrals over theprodu
t m(u1, u2)m(u3, u4) with m(u, v) =
(
1ICi

(u) − P o
M (Ci)

)(
1ICj

(v) − P o
M (Cj)

) so that
I
(3)
k 
an be written as linear 
ombination of 16 integrals taking the form

Jk =

∫

(Rd)2

∫

(Rd)2

rk(x1, x2) rk(x3, x4)
[
P x1,x2,x3,x4

M (
4
×
r=1

Dr)α
(4)
X

(
d(x1, x2, x3, x4)

)

− P x1,x2

M (D1 ×D2)P
x3,x4

M (D3 ×D4)α
(2)
X

(
d(x1, x2)

)
α
(2)
X

(
d(x3, x4)

)]

=

∫
4

×
r=1

(Rd×Dr)
rk(x1, x2) rk(x3, x4)

(
α
(4)
XM

− α
(2)
XM

× α
(2)
XM

)(
d(x1, u1, ..., x4, u4)

)
,where the mark sets D1,D3 ∈ {Ci,M} and D2,D4 ∈ {Cj ,M} are �xed in what follows andthe signed measure α

(4)
XM

− α
(2)
XM

× α
(2)
XM

on B((Rd ×M)4)
(and its total variation measure

∣∣α(4)
XM

− α
(2)
XM

×α
(2)
XM

∣∣ ) 
ome into play by virtue of the de�nition (2.7) for the m-point Palmmark distribution in 
ase m = 2 and m = 4 .As |z1 − z2| > ⌈akrw⌉ (where, as above, |z| denotes the maximum norm of z ∈ Z
d) implies

‖x2 − x1‖ > akrw and thus rk(x1, x2) = 0 for all x1 ∈ Ez1 , x2 ∈ Ez2 , we dedu
e from (4.7)together with Condition (wb) and the abbreviation N(ak) = (1 + c0)(⌈akrw⌉+ 1) (where c0is from (2.10)) that
|Jk| ≤

4m2
w

|Wk|2

(
⌈N(ak)⌉∑

n=0

+
∑

n>⌈N(ak)⌉

)
∑

(z1,z2)∈Sk

∑

(z3,z4)∈Sk,n(z1)

Vz1,z2,z3,z4 , (4.8)where Sk = {(u, v) ∈ Hk×Hk : |u−v| ≤ ⌈akrw⌉} , Sk,n(z) = {(z1, z2) ∈ Sk : min
i=1,2

|zi−z| = n}and Vz1,z2,z3,z4 =
∣∣α(4)

XM
− α

(2)
XM

× α
(2)
XM

∣∣(×4
r=1(Ezr ×Dr)

) for any z1, ..., z4 ∈ Z
d .Obviously, for any �xed z ∈ Hk, at most 2 (⌈N(ak)⌉ + 1)d (2 ⌈N(ak)⌉ + 1)d pairs (z3, z4)belong to ⋃⌈N(ak)⌉

n=0 Sk,n(z) and the number of pairs (z1, z2) in Sk does not ex
eed the produ
t
#Hk (2 ⌈akrw⌉+ 1)d. Finally, remembering that ak = bk |Wk|1/d and using the evidentestimate Vz1,z2,z3,z4 ≤ 2 E(X(Eo))

4 together with (2.3) and Condition (wb), we arrive at
4m2

w

|Wk|2
∑

(z1,z2)∈Sk

⌈N(ak)⌉∑

n=0

∑

(z3,z4)∈Sk,n(z1)

Vz1,z2,z3,z4 ≤ c2
#Hk

|Wk|2
(
bdk |Wk|

)3 −→
k→∞

0 .It remains to estimate the sums on the rhs of (4.8) running over n > ⌈N(ak)⌉. For the signedmeasure α
(4)
XM

− α
(2)
XM

× α
(2)
XM

we 
onsider the Hahn de
omposition H+,H− ∈ B((Rd ×M)4)yielding positive (negative) values on subsets of H+(H−). Re
all that Ka = [−a, a]d. For�xed z1 ∈ Hk, z2 ∈ Hk ∩ (K⌈akrw⌉ + z1) and (z3, z4) ∈ Sk,n(z1), we now 
onsider thede
ompsition Vz1,z2,z3,z4 = V +
z1,z2,z3,z4 + V −

z1,z2,z3,z4 with
V ±
z1,z2,z3,z4 = ±

(
α
(4)
XM

− α
(2)
XM

× α
(2)
XM

)(
H± ∩

4
×
r=1

(Ezr ×Dr)
)
.15



Asymptoti
 goodness-of-�t tests for stationary point pro
essesSin
e (z3, z4) ∈ Sk,n(z1) means that z3 ∈ Hk ∩
(
Kc

n + z1
), where Kc

a = R
d \ Ka , and

z4 ∈ Hk ∩
(
K⌈akrw⌉ + z3

)
∩
(
Kc

n + z1
), we de�ne MPPs Yk and Y ′

n as the restri
tions of XMto (K⌈akrw⌉+1/2 + z1)×M and (Kc
n−1/2 + z1)×M , respe
tively. Let furthermore Ỹk and Ỹ ′

nbe 
opies of Yk and Y ′
n whi
h are independent.Next we de�ne fun
tions f+(Yk, Y

′
n) and f−(Yk, Y

′
n) by

f±(Yk, Y
′
n) =

∑ 6=

p,q≥1

∑6=

s,t≥1

1I±(Xp,Mp,Xq,Mq,X
′
s,M

′
s,X

′
t,M

′
t) ,where 1I±(· · · ) denote the indi
ator fun
tions of the sets H± ∩

4
×
r=1

(Ezr ×Dr) so that we get
V ±
z1,z2,z3,z4 = Ef±(Yk, Y

′
n)− Ef±(Ỹk, Ỹ

′
n) for (z1, z2) ∈ Sk , (z3, z4) ∈ Sk,n(z1) .Hen
e, having in mind the stationarity of XM , we are in a position to apply the 
ovarian
einequality (2.11), whi
h provides for η > 0 and n > ⌈N(ak)⌉ that

V ±
z1,z2,z3,z4 ≤ 2

(
β
(
A(K⌈akrw⌉+1/2 + z1),A(Kc

n−1/2 + z1)
) ) η

1+η

×
(
E
( 2∏

r=1

XM (Ezr ×Dr)
)2+2η

E
( 4∏

r=3

XM (Ezr ×Dr)
)2+2η

) 1

2+2η

≤ 2
(
β∗
XM

(n − ⌈akrw⌉ − 1)
) η

1+η
(
EX(Eo)

4+4η
) 1

1+η . (4.9)In the last step we have used the Cau
hy-S
hwarz inequality and the de�nition of the β-mixing rate β∗
XM

together with 
onstant c0 in (2.10). Finally, setting η = δ/4 with δ > 0from (3.11) the estimate (4.9) enables us to derive the following bound of that part on therhs of (4.8) 
onne
ted with the series over n > ⌈N(ak)⌉:
c3

#Hk

|Wk|2
(2⌈akrw⌉+ 1)2d

∑

n>⌈N(ak)⌉

(
(2n + 1)d − (2n − 1)d

)(
β∗
XM

(n− ⌈akrw⌉ − 1)
) δ

4+δ .Combining ak = bk|Wk|1/d and (2.3) with 
ondition (3.11) and the 
hoi
e of {bk} in (3.10), itis easily 
he
ked that the latter expression and thus Jk tend to 0 as k → ∞ . This 
ompletesthe proof of Theorem 3.5. 25 Examples5.1 m-dependent marked point pro
essesA stationary MPP XM is 
alled m-dependent if, for any B,B′ ∈ B(Rd), the σ-algebras
AXM

(B) and AXM
(B′) are sto
hasti
ally independent if inf{|x − y| : x ∈ B, y ∈ B′} > mor, equivalently,

β
(
AXM

(Ka),AXM
(Kc

a+b)
)
= 0 for b > m and a > 0 .In terms of the 
orresponding mixing rates this means that β∗

XM
(r) = β∗∗

XM
(r) = 0 if r >

m . For m-dependent MPPs XM , it is evident that Condition β(δ) in Theorem 3.1 is onlymeaningful for δ = 0 , that is, EX([0, 1]d)2 < ∞ . This 
ondition also implies (3.4) and (3.5).Likewise, the assumption (3.11) of Theorem 3.5 redu
es to EX([0, 1]d)4 < ∞ whi
h su�
esto prove the L2-
onsisten
y of the empiri
al 
ovarian
e matrix Σ̂
(3)
k .16



Asymptoti
 goodness-of-�t tests for stationary point pro
esses5.2 Geostatisti
ally marked point pro
essesLet X =
∑

n≥1 δXn be an unmarked simple PP on R
d and M = {M(x), x ∈ R

d} be ameasurable random �eld on R
d taking values in the Polish mark spa
eM. Further assume that

X andM are sto
hasti
ally independent over a 
ommon probability spa
e (Ω,A,P). An MPP
XM =

∑
n≥1 δ(Xn,Mn) with atoms Xn of X and marks Mn = M(Xn) is 
alled geostatisti
allymarked. Equivalently, the random 
ounting measure XM ∈ NM 
an be represented by meansof the Borel sets M−1(C) = {x ∈ R

d : M(x) ∈ C} (if C ∈ B(M)) by
XM (B × C) = X(B ∩M−1(C)) for B × C ∈ B(Rd)× B(M) . (5.1)Obviously, if both the PP X and the mark �eld M are stationary then so is XM and vi
eversa. Furthermore, the m-dimensional distributions of M 
oin
ide with the m-point Palmmark distributions of XM . The following Lemma allows to estimate the β-mixing 
oe�
ient(2.9) by the sum of the 
orresponding 
oe�
ients of the PP X and the mark �eld M .Lemma 5.1. Let the MPP XM be de�ned by (5.1) with an unmarked PP and a random mark�eld M being sto
hasti
ally independent of ea
h other. Then, for any B,B′ ∈ B(Rd) ,

β
(
AXM

(B),AXM
(B′)

)
≤ β

(
AX(B),AX(B

′)
)
+ β

(
AM(B),AM (B′)

)
, (5.2)where the σ-algebras AX(B),AX(B′) and AM (B),AM (B′) are generated by the restri
tionof X and M , respe
tively, to the sets B ,B′.To sket
h a proof for (5.2), we regard the di�eren
es ∆(Ai, A

′
j) = P(Ai ∩A′

j)− P(Ai)P(A
′
j)for two �nite partitions {Ai} and {A′

j} of Ω 
onsisting of events of the form
Ai =

k⋂

p=1

{XM (Bp × Cp) ∈ Γp,i} , A′
j =

ℓ⋂

q=1

{XM (B′
q × C ′

q) ∈ Γ′
q,j} with Γp,i,Γ

′
q,j ⊆ Z+ ,with pairwise disjoint bounded Borel sets B1, ..., Bk ⊆ B and B′

1, ..., B
′
ℓ ⊆ B′. This su�
essin
e the supremum in (2.9) does not 
hange if the sets Ai and A′

j belong to semi-algebrasgenerating AXM
(B) and AXM

(B′), respe
tively. Making use of (5.1) 
ombined with theindependen
e assumption yields the identity
∆(Ai, A

′
j) =

∫

Ω

∫

Ω

(
PAX(B)⊗AX(B′) − PAX(B) × PAX(B′)

)
(Ai ∩A′

j) dPAM (B)⊗AM (B′)

+

∫

Ω

∫

Ω

PAX(B)(Ai)PAX(B′)(A
′
j) d
(
PAM (B)⊗AM (B′) − PAM (B) × PAM (B′)

)
,whi
h by (2.9) and the integral form of the total variation 
on�rms (5.2).5.3 Cox pro
esses on the boundary of germ-grain modelsLet Ξ =

⋃
n≥1(Ξn + Yn) be a germ-grain model, see e.g. [13℄, governed by some stationaryunmarked PP Y =

∑
n≥1 δYn in R

d with intensity λ > 0 and a sequen
e {Ξn}n≥1 of indepen-dent 
opies of some random 
onvex, 
ompa
t set Ξ0 (su
h that P(o ∈ Ξ0) = 1) 
alled typi
algrain. With the radius fun
tional ‖Ξ0‖ = sup{‖x‖ : x ∈ Ξ0}, the 
ondition E‖Ξ0‖d < ∞ensures that Ξ is a random 
losed set. The germ-grain model is 
alled Boolean model if the17



Asymptoti
 goodness-of-�t tests for stationary point pro
essesPP Y is Poisson. We 
onsider a marked Cox pro
ess XM , where the unmarked Cox pro
ess
X =

∑
n≥1 δXn is 
on
entrated on the boundary ∂Ξ of Ξ with random intensity measurebeing proportional to the (d− 1)-dimensional Hausdor� measure Hd−1 on ∂Ξ. As marks Mnwe take the outer unit normal ve
tors at the points Xn ∈ ∂Ξ, whi
h are (a.s.) well-de�ned for

n ≥ 1 due to the assumed 
onvexity of Ξ0. This example with marks given by the orientationof outer normals in random boundary points may o

ur rather spe
i�
. However, in this wayour asymptoti
 results may be used to 
onstru
t asymptoti
 tests for the �t of a Booleanmodel to a given dataset w.r.t. its rose of dire
tions. For instan
e, if the typi
al grain Ξ0is rotation-invariant (implying the isotropy of Ξ), then the Palm mark distribution P o
M ofthe stationary MPP XM =

∑
n≥1 δ(Xn,Mn) is the uniform distribution on the unit sphere

S
d−1 in R

d. We will now dis
uss assumptions ensuring that Condition β(δ) and (3.11) hold,whi
h are required for our CLT (3.2) and the 
onsistent estimation of the 
ovarian
es (3.3),respe
tively. Using Lemmas 5.1 and 5.2 in [13℄ (with improved 
onstants) we obtain that
β
(
AXM

(Ka),AXM
(Kc

a+b)
)

≤ β
(
AY(Ka+b/4),AY(Kc

a+3 b/4)
)

+ λ 2d+1
( (

1 +
4a

b

)d−1
+
(
3 +

4a

b

)d−1
)
E‖Ξ0‖d1I{‖Ξ0‖ ≥ b

4
}for a, b ≥ 1/2. A

ording to (2.10) with c0 = 4 we may thus de�ne the β-mixing rates β∗

XM
(r)and β∗∗

XM
(r) for r ≥ 2 to be

β∗
XM

(r)=β∗
Y(

r

2
) + c4 E‖Ξ0‖d1I{‖Ξ0‖ ≥ r

4
} ≥ sup

a∈[1/2,r/4]
β
(
AXM

(Ka),AXM
(Kc

a+r)
)
,

β∗∗
XM

(r)=2d−1 β∗∗
Y (

r

2
) + c4

4d−1

rd−1
E‖Ξ0‖d1I{‖Ξ0‖ ≥ r

4
} ≥ sup

a≥r/4

β
(
AXM

(Ka),AXM
(Kc

a+r)
)

ad−1with c4 = λ 4d (1 + 2d−1) and rate fun
tions β∗
Y
(r), β∗∗

Y
(r) whi
h are de�ned in analogy to(2.10) for c0 = 4.It is easily seen that E‖Ξ0‖2d < ∞ and (A) : r2d−1β∗∗

Y
(r) −→

r→∞
0 imply r2d−1β∗∗

XM
(r) −→

r→∞
0.Moreover, (Bδ,p) : E‖Ξ0‖2d(p+δ)/δ < ∞ and (Cδ,p) :

∫∞
1 rd−1

(
β∗
Y
(r)
)δ/(2p+δ)

dr < ∞ ensure
∫∞
1 rd−1

(
β∗
XM

(r)
)δ/(2p+δ)

dr < ∞ for any p ≥ 0 and δ > 0. Further, the random intensitymeasure of X on Eo and thus also X(Eo) has moments of order q ≥ 1 if EY(Eo)
q < ∞ and

E‖Ξ0‖d < ∞. Now we are in a position to express Condition β(δ) and (3.11) by 
onditionson Ξ0 and Y.Lemma 5.2. For the above-de�ned stationary marked Cox pro
ess XM on the boundary ofthe germ-grain model Ξ generated by the PP Y and typi
al grain Ξ0, the assumptions ofTheorem 3.1 resp. Theorem 3.5 are satis�ed whenever, for some δ > 0,
EY(Eo)

2+δ < ∞ , (A) , (Bδ,1) , (Cδ,1) resp. EY(Eo)
4+δ < ∞ , (Bδ,2) , (Cδ,2) .Remark: If the stationary PP Y of germs is Poisson the 
onditions EY(Eo)

4+δ < ∞, (A)and (Cδ,2) are trivially satis�ed for any δ > 0. Thus, the assumptions on the marked Coxpro
ess XM in Lemma 5.2 
an be redu
ed to E‖Ξ0‖d+ε < ∞ resp. E‖Ξ0‖2d+ε < ∞ forarbitrarily small ε > 0. The fa
t that XM is m-dependent if ‖Ξ0‖ is bounded allows us toapply an approximation te
hnique with trun
ated grains as in [13℄, pp. 299�302, showingthat the 
onditions with ε = 0 su�
e. There exist substantial examples of β-mixing PPs(e.g. obtained by dependent thinning or 
lustering) whi
h are far from being m-dependent.An example is formed by the verti
es of Poisson-Voronoi 
ells yielding exponentially de
aying
β-mixing rates, see [9℄ for details. 18



Asymptoti
 goodness-of-�t tests for stationary point pro
esses6 Simulation studyOur aim was to �nd out whether the goodness-of-�t test for the Palm mark distributionsuggested by (3.8) is suitable for the dete
tion of anisotropy in Boolean models using dire
-tionally marked Cox pro
esses on their boundary as de�ned in Se
tion 5.3. This approa
hhas been applied to quality 
ontrol of tomographi
 re
onstru
tion algorithms, see [17℄. Su
halgorithms typi
ally introdu
e elongation artifa
ts of obje
ts when the input data su�ers froma missing wedge of proje
tion angles as typi
al for ele
tron tomography, see [18℄. The a

u-ra
y of data varies lo
ally with the geometry of the spe
imen and may be redu
ed by use ofappropriate re
onstru
tion algorithms, see [17℄. Our study is based on simulated 2D Booleanmodels formed by dis
s with gamma distributed radii (s
ale and shape parameter 4.5 and 9).These 
an be viewed as 2D sli
es of a 3D tomographi
 re
onstru
tion of a 
omplex foam-likematerial. Note that in the parallel beam geometry of ele
tron tomography 3D volumes aresta
ks of 2D re
onstru
tions generated from 1D proje
tion data, whi
h motivates this model
hoi
e in view of the appli
ation in [17℄. Anisotropy artifa
ts were simulated by transfor-mation of the dis
s into ellipsoids with axes parallel to the 
oordinate system. The majoraxis lengths were taken as multiples of the minor axis lengths for fa
tors ce ∈ {1.135, 1.325}.These values are typi
al elongation fa
tors of standard re
onstru
tion algorithms for missingwedges of 30◦ and 60◦, respe
tively, see [17℄. The intensity of the Poisson PP Y of germswas 
hosen as 1.5 · 10−4 and the intensity of the Poisson PP of boundary points as 0.1.Our asymptoti
 χ2-goodness-of-�t test is based on the test statisti
 Tk de�ned in (3.8). If
(P o

M )0 denotes a hypotheti
al Palm mark distribution, the hypothesis H0 : P o
M = (P o

M )0 isreje
ted, if Tk > χ2
ℓ,1−α, where α is the level of signi�
an
e, and χ2

ℓ,1−α denotes the (1 − α)-quantile of the χ2
ℓ -distribution. The bins C1, . . . , Cℓ ∈ B(S1+) for the χ2-goodness-of-�t testwere 
hosen as

Ci =

{
(cos θ, sin θ)T : θ ∈

[
(i− 1)

π

ℓ+ 1
, i

π

ℓ+ 1

)}
, i = 1, . . . , ℓ.We will dis
uss the 
ase ℓ = 8, where the bins had a width of 20◦. If (Σ̂)k in (3.8) is 
hosenas the L2-
onsistent estimator (σ̂ (3)

ij )k, the test will be referred to as `test for the typi
al markdistribution' (TMD). The 
onstru
tion of (σ̂ (3)
ij )k involves the sequen
e of bandwidths {bk}
hosen as

bk = c|Wk|−
3

4d for some 
onstant c > 0. (6.1)The 
onstant c is 
ru
ial for test performan
e, as dis
ussed below. The asymptoti
 behaviorof the tests was studied by 
onsidering squared observation windows 
orresponding to anexpe
ted number of 300, 600, . . . , 3000 points. Due to the 
orresponding side lengths of theobservation windows, (6.1) entailed 
ondition (wb) and hen
e (σ̂
(3)
ij )k was L2-
onsistent.The 
hoi
e of the bandwidths {bk} 
an be avoided if Σ is not estimated from the data tobe tested but in
orporated into H0. This means, we spe
ify an MPP as null model, su
hthat Σ0 is either theoreti
ally known or otherwise 
an be approximated by Monte-Carlosimulation. By means of the 
ombined null hypothesis H0 : P o

M = (P o
M )0 and Σ = Σ0, thetest exploits not only information on the distribution of the typi
al mark but additionally
onsiders asymptoti
 e�e
ts of spatial dependen
e. The test 
an thus be used to investigateif a given point pattern di�ers from the MPP null model w.r.t. the Palm mark distribution.We will therefore refer to it as `test for mark-oriented goodness of model �t' (MGM). By thestrong law of large numbers and the asymptoti
 unbiasedness of (σ̂ (2)

ij )k, a strongly 
onsistent19
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essesMonte-Carlo estimator for Σ0 in an MPP model XM is given by
Σ̂k,n =

1

n

n∑

ν=1

(σ̂
(2)
ij )k(X

(ν)
M ),where X

(1)
M , . . . ,X

(n)
M are independent realizations of XM . Thus, for large k and n the teststatisti
 Tk,n = Y⊤
k Σ̂

−1
k,nYk has an approximate χ2

ℓ distribution. The estimator Σ̂k,n 
analso be used to 
onstru
t a test for the typi
al mark distribution if independent repli
ationsof a point patterns are to be tested. In that 
ase X
(1)
M , . . . ,X

(n)
M are the repli
ations. Notethat for repli
ated point patterns, H0 does not in
orporate an assumption on Σ and hen
ethe 
orresponding test di�ers from the MGM test. The edge-
orre
ted unbiased estimator

(σ̂
(1)
ij )k was not used for the Monte-Carlo estimates in our simulation study, sin
e (σ̂ (2)

ij )k 
anbe 
omputed more e�
iently.All simulation results are based on 1000 model realizations per s
enario. Type II errors were
omputed for Boolean models with elongated grains, whi
h means that the mark distributionwas not uniform on S
1
+, whereas H0 : P o

M = U(S1+) hypothesized a uniform Palm markdistribution on S
1
+.The performan
e of the MGM test is visualized in Fig. 1. Empiri
al type I errors of the MGMtest were 
lose to the theoreti
al 5% level of signi�
an
e, at whi
h all tests were 
ondu
ted.Experiments with the TMD test revealed that the 
hoi
e of the bandwidth parameter c in(6.1) is 
riti
al for test performan
e (Fig. 1). Whereas large values of c result in a 
orre
tlevel of type I errors, they de
rease the power of the test. On the other hand, small values for

c lead to superior power but at least for small observation windows with a limited number ofpoints in
rease type I errors (Fig. 1).The relatively high errors of se
ond type for the small elongation fa
tor of ce = 1.135 are to beexpe
ted, sin
e the investigated stru
tures are only slightly anisotropi
. Nevertheless, for anexpe
ted number of 3000 points the MGM and TMD tests a
hieve a power of ∼ 60% and 40%,respe
tively, for ce = 1.135 and reje
t the null hypothesis with probabilty 1 for ce = 1.325.In summary, our simulation results indi
ate that the MGM test outperforms the TMD testespe
ially with respe
t to power. This result is plausible sin
e the additional informationin
orporated into H0 by spe
i�
ation of a model 
ovarian
e matrix 
an be expe
ted to resultin a more spe
i�
 test.A
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