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∗ Corresponding authorRunning title: Asymptoti goodness-of-�t tests for stationary point proessesAbstratWe onsider spatially homogeneous marked point patterns in an unboundedly expand-ing onvex sampling window. Our main objetive is to identify the distribution of thetypial mark by onstruting an asymptoti χ2-goodness-of-�t test. The orrespond-ing test statisti is based on a natural empirial version of the Palm mark distributionand a smoothed ovariane estimator whih turns out to be mean square onsistent.Our approah does not require independent marks and allows dependenes between themark �eld and the point pattern. Instead we impose a suitable β-mixing ondition onthe underlying stationary marked point proess whih an be heked for a number ofPoisson-based models and, in partiular, in the ase of geostatistial marking. In orderto study test performane, our test approah is applied to detet anisotropy of spei�Boolean models.Keywords : β-mixing point proess, empirial Palm mark distribution, re-dued fatorial moment measures, smoothed ovariane estimation, χ2-goodness-of-fit testMSC 2000 : Primary 62 G 10, 60 G 55; Seondary 60 F 05, 62 G 201 IntrodutionMarked point proesses (MPPs) are versatile models for the statistial analysis of datareorded at irregularly sattered loations. The simplest marking senario is independentmarking, where marks are given by a sequene of independent and identially distributedrandom elements, whih is also independent of the underlying point pattern of loations. Amore omplex lass of models onsiders a so-alled geostatistial marking, where the marksare determined by the values of a random �eld at the given loations. Although the random�eld usually exhibits intrinsi spatial orrelations, it is assumed to be independent of theloation point proess (PP). However, in many real datasets interations between loationsand marks our. Moreover, many marked point patterns arising in models from stohastigeometry suh as edge enters in (anisotropi) Voronoi-tessellations marked by orientation or1



Asymptoti goodness-of-�t tests for stationary point proessesPPs marked by nearest-neighbour distanes do not �t the setting of geostatistial marking.For reent asymptoti approahes to mark orrelation analysis based on mark variogram andmark ovariane funtions we refer to [7, 8, 10℄. The main goal of this paper is to investi-gate estimators of the Palm mark distribution P o
M in point patterns exhibiting orrelationsbetween di�erent marks as well as between marks and loations. The probability measure

P o
M an be interpreted as the distribution of the typial mark whih denotes the mark of arandomly hosen point of the pattern. For any mark set C we onsider the saled deviations

Zk(C) =
√

|Wk|
(
(P̂ o

M )k(C) − P o
M (C)

) as measure of the distane between P o
M and an em-pirial Palm mark distribution (P̂ o

M )k . In [12℄ we prove asymptoti normality of the saleddeviation vetor Zk = (Zk(C1), . . . , Zk(Cℓ))
T under appropriate strong mixing onditionswhen the observation window Wk with volume |Wk| grows unboundedly in all diretions as

k → ∞. In this study we in partiular disuss onsistent estimators for the ovariane matrixof the Gaussian limit of Zk. This enables us to onstrut asymptoti χ2-goodness-of-�t testsfor the Palm mark distribution P o
M . In a simulation study we apply our testing methodologyto the diretional analysis of random surfaes. For this purpose, we onsider Cox proesseson the boundary of Boolean models, mark them with the loal outer normal diretion andtest for a hypothetial diretional distribution. This allows to identify the rose of diretionsof the surfae proess assoiated with the Boolean model and represents an alternative toa Monte-Carlo test for the rose of diretion suggested in [1℄. The ourring MPPs di�erfundamentally from the setting of independent and geostatistial marking, for whih fun-tional entral limit theorems (CLTs) and orresponding tests have been derived in [14, 19℄.In general, they also do not represent m-dependent MPPs.Our paper is organized as follows. Setion 2 introdues basi notation and de�nitions. InSetion 3 we present our main results, whih are proved in Setion 4. In Setion 5 we brie�ydisuss some models satisfying the assumptions needed to prove our asymptoti results. Inthe �nal Setion 6 we study the performane of the proposed tests by simulations.2 Stationary marked point proessesAn MPP XM =

∑
n≥1 δ(Xn,Mn) is a random loally �nite ounting measure (see [4℄ Vol. II,Chapt. 9.1) on the Borel sets of Rd × M with atoms (Xn,Mn) , where the mark spae Mis Polish endowed with its Borel σ-algebra B(M). Formally, XM is a random element withvalues in the spae NM of loally �nite ounting measures ϕ(·) on B(Rd ×M), where NM isequipped with the σ-algebra generated by all sets of the form {ϕ ∈ NM : ϕ(B × C) = j} for

j ≥ 0, bounded B ∈ B(Rd) , and C ∈ B(M) . Throughout we assume that XM is simple, i.e.all loations Xn in R
d have multipliity 1 regardless whih mark they have. In what followswe only onsider stationary MPPs, whih means that

XM
D
=
∑

n≥1

δ(Xn−x,Mn) for all x ∈ R
d .We always assume that the intensity λ = EXM ([0, 1)d ×M) is �nite.2.1 Palm mark distributionFor a stationary MPP XM the probability measure P o

M on B(M) de�ned by
P o
M (C) =

1

λ
EXM ([0, 1)d × C) , C ∈ B(M) , (2.1)2



Asymptoti goodness-of-�t tests for stationary point proessesis alled the Palm mark distribution of XM . It an be interpreted as the onditional distri-bution of the mark of an atom of XM loated at the origin o . A random element M0 in Mwith distribution P o
M is alled typial mark of XM .De�nition 2.1. An inreasing sequene {Wk} of onvex and ompat sets in R

d suh that
̺(Wk) = sup{r > 0 : B(x, r) ⊂ Wk for some x ∈ Wk} → ∞ as k → ∞ is alled a onvexaveraging sequene (brie�y CAS). Here B(x, r) denotes the losed ball (w.r.t. the Eulideannorm ‖ · ‖) with midpoint at x ∈ R

d and radius r ≥ 0 .In the following | · | denotes d-dimensional Lebesgue measure and Hd−1 is the surfae ontent(i.e. (d− 1)-dimensional Hausdor� measure). Some results from onvex geometry applied toCAS {Wk} yield the following inequalities (see [2℄ and [14℄)
1

̺(Wk)
≤ Hd−1(∂Wk)

|Wk|
≤ d

̺(Wk)
and 1− |Wk ∩ (Wk − x)|

|Wk|
≤ d ‖x‖

̺(Wk)
(2.2)for ‖x‖ ≤ ̺(Wk) . Moreover, using the notation Hk = {z ∈ Z

d : |Ez ∩ Wk| > 0} , where
Ez = [−1/2, 1/2)d + z for z ∈ Z

d, we have shown in [11, 12℄ that for a CAS {Wk}

1 ≤ #Hk

|Wk|
≤ 1 +

|Wk +B(o,
√
d)| − |Wk|

|Wk|
−→
k→∞

1, (2.3)whih follows from Steiner's formula (see [20℄, p. 197), and (2.2). If XM is ergodi (for apreise de�nition see [4℄ Vol. II, p. 194), the individual ergodi theorem applied to MPPs (seeTheorem 12.2.IV and Corollary 12.2.V in [4℄ Vol. II) provides the P− a.s. limits
λ̂k =

XM (Wk ×M)

|Wk|
P−a.s.−→
k→∞

λ and (P̂ o
M )k(C) =

XM (Wk × C)

XM (Wk ×M)
P−a.s.−→
k→∞

P o
M (C) (2.4)for any C ∈ B(M) and an arbitrary CAS {Wk} .2.2 Fatorial moment measures and the ovariane measureFor any integer m ≥ 1, the mth fatorial moment measure α

(m)
XM

of the MPP XM is de�nedon B((Rd ×M)m) by
α
(m)
XM

( m
×
i=1

(Bi × Ci)
)
= E

∑6=

n1,...,nm≥1

m∏

i=1

(
1IBi

(Xni
)1ICi

(Mni
)
)
, (2.5)where the sum∑ 6=

n1,...,nm≥1 runs over all m-tuples of pairwise distint indies n1, . . . , nm ≥ 1for bounded Bi ∈ B(Rd) and Ci ∈ B(M) , i = 1, . . . ,m. We also need the mth fatorialmoment measure α
(m)
X

of the unmarked PP X(·) = XM ((·) ×M) =
∑

n≥1 δXn(·) de�ned on
B((Rd)m) by

α
(m)
X

(
m
×
i=1

Bi

)
= α

(m)
XM

( m
×
i=1

(Bi ×M)
) for bounded B1, . . . , Bm ∈ B(Rd) .The stationarity of XM implies that α(m)

X
is invariant under diagonal shifts, whih allows tode�ne themth redued fatorial moment measure α(m)

X,red uniquely determined by the followingdesintegration formula
α
(m)
X

(
m
×
i=1

Bi

)
= λ

∫

B1

α
(m)
X,red

( m
×
i=2

(Bi − x)
)
dx , see [4℄, Vol. II, Chapt. 12.1 . (2.6)3



Asymptoti goodness-of-�t tests for stationary point proessesThe weak orrelatedness between parts of X over distant Borel sets may be expressed by the(fatorial) ovariane measure γ
(2)
X

on B((Rd)2) de�ned by
γ
(2)
X

(
B1 ×B2

)
= α

(2)
X

(
B1 ×B2

)
− λ2 |B1| |B2| .The redued ovariane measure γ

(2)
X,red : B(Rd) → [−∞,∞] is in general a signed measurede�ned in analogy to (2.6) with γ
(2)
X

instead of α(2)
X
, whih shows that

γ
(2)
X,red(B) = α

(2)
X,red(B)− λ |B| for bounded B ∈ B(Rd) .2.3 m-point Palm mark distributionFor �xed mark sets C1, . . . , Cm ∈ B(M) , m ≥ 1 , the mth fatorial moment measure α

(m)
XM

ofthe MPP (see (2.5)) an be regarded as a measure on B((Rd)m), whih is absolutely ontinuousw.r.t. α(m)
X

. Thus, there exists a Radon-Nikodym density P x1,...,xm

M (C1×· · ·×Cm), suh thatfor any B1, . . . , Bm ∈ B(Rd),
α
(m)
XM

( m
×
i=1

(Bi × Ci)
)
=

∫
m
×
i=1

Bi

P x1,...,xm

M

(
m
×
i=1

Ci

)
α
(m)
X

(d(x1, . . . , xm)). (2.7)Sine the mark spae M is Polish, this Radon-Nikodym density an be extended to a regularonditional distribution of the mark vetor (M1, . . . ,Mm) given that the orresponding atoms
X1, . . . ,Xm are loated at pairwise distint points x1, . . . , xm, i.e.,

P x1,...,xm

M (C) = P((M1, . . . ,Mm) ∈ C | X1 = x1, . . . ,Xm = xm) for C ∈ B(Mm) .For details we refer to [16℄, p. 164. The above onditional distribution is alled the m-pointPalm mark distribution of XM . In ase of a stationary simple MPP XM , it is easily hekedthat the one-point Palm mark distribution oinides with the Palm mark distribution de�nedin (2.1).The next result is indispensable to study asymptoti properties of variane estimators forthe empirial mark distribution. It extends a formula stated in [15℄ for unmarked PPs to thease of marked PPs. The proof of this extension relies essentially on (2.7). Details are left tothe reader.Lemma 2.1. Let XM =
∑

n≥1 δ(Xn,Mn) be an MPP satisfying EXM (B × M)4 < ∞ for allbounded B ∈ B(Rd), and let f : R
d × R

d × M
2 7→ R

1 be a Borel-measurable funtion suhthat the seond moment of ∑ 6=
p,q≥1 | f(Xp,Xq,Mp,Mq) | exists. Then,
Var
( ∑ 6=

p,q≥1

f(Xp,Xq,Mp,Mq)
) (2.8)

=

∫

(Rd)2

∫

M
2

f(x1, x2, u1, u2)
[
f(x1, x2, u1, u2)+f(x2, x1, u2, u1)

]
P x1,x2

M

(
d(u1, u2)

)
α
(2)
X

(
d(x1, x2)

)

4



Asymptoti goodness-of-�t tests for stationary point proesses
+

∫

(Rd)3

∫

M
3

f(x1, x2, u1, u2)
[
f(x1, x3, u1, u3) + f(x3, x1, u3, u1)

+ f(x2, x3, u2, u3) + f(x3, x2, u3, u2)
]
P x1,x2,x3

M

(
d(u1, u2, u3)

)
α
(3)
X

(
d(x1, x2, x3)

)

+

∫

(Rd)4

∫

M
4

f(x1, x2, u1, u2)f(x3, x4, u3, u4)
[
P x1,x2,x3,x4

M

(
d(u1, u2, u3, u4)

)
α
(4)
X

(
d(x1, x2, x3, x4)

)

− P x1,x2

M

(
d(u1, u2)

)
P x3,x4

M

(
d(u3, u4)

)
α
(2)
X

(
d(x1, x2)

)
α
(2)
X

(
d(x3, x4)

)]
.2.4 β-mixing oe�ient and ovariane inequalityFor any B ∈ B(Rd), let AXM

(B) denote the sub-σ-algebra of A generated by the restritionof the MPP XM to the set B×M. For any B,B′ ∈ B(Rd), a natural measure of dependenebetween AXM
(B) and AXM

(B′) an be formulated in terms of the β-mixing (or absoluteregularity, respetively weak Bernoulli) oe�ient
β
(
AXM

(B),AXM
(B′)

)
=

1

2
sup

{Ai},{A′
j}

∑

i,j

∣∣ P(Ai ∩A′
j) − P(Ai)P(A

′
j)
∣∣ , (2.9)where the supremum is taken over all �nite partitions {Ai} and {A′

j} of Ω suh that Ai ∈
AXM

(B) and A′
j ∈ AXM

(B′) for all i, j , see [5℄ or [3℄ for a detailed disussion of this andother mixing oe�ients. To quantify the degree of dependene of the MPP XM on disjointsets Ka = [−a, a]d and Kc
a+b = R

d \ Ka+b, where b ≥ 0, we introdue non-inreasing ratefuntions β∗
XM

, β∗∗
XM

: [12 ,∞) → [0,∞) depending on some onstant c0 ≥ 1 suh that
β
(
AXM

(Ka),AXM
(Kc

a+b)
)
≤





β∗
XM

(b) for 1
2 ≤ a ≤ b/c0 ,

ad−1 β∗∗
XM

(b) for 1
2 ≤ b/c0 ≤ a .

(2.10)A stationary MPP XM is alled β-mixing or absolutely regular, respetively weak Bernoulliif both β-mixing rates β∗
XM

(r) and β∗∗
XM

(r) tend to 0 as r → ∞. Note that any stationary
β-mixing MPP XM is mixing in the usual sense and thus also ergodi, see Lemma 12.3.II andProposition 12.3.III in [4℄ Vol. II, p. 206. Our proofs of the asymptoti results in Setion 3require at least polynomial deay of β∗

XM
(r) and β∗∗

XM
(r) expressed byCondition β(δ): Let the MPP XM satisfy (2.10) and EXM ( [0, 1]d ×M )2+δ < ∞ suh that

∫ ∞

1
rd−1

(
β∗
XM

(r)
)δ/(2+δ)

dr < ∞ and r2d−1 β∗∗
XM

(r) −→
r→∞

0 for some δ > 0 .A ondition of this type based on (2.9) and (2.10) has been �rst veri�ed for stationary(Poisson-) Voronoi tessellations in [9℄. It has proven adequate to derive CLTs via Bernstein'sbloking tehnique for spatial means related with these tessellations observed in expandingubi observation windows. The proof of the below stated Theorem 3.1, whih is given in [12℄,extends Bernstein's method to observation windows forming a CAS. The following ovarianebound in terms of the β-mixing oe�ient (2.9) emerged �rst in [21℄, see also [3℄.Lemma 2.2. Let Y and Y ′ denote the restritions of the MPP XM to B ×M and B′ ×Mfor some B,B′ ∈ B(Rd) , respetively. Furthermore, let Ỹ and Ỹ ′ be independent opies of5



Asymptoti goodness-of-�t tests for stationary point proesses
Y and Y ′, respetively. Then, for any NM ⊗NM-measurable funtion f : NM × NM → [0,∞)and, for any η > 0 ,

∣∣Ef(Y, Y ′)− Ef(Ỹ , Ỹ ′)
∣∣ ≤ 2β(AXM

(B),AXM
(B′))

η
1+η

× max
{(

Ef1+η(Y, Y ′)
) 1

1+η ,
(
Ef1+η(Ỹ , Ỹ ′)

) 1

1+η

}
. (2.11)If f is bounded, then (2.11) remains valid for η = ∞ .3 Results3.1 Central limit theoremWe onsider a sequene of set-indexed empirial proesses {Yk(C) , C ∈ B(M) } de�ned by

Yk(C) =
1√
|Wk|

∑

n≥1

1IWk
(Xn)

(
1IC(Mn)−P o

M (C)
)
=
√

|Wk| λ̂k

(
(P̂ o

M )k(C)−P o
M(C)

)
, (3.1)where {Wk} is a CAS of observation windows in R

d. We will �rst state a multivariate CLTfor the joint distribution of Yk(C1), . . . , Yk(Cℓ). For this, let ` D−→' denote onvergene indistribution and Nℓ(a,Σ) be an ℓ-dimensional Gaussian vetor with expetation (olumn)vetor a ∈ R
ℓ and ovariane matrix Σ = (σij)

ℓ
i,j=1.Theorem 3.1. Let XM be a stationary MPP with λ > 0 satisfying Condition β(δ). Then

Yk =
(
Yk(C1), . . . , Yk(Cℓ)

)⊤ D−→
k→∞

Nℓ(oℓ,Σ) for any C1, . . . , Cℓ ∈ B(M) , (3.2)where oℓ = (0, . . . , 0)⊤ and the asymptoti ovariane matrix Σ = (σij)
ℓ
i,j=1 is given by thelimits

σij = lim
k→∞

EYk(Ci)Yk(Cj). (3.3)This CLT, whih is proved in [12℄ in detail, an be reformulated for the empirial set-indexedproess {Zk(C), C ∈ B(M)}, where
Zk(C) = ( λ̂k )

−1Yk(C) =
√

|Wk|
(
(P̂ o

M )k(C)− P o
M (C)

)
.In other words, as re�nement of the ergodi theorem (2.4), we derive asymptoti normality ofa suitably saled deviation of the ratio-unbiased empirial Palm mark probabilities (P̂ o

M )k(C)from P o
M (C) de�ned by (2.1) for any C ∈ B(M) . Sine Condition β(δ) ensures the ergodiityof XM , the �rst limiting relation in (2.4) ombined with Slutsky's lemma yields the followingresult as a orollary of Theorem 3.1.Corollary 3.2. The onditions of Theorem 3.1 imply the CLT

Zk = (Zk(C1), . . . , Zk(Cℓ))
⊤ D−→

k→∞
Nℓ(oℓ, λ

−2 Σ) .

6



Asymptoti goodness-of-�t tests for stationary point proesses3.2 β-mixing and integrability onditionsIn this subsetion we give a ondition in terms of the mixing rate β∗
XM

(r) whih implies �nitetotal variation of the redued ovariane measure γ(2)
X,red and a ertain integrability ondition(3.5) whih expresses weak dependene between any two marks loated at far distant sites.Both of these onditions enable us to show the unbiasedness resp. asymptoti unbiasednessof two estimators for the asymptoti ovarianes (3.3). Note that the total variation measure

|γ(2)
X,red| of γ(2)X,red is de�ned as sum of the positive part γ(2)+

X,red and negative part γ(2)−
X,red of theJordan deomposition of γ(2)

X,red, i.e.,
γ
(2)
X,red = γ

(2)+
X,red − γ

(2)−
X,red and |γ(2)

X,red| = γ
(2)+
X,red + γ

(2)−
X,red ,where the positive measures γ(2)+

X,red and γ
(2)−
X,red are mutually singular, see [6℄, p. 87.Lemma 3.1. Let XM be a stationary MPP satisfying

EXM( [0, 1]d ×M )2+δ < ∞ and ∫ ∞

1
rd−1

(
β∗
XM

(r)
)δ/(2+δ)

dr < ∞ for some δ > 0with β-mixing rate β∗
XM

(r) de�ned in (2.10). Then
|γ(2)

X,red|(Rd) < ∞ (3.4)and
∫

Rd

∣∣∣P o,x
M (C1 × C2)− P o

M (C1)P
o
M (C2)

∣∣∣α(2)
X,red(dx) < ∞ for any C1, C2 ∈ B(M) . (3.5)3.3 Representation of the asymptoti ovariane matrixIn Theorem 3.1 we stated onditions for asymptoti normality of the random vetor Yk.Clearly, (2.1) and (3.1) immediately imply that EYk(C) = 0 for any C ∈ B(M). A represen-tation formula for the asymptoti ovariane matrix Σ is given in the following theorem.Theorem 3.3. Let XM be a stationary MPP satisfying (3.5) and let {Wk} be a CAS. Then,the limits in (3.3) exist and take the form

σij = λ
(
P o
M (Ci ∩ Cj)− P o

M (Ci)P
o
M (Cj)

)
+ λ

∫

Rd

(
P o,x
M (Ci ×Cj) (3.6)

− P o,x
M (Ci ×M)P o

M (Cj)− P o,x
M (Cj ×M)P o

M (Ci) + P o
M (Ci)P

o
M (Cj)

)
α
(2)
X,red(dx) .In partiular, if XM is marked independently, then

σij = λ
(
P o
M (Ci ∩Cj)− P o

M (Ci)P
o
M (Cj)

)
. (3.7)

7



Asymptoti goodness-of-�t tests for stationary point proesses3.4 Estimation of the asymptoti ovariane matrixIn Setion 6 we will exploit the normal onvergene (3.2) for statistial inferene of the typi-al mark distribution. More preisely, assuming that the asymptoti ovariane matrix Σ isinvertible, we onsider asymptoti χ2-goodness-of-�t tests, whih are based on the distribu-tional limit
Tk = Y⊤

k Σ̂
−1
k Yk

D−→
k→∞

χ2
ℓ , (3.8)whih is an immediate onsequene of (3.2) and Slutsky's lemma, provided that Σ̂k is aonsistent estimator for Σ. As in (3.1), we use the notation Yk =

(
Yk(C1), . . . , Yk(Cℓ)

)⊤,and the random variable χ2
ℓ is χ2-distributed with ℓ degrees of freedom. In the following wewill disuss several estimators for Σ. Our �rst observation is that the simple plug-in estimator

Σ̂
(0)
k =

(
Yk(Ci)Yk(Cj)

)ℓ
i,j=1

for Σ is useless, sine the determinant of Σ̂(0)
k vanishes. Insteadof Σ̂(0)

k we take the edge-orreted estimator Σ̂(1)
k =

(
(σ̂

(1)
ij )k

)ℓ
i,j=1

with
(σ̂

(1)
ij )k =

1

|Wk|
∑

p≥1

1IWk
(Xp)

(
1ICi∩Cj

(Mp)− P o
M (Ci)P

o
M (Cj)

) (3.9)
+

∑ 6=

p,q≥1

1IWk
(Xp)1IWk

(Xq)
(
1ICi

(Mp)− P o
M (Ci)

)(
1ICj

(Mq)− P o
M (Cj)

)

|(Wk −Xp) ∩ (Wk −Xq)|
.As an alternative, whih an be implemented in a more e�ient way, we neglet the edgeorretion and onsider the naive estimator Σ̂(2)

k =
(
(σ̂

(2)
ij )k

)ℓ
i,j=1

for Σ with
(σ̂

(2)
ij )k =

1

|Wk|
∑

p≥1

1IWk
(Xp)

(
1ICi∩Cj

(Mp)− P o
M (Ci)P

o
M (Cj)

)

+
1

|Wk|
∑ 6=

p,q≥1

1IWk
(Xp)1IWk

(Xq)
(
1ICi

(Mp)− P o
M (Ci)

) (
1ICj

(Mq)− P o
M (Cj)

)
.Theorem 3.4. Let XM be a stationary MPP satisfying (3.5) and let {Wk} be a CAS. Then

(σ̂
(1)
ij )k is an unbiased estimator, whereas (σ̂

(2)
ij )k is an asymptotially unbiased estimator for

σij , where i, j = 1, ..., ℓ .Remark: In general, neither (σ̂ (1)
ij )k nor (σ̂ (2)

ij )k are L2-onsistent estimators for σij , even ifstronger moment and mixing onditions are supposed.Aording to Lemma 3.1, the integrability ondition (3.5) in Theorems 3.3 and 3.4 an bereplaed by the stronger Condition β(δ). In order to obtain an L2-onsistent estimator, weintrodue a smoothed version of the unbiased estimator in (3.9), whih is based on somekernel funtion and a sequene of bandwidths depending on the CAS {Wk}.Condition (wb): Let w : R 7→ R be a non-negative, symmetri, Borel-measurable kernelfuntion satisfying w(x) −→ w(0) = 1 as x → 0 . In addition, assume that w(·) is boundedby mw < ∞ and vanishes outside B(o, rw) for some rw ∈ (0,∞). Further, assoiated with
w(·) and some given CAS {Wk}, let {bk} be a sequene of positive bandwidths suh that

̺(Wk)

2 d rw |Wk|1/d
≥ bk −→

k→∞
0 , bdk |Wk| −→

k→∞
∞ and b

3

2
d

k |Wk| −→
k→∞

0 . (3.10)8



Asymptoti goodness-of-�t tests for stationary point proessesTheorem 3.5. Let {Wk} be an arbitrary CAS and w(·) be a kernel funtion with an assoiatedsequene of bandwidths {bk} satisfying Condition (wb). If the stationary MPP XM satis�es
EXM ( [0, 1]d ×M )4+δ < ∞ and ∫ ∞

1
rd−1

(
β∗
XM

(r)
)δ/(4+δ)

dr < ∞ (3.11)for some δ > 0 with β-mixing rate β∗
XM

(r) de�ned in (2.10), then E
(
σij − (σ̂

(3)
ij )k

)2 −→
k→∞

0 ,where (σ̂
(3)
ij )k is a smoothed ovariane estimator de�ned by

(σ̂
(3)
ij )k =

1

|Wk|
∑

p≥1

1IWk
(Xp)

(
1ICi∩Cj

(Mp)− P o
M (Ci)P

o
M (Cj)

)

+
∑ 6=

p,q≥1

1IWk
(Xp) 1IWk

(Xq)
(
1ICi

(Mp)− P o
M (Ci)

)(
1ICj

(Mq)− P o
M (Cj)

)

|(Wk −Xp) ∩ (Wk −Xq)|
w
(‖Xq −Xp‖

bk|Wk|1/d
)
.Remark: The full strength of ondition (3.11) imposed on the β-mixing rate β∗

XM
(r) intro-dued in (2.10) is only needed to prove the onsisteny result of Theorem 3.5. In order toprove (3.4), (3.5), and Theorem 3.1 it su�es to take the somewhat smaller non-inreasingrate funtion

β∗
XM

(r) = β
(
AXM

(Ka),AXM
(Kc

a+r)
) for r ≥ a = 1/2 . (3.12)Moreover, as shown in [11℄, the assertions of Theorem 3.1 and Theorem 3.3 remain validif in Condition β(δ) the rate funtions β∗

XM
and β∗∗

XM
(de�ned by the β-mixing oe�ient(2.9)) are replaed by the orresponding rate funtions derived as in (2.10) from the smaller

α-mixing oe�ient
α
(
AXM

(B),AXM
(B′)

)
= sup{

∣∣P(A ∩A′)− P(A)P(A′)
∣∣ : A ∈ AXM

(B), A′ ∈ AXM
(B′)} ,whih results in a slightly weaker mixing ondition on XM , see [3℄ for a omparison of α- and

β-mixing. A ovariane inequality for the α-mixing ase similar to (2.11) an be found in [5℄,see [11℄ for an improved version. Sine for most of the MPP models the subtle di�erenesbetween α- and β-mixing are irrelevant we present our results under the uni�ed assumptionsof Condition β(δ) and (3.11) with β-mixing rate funtions as de�ned in (2.10).Conerning the shape of the observation windows {Wk}, the relations (2.2) and (2.3) areessential in the proofs of our results. However, there exist sequenes of not neesssarilyonvex sets {Wk} whih satisfy (2.2) and (2.3), see referenes in [11℄.4 Proofs4.1 Proof of Lemma 3.1By de�nition of the signed measures γ(2)
X

and γ
(2)
X,red in Setion 2.2 and using algebrai indu-tion, for any bounded Borel-measurable funtion g : (Rd)2 → R

1 we obtain the relation
λ

∫

Rd

∫

Rd

g(x, y) γ
(2)
X,red(dy) dx =

∫

(Rd)2

g(x, y − x) γ
(2)
X

(d(x, y)). (4.1)9



Asymptoti goodness-of-�t tests for stationary point proessesLet H+,H− be a Hahn deomposition of Rd for γ(2)
X,red, i.e.,

γ
(2)+
X,red(·) = γ

(2)
X,red(H

+ ∩ (·)) and γ
(2)−
X,red(·) = −γ

(2)
X,red(H

− ∩ (·)) .We now apply (4.1) for g(x, y) = 1IEo
(x) 1IH+∩Ez

(y) , where Ez = [−1
2 ,

1
2)

d + z for z ∈ Z
d .Combining this with the de�nition (2.6) of the (redued) seond fatorial moment measures

α
(2)
X

and α
(2)
X,red of the unmarked PP X =

∑
i≥1 δXi

and using the relation
γ
(2)
X

(A×B) = α
(2)
X

(A×B)− λ2 |A| |B| for all bounded A,B ∈ B(Rd) ,we obtain
λ γ

(2)
X,red(H

+ ∩ Ez) =

∫

(Rd)2

1IEo
(x)1IH+∩Ez

(y − x)α
(2)
X

(d(x, y)) − λ2 |Eo| |H+ ∩Ez|

= E

∑6=

i,j≥1

1IEo
(Xi)1IH+∩Ez

(Xj −Xi)− EX(Eo)EX(H+ ∩ Ez).Sine o /∈ H+ ∩ Ez for z ∈ Z
d with |z| ≥ 2 we may ontinue with

λ γ
(2)
X,red(H

+ ∩ Ez) = E

∑

i≥1

δXi
(Eo)X

(
(H+ ∩ Ez) +Xi

)
− EX(Eo)EX(H+ ∩ Ez)

= Ef(Y, Y ′
z)− Ef(Ỹ , Ỹ ′

z) for |z| ≥ 2 , (4.2)where
f(Y, Y ′

z) =
∑

i≥1

δXi
(Eo)X

(
(H+ ∩ Ez) +Xi

)
≤ X

(
Eo

)
X
(
Ez ⊕ Eo

) (4.3)with Y (·) = ∑i≥1 δXi

(
(·) ∩ Eo

) resp. Y ′
z(·) =

∑
j≥1 δXj

(
(·) ∩ (Ez ⊕ Eo)

) being restritionsof the stationary PP X =
∑

i≥1 δXi
to Eo resp. Ez ⊕ Eo = [−1, 1)d + z . Further, let Ỹ and

Ỹ ′
z denote opies of the PPs Y and Y ′

z , respetively, whih are assumed to be independentimplying that Ef(Ỹ , Ỹ ′
z ) = EX(Eo)EX(H+ ∩ Ez) . Sine Y is measurable w.r.t. AX(Eo),whereas Y ′

z isAX(R
d\[−(|z|−1), |z|−1]d)-measurable, we are in a position to apply Lemma 2.2with β

(
AX(Eo),AX(Rd\[−(|z|−1), |z|−1]d

)
≤ β∗

XM
(|z|− 3

2 ) for |z| ≥ (c0+3)/2 ≥ 2 . Hene,the estimate (2.11) together with (4.2) and (4.3) yields
∣∣λ γ(2)

X,red(H
+ ∩ Ez)

∣∣ ≤ 2
(
β∗
XM

(|z| − 3

2
)
) η

1+η
(
max

{
Ef1+η(Y, Y ′

z ) , Ef
1+η(Ỹ , Ỹ ′

z )
}) 1

1+η
,where the maximum term on the rhs has the �nite upper bound 2d(1+η)

EX(Eo)
2+2η for

δ = 2 η > 0 in aordane with our assumptions. This is seen from (4.3) using the Cauhy-Shwarz inequality and the stationarity of X giving
Ef1+η(Y, Y ′

z ) ≤
(
EX(Eo)

2+2η
EX([−1, 1]d)2+2η

)1/2
≤ 2d(1+η)

EX(Eo)
2+2ηand the same upper bound for Ef1+η(Ỹ , Ỹ ′

z) . By ombining all the above estimates with
λ γ

(2)
X,red(H

+ ∩ [−3
2 ,

3
2)

d) ≤ 3d EX(Eo)
2 we arrive at

λ γ
(2)
X,red(H

+) ≤ 3d EX(Eo)
2 + 2d+1

(
EX(Eo)

2+δ
) 2

2+δ
∑

z∈Zd:|z|≥(c0+3)/2

(
β∗
XM

(|z| − 3

2
)
) δ

2+δ
.10



Asymptoti goodness-of-�t tests for stationary point proessesBy the assumptions of Lemma 3.1 the moments and the series on the rhs are �nite and thesame bound an be derived for −λ γ
(2)
X,red(H

−) whih shows the validity of (3.4).The proof of (3.5) resembles that of (3.4). First we extend the identity (4.1) to the (redued)seond fatorial moment measure of the MPP XM de�ned by (2.5) and (2.7) for m = 2 whihreads as follows:
λ

∫

Rd

∫

Rd

g(x, y)P o,x
M (C1 × C2)α

(2)
X,red(dy)dx =

∫

(Rd)2

g(x, y − x)P x,y
M (C1 × C2)α

(2)
X

(
d(x, y)

)

= E

∑6=

i,j≥1

g(Xi,Xj −Xi)1IC1
(Mi)1IC2

(Mj) .For the disjoint Borel sets G+ and G− de�ned by
G+(−) =

{
x ∈ R

d : P o,x
M (C1 × C2) ≥ (<)P o

M (C1)P
o
M (C2)

}we replae g(x, y) in the above relation by g±(x, y) = 1IEo
(x) 1IE±

z
(y) , where E±

z = G±∩Ez for
|z| ≥ 2 , and onsider the restrited MPPs Yo(·) = XM

(
(·)∩ (Eo ×C1)

), Y ′
z,±(·) = XM

(
(·)∩

((E±
z ⊕ Eo) × C2)

) and their opies Ỹo and Ỹ ′
z,± , whih are assumed to be stohastiallyindependent. Further, in analogy to (4.3), de�ne

f(Yo, Y
′
z,±) =

∑

i≥1

δ(Xi,Mi)(Eo ×C1)XM

(
(E±

z +Xi)× C2

)
≤ X

(
Eo

)
X
(
Ez ⊕ Eo

)
.It is rapidly seen that, for |z| ≥ 2 ,

Ef(Yo, Y
′
z,±) = λ

∫

E±
z

P o,x
M (C1 × C2)α

(2)
X,red(dx) and

Ef(Ỹo, Ỹ
′
z,±) = EXM(Eo × C1) EXM (E±

z × C2) = λ2 P o
M (C1)P

o
M (C2) |E±

z |and in the same way as in the foregoing proof we �nd that, for |z| ≥ (c0 + 3)/2 ,
|Ef(Yo, Y

′
z,±)− Ef(Ỹo, Ỹ

′
z,±) | ≤ 2d+1

(
EX(Eo)

2+δ
) 2

2+δ
(
β∗
XM

(|z| − 3

2
)
) δ

2+δ .Finally, the deomposition α
(2)
X,red(·) = γ

(2)
X,red(·) + λ | · | together with the previous estimateleads to

λ

∫

Ez

∣∣∣P o,x
M (C1 × C2)− P o

M (C1)P
o
M (C2)

∣∣∣α(2)
X,red(dx) = Ef(Yo, Y

′
z,+)− Ef(Ỹo, Ỹ

′
z,+)

−
(
Ef(Yo, Y

′
z,−)− Ef(Ỹo, Ỹ

′
z,−)

)
− λP o

M (C1)P
o
M (C2)

(
γ
(2)
X,red(E

+
z )− γ

(2)
X,red(E

−
z )
)

≤ 2d+2
(
EX(Eo)

2+δ
) 2

2+δ
(
β∗
XM

(|z| − 3

2
)
) δ

2+δ + λ |γ(2)
X,red|(Ez) for |z| ≥ (c0 + 3)/2 .Thus, the sum over all z ∈ Z

d is �nite in view of our assumptions and the above-provedrelation (3.4) whih ompletes the proof of Lemma 3.1. 211



Asymptoti goodness-of-�t tests for stationary point proesses4.2 Proof of Theorem 3.3It su�es to show (3.6), sine independent marks imply that P o,x
M (C1×C2) = P o

M (C1)P
o

M (C2)for x 6= o and any C1, C2 ∈ B(M) so that the integrand on the rhs of (3.6) disappears whihyields (3.7) for stationary independently MPPs. By the very de�nition of Yk(C) we obtainthat
Cov

(
Yk(Ci), Yk(Cj)

)
=

1

|Wk|
E

∑

p≥1

1IWk
(Xp)

(
1ICi

(Mp)− P o
M (Ci)

)(
1ICj

(Mp)− P o
M (Cj)

)

+
1

|Wk|
E

∑

p,q≥1

6=
1IWk

(Xp)1IWk
(Xq)

(
1ICi

(Mp)− P o
M (Ci)

)(
1ICj

(Mq)− P o
M (Cj)

)
. (4.4)Expanding the di�erene terms in the parentheses leads to eight expressions whih, up toonstant fators, take either the form

E

∑

p≥1

1IWk
(Xp)1IC(Mp) = λ|Wk|P o

M (C) or E

∑

p,q≥1

6=
1IWk

(Xp)1IWk
(Xq)1ICi

(Mp)1ICj
(Mq)

=

∫

(Rd)2

1IWk
(x)1IWk

(y)P o,y−x
M (Ci × Cj)α

(2)
X

(d(x, y)) = λ

∫

Rd

P o,y
M (Ci × Cj) γk(y)α

(2)
X,red(dy) ,where y 7→ γk(y) = |Wk ∩ (Wk− y)| denotes the set ovariane funtion of Wk . Summarizingall these terms gives

Cov
(
Yk(Ci), Yk(Cj)

)
= λ

(
P o
M (Ci ∩Cj)− P o

M (Ci)P
o
M (Cj)

)
+ λ

∫

Rd

γk(x)

|Wk|
(
P o,x
M (Ci × Cj)

− P o
M (Ci)P

o,x
M (Cj ×M)− P o

M (Cj)P
o,x
M (Ci ×M) + P o

M (Ci)P
o
M (Cj)

)
α
(2)
X,red(dx) .The integrand in the latter formula is dominated by the sum

∣∣P o,x
M (Ci × Cj)− P o

M (Ci)P
o
M (Cj)

∣∣+
∣∣P o,x

M (Cj ×M)− P o
M (Cj)

∣∣+
∣∣P o,x

M (Ci ×M)− P o
M (Ci)

∣∣ ,whih, by (3.5), is integrable w.r.t. α
(2)
X,red . Hene, (3.6) follows by (2.2) and Lebesgue'sdominated onvergene theorem. 24.3 Proof of Theorem 3.4We again expand the parentheses in the seond term of the estimator (σ̂

(1)
ij )k de�ned by(3.9) and express the expetations in terms of P o,y

M and α
(2)
X,red. Using the obvious relation

γk(y) =
∫
Rd 1IWk

(x)1IWk
(y + x) dx we �nd that, for any Ci, Cj ∈ B(M) ,

E

∑6=

p,q≥1

1IWk
(Xp)1IWk

(Xq)1ICi
(Mp)1ICj

(Mq)

|(Wk −Xp) ∩ (Wk −Xq)|
=

∫

(Rd)2

1IWk
(x)1IWk

(y)P x,y
M (Ci × Cj)

γk(y − x)
α
(2)
X

(d(x, y))

= λ

∫

Rd

P o,y
M (Ci × Cj)

γk(y)

∫

Rd

1IWk
(x)1IWk

(y + x) dxα
(2)
X,red(dy) = λ

∫

Rd

P o,y
M (Ci × Cj)α

(2)
X,red(dy) .12



Asymptoti goodness-of-�t tests for stationary point proessesAs in the proof of Theorem 3.3 after summarizing all terms we obtain that
E(σ̂

(1)
ij )k = λ

(
P o
M (Ci ∩Cj)− P o

M (Ci)P
o
M (Cj)

)
+ λ

∫

Rd

(
P o,x
M (Ci × Cj)

− P o,x
M (Ci ×M)P o

M (Cj)− P o,x
M (Cj ×M)P o

M (Ci) + P o
M (Ci)P

o
M (Cj)

)
α
(2)
X,red(dx) ,whih by omparison to (3.6) yields that E(σ̂

(1)
ij )k = σij . The asymptoti unbiasednessof (σ̂

(2)
ij )k is rapidly seen by (3.3) and the equality E(σ̂

(2)
ij )k = Cov

(
Yk(Ci), Yk(Cj)

)
=

EYk(Ci)Yk(Cj) , whih follows diretly from (4.4). 24.4 Proof of Theorem 3.5Sine E
(
σij − (σ̂

(3)
ij )k

)2
= Var(σ̂

(3)
ij )k +

(
σij − E(σ̂

(3)
ij )k

)2 we have to show that
E(σ̂

(3)
ij )k −→

k→∞
σij and Var(σ̂

(3)
ij )k −→

k→∞
0 . (4.5)For notational ease, we put m(u, v) =

(
1ICi

(u)−P o
M (Ci)

)(
1ICj

(v)−P o
M (Cj)

)
, ak = bk|Wk|1/d ,

rk(x, y) =
1IWk

(x)1IWk
(y)

γk(y − x)
w

(‖y − x‖
ak

) and τk =
∑

p,q≥1

6=
rk(Xp,Xq)m(Mp,Mq) .Hene, together with (2.4) and (3.1) we may rewrite (σ̂

(3)
ij )k as follows:

(σ̂
(3)
ij )k =

1√
|Wk|

Yk(Ci ∩ Cj) + λ̂k

(
P o
M (Ci ∩ Cj)− P o

M (Ci)P
o
M (Cj)

)
+ τk . (4.6)Using the de�nitions and relations (2.5) � (2.7) and ∫

Rd rk(x, y + x)dx = w
(
‖y‖/ak

) we �ndthat the expetation E τk an be expressed by
∫

(Rd×M)2

rk(x, y)m(u, v)α
(2)
XM

(
d(x, u, y, v)

)
= λ

∫

Rd

∫

M
2

m(u, v)P o,y
M

(
d(u, v)

)
w
(‖y‖
ak

)
α
(2)
X,red

(
dy
)
.The inner integral ∫

M2 m(u, v)P o,y
M

(
d(u, v)

) oinides with the integrand ourring in (3.6)and this term is integrable w.r.t. α(2)
X,red due to (3.5) whih in turn is a onsequene of (3.11)and Lemma 3.1. Hene, by Condition (wb) and the dominated onvergene theorem, wearrive at

E τk −→
k→∞

λ

∫

Rd

∫

M
2

m(u, v)P o,y
M

(
d(u, v)

)
α
(2)
X,red

(
dy
)
= σij −λ

(
P o
M (Ci ∩Cj)−P o

M (Ci)P
o
M (Cj)

)
.The de�nitions of λ̂k and Yk(·) by (2.4) and (3.1), respetively, reveal that E λ̂k = λ and

EYk(Ci ∩ Cj) = 0 . This ombined with the last limit and (4.6) proves the �rst relation of(4.5). To verify the seond part of (4.5) we apply the Minkowski inequality to the rhs of (4.6)whih yields the estimate 13



Asymptoti goodness-of-�t tests for stationary point proesses
(
Var (σ̂

(3)
ij )k

)1/2 ≤ |Wk|−1/2
(
Var Yk(Ci ∩ Cj)

)1/2
+
(
Var λ̂k

)1/2
+
(
Var τk

)1/2
.The �rst summand on the rhs tends to 0 as k → ∞ sine EYk(C)2 has a �nite limit for any

C ∈ B(M) as shown in Theorem 3.3 under ondition (3.5). The seond summand is easilyseen to disappear as k → ∞ if (3.4) is ful�lled, see e.g. [9℄, [14℄ or [15℄. Condition (3.11)implies both (3.4) and (3.5), see Lemma 3.1. Therefore, it remains to show that Var τk −→ 0as k → ∞ . For this purpose we employ the variane formula (2.8) stated in Lemma 2.1in the speial ase f(x, y, u, v) = rk(x, y)m(u, v) . In this way we get the deomposition
Var τk = I

(1)
k + I

(2)
k + I

(3)
k , where I

(1)
k , I(2)k and I

(3)
k denote the three multiple integrals onthe rhs of (2.8) with f(x, y, u, v) replaed by the produt rk(x, y)m(u, v) . We will see thatthe integrals I

(1)
k and I

(2)
k are easy to estimate only by using (3.4) and (3.5) while in orderto show that I(3)k tends to 0 as k → ∞, the full strength of the mixing ondition (3.11) mustbe exhausted. Among others we use repeatedly the estimate

1

γk(aky)
≤ 2

|Wk|
for y ∈ B(o, rw) , (4.7)whih follows diretly from (2.2) and the hoie of {bk} in (3.10). The de�nition of I(1)ktogether with (4.7) and α

(2)
X,red(dx) = γ

(2)
X,red(dx) + λdx yields

|I(1)k | ≤ 2

∫

(Rd)2

(
rk(x1, x2)

)2
α
(2)
X

(
d(x1, x2)

)
= 2λ

∫

Rd

1

γk(y)
w2
(‖y‖
ak

)
α
(2)
X,red(dy)

≤ 4λ

|Wk|
(
m2

w |γ(2)
X,red|(Rd) + λadk

∫

Rd

w2(‖y‖)dy
)
−→
k→∞

0 ,where the onvergene results from Condition (wb) and (3.11), whih implies |γ(2)
X,red|(Rd) <

∞ by virtue of Lemma 3.1. Analogously, using besides (4.7) and Condition (wb) the relations
w
(‖x‖

ak

)
≤ mw 1I[−⌈akrw⌉,⌈akrw⌉]d(x) and Wk ⊆

⋃

z∈Hk

Ezwith the notation introdued in Setion 2.1 we obtain that
|I(2)k | ≤ 4

∫

(Rd)3

rk(x1, x2) rk(x1, x3) α
(3)
X

(
d(x1, x2, x3)

)

≤ 16m2
w

|Wk|2
∑

z∈Hk

α
(3)
X

(
(Ez ⊕ [−⌈akrw⌉, ⌈akrw⌉]d)× (Ez ⊕ [−⌈akrw⌉, ⌈akrw⌉]d)× Ez

)
.Sine the ube Ez ⊕ [−⌈akrw⌉, ⌈akrw⌉]d deomposes into (2⌈akrw⌉ + 1)d disjoint unit ubesand α

(3)
X

(Ez1 × Ez2 × Ez3) ≤ E(X(Eo))
3 by Hölder's inequality, we may proeed with

|I(2)k | ≤ 16m2
w

|Wk|2
#Hk (2⌈akrw⌉+ 1)2d E(X(Eo))

3 ≤ c1 b2dk |Wk| −→
k→∞

0 .14



Asymptoti goodness-of-�t tests for stationary point proessesHere we have used the moment ondition in (3.11), (2.3), and the assumptions (3.10) imposedon the sequene {bk} .In order to prove that I(3)k vanishes as k → ∞, we �rst evaluate the inner integrals over theprodut m(u1, u2)m(u3, u4) with m(u, v) =
(
1ICi

(u) − P o
M (Ci)

)(
1ICj

(v) − P o
M (Cj)

) so that
I
(3)
k an be written as linear ombination of 16 integrals taking the form

Jk =

∫

(Rd)2

∫

(Rd)2

rk(x1, x2) rk(x3, x4)
[
P x1,x2,x3,x4

M (
4
×
r=1

Dr)α
(4)
X

(
d(x1, x2, x3, x4)

)

− P x1,x2

M (D1 ×D2)P
x3,x4

M (D3 ×D4)α
(2)
X

(
d(x1, x2)

)
α
(2)
X

(
d(x3, x4)

)]

=

∫
4

×
r=1

(Rd×Dr)
rk(x1, x2) rk(x3, x4)

(
α
(4)
XM

− α
(2)
XM

× α
(2)
XM

)(
d(x1, u1, ..., x4, u4)

)
,where the mark sets D1,D3 ∈ {Ci,M} and D2,D4 ∈ {Cj ,M} are �xed in what follows andthe signed measure α

(4)
XM

− α
(2)
XM

× α
(2)
XM

on B((Rd ×M)4)
(and its total variation measure

∣∣α(4)
XM

− α
(2)
XM

×α
(2)
XM

∣∣ ) ome into play by virtue of the de�nition (2.7) for the m-point Palmmark distribution in ase m = 2 and m = 4 .As |z1 − z2| > ⌈akrw⌉ (where, as above, |z| denotes the maximum norm of z ∈ Z
d) implies

‖x2 − x1‖ > akrw and thus rk(x1, x2) = 0 for all x1 ∈ Ez1 , x2 ∈ Ez2 , we dedue from (4.7)together with Condition (wb) and the abbreviation N(ak) = (1 + c0)(⌈akrw⌉+ 1) (where c0is from (2.10)) that
|Jk| ≤

4m2
w

|Wk|2

(
⌈N(ak)⌉∑

n=0

+
∑

n>⌈N(ak)⌉

)
∑

(z1,z2)∈Sk

∑

(z3,z4)∈Sk,n(z1)

Vz1,z2,z3,z4 , (4.8)where Sk = {(u, v) ∈ Hk×Hk : |u−v| ≤ ⌈akrw⌉} , Sk,n(z) = {(z1, z2) ∈ Sk : min
i=1,2

|zi−z| = n}and Vz1,z2,z3,z4 =
∣∣α(4)

XM
− α

(2)
XM

× α
(2)
XM

∣∣(×4
r=1(Ezr ×Dr)

) for any z1, ..., z4 ∈ Z
d .Obviously, for any �xed z ∈ Hk, at most 2 (⌈N(ak)⌉ + 1)d (2 ⌈N(ak)⌉ + 1)d pairs (z3, z4)belong to ⋃⌈N(ak)⌉

n=0 Sk,n(z) and the number of pairs (z1, z2) in Sk does not exeed the produt
#Hk (2 ⌈akrw⌉+ 1)d. Finally, remembering that ak = bk |Wk|1/d and using the evidentestimate Vz1,z2,z3,z4 ≤ 2 E(X(Eo))

4 together with (2.3) and Condition (wb), we arrive at
4m2

w

|Wk|2
∑

(z1,z2)∈Sk

⌈N(ak)⌉∑

n=0

∑

(z3,z4)∈Sk,n(z1)

Vz1,z2,z3,z4 ≤ c2
#Hk

|Wk|2
(
bdk |Wk|

)3 −→
k→∞

0 .It remains to estimate the sums on the rhs of (4.8) running over n > ⌈N(ak)⌉. For the signedmeasure α
(4)
XM

− α
(2)
XM

× α
(2)
XM

we onsider the Hahn deomposition H+,H− ∈ B((Rd ×M)4)yielding positive (negative) values on subsets of H+(H−). Reall that Ka = [−a, a]d. For�xed z1 ∈ Hk, z2 ∈ Hk ∩ (K⌈akrw⌉ + z1) and (z3, z4) ∈ Sk,n(z1), we now onsider thedeompsition Vz1,z2,z3,z4 = V +
z1,z2,z3,z4 + V −

z1,z2,z3,z4 with
V ±
z1,z2,z3,z4 = ±

(
α
(4)
XM

− α
(2)
XM

× α
(2)
XM

)(
H± ∩

4
×
r=1

(Ezr ×Dr)
)
.15



Asymptoti goodness-of-�t tests for stationary point proessesSine (z3, z4) ∈ Sk,n(z1) means that z3 ∈ Hk ∩
(
Kc

n + z1
), where Kc

a = R
d \ Ka , and

z4 ∈ Hk ∩
(
K⌈akrw⌉ + z3

)
∩
(
Kc

n + z1
), we de�ne MPPs Yk and Y ′

n as the restritions of XMto (K⌈akrw⌉+1/2 + z1)×M and (Kc
n−1/2 + z1)×M , respetively. Let furthermore Ỹk and Ỹ ′

nbe opies of Yk and Y ′
n whih are independent.Next we de�ne funtions f+(Yk, Y

′
n) and f−(Yk, Y

′
n) by

f±(Yk, Y
′
n) =

∑ 6=

p,q≥1

∑6=

s,t≥1

1I±(Xp,Mp,Xq,Mq,X
′
s,M

′
s,X

′
t,M

′
t) ,where 1I±(· · · ) denote the indiator funtions of the sets H± ∩

4
×
r=1

(Ezr ×Dr) so that we get
V ±
z1,z2,z3,z4 = Ef±(Yk, Y

′
n)− Ef±(Ỹk, Ỹ

′
n) for (z1, z2) ∈ Sk , (z3, z4) ∈ Sk,n(z1) .Hene, having in mind the stationarity of XM , we are in a position to apply the ovarianeinequality (2.11), whih provides for η > 0 and n > ⌈N(ak)⌉ that

V ±
z1,z2,z3,z4 ≤ 2

(
β
(
A(K⌈akrw⌉+1/2 + z1),A(Kc

n−1/2 + z1)
) ) η

1+η

×
(
E
( 2∏

r=1

XM (Ezr ×Dr)
)2+2η

E
( 4∏

r=3

XM (Ezr ×Dr)
)2+2η

) 1

2+2η

≤ 2
(
β∗
XM

(n − ⌈akrw⌉ − 1)
) η

1+η
(
EX(Eo)

4+4η
) 1

1+η . (4.9)In the last step we have used the Cauhy-Shwarz inequality and the de�nition of the β-mixing rate β∗
XM

together with onstant c0 in (2.10). Finally, setting η = δ/4 with δ > 0from (3.11) the estimate (4.9) enables us to derive the following bound of that part on therhs of (4.8) onneted with the series over n > ⌈N(ak)⌉:
c3

#Hk

|Wk|2
(2⌈akrw⌉+ 1)2d

∑

n>⌈N(ak)⌉

(
(2n + 1)d − (2n − 1)d

)(
β∗
XM

(n− ⌈akrw⌉ − 1)
) δ

4+δ .Combining ak = bk|Wk|1/d and (2.3) with ondition (3.11) and the hoie of {bk} in (3.10), itis easily heked that the latter expression and thus Jk tend to 0 as k → ∞ . This ompletesthe proof of Theorem 3.5. 25 Examples5.1 m-dependent marked point proessesA stationary MPP XM is alled m-dependent if, for any B,B′ ∈ B(Rd), the σ-algebras
AXM

(B) and AXM
(B′) are stohastially independent if inf{|x − y| : x ∈ B, y ∈ B′} > mor, equivalently,

β
(
AXM

(Ka),AXM
(Kc

a+b)
)
= 0 for b > m and a > 0 .In terms of the orresponding mixing rates this means that β∗

XM
(r) = β∗∗

XM
(r) = 0 if r >

m . For m-dependent MPPs XM , it is evident that Condition β(δ) in Theorem 3.1 is onlymeaningful for δ = 0 , that is, EX([0, 1]d)2 < ∞ . This ondition also implies (3.4) and (3.5).Likewise, the assumption (3.11) of Theorem 3.5 redues to EX([0, 1]d)4 < ∞ whih su�esto prove the L2-onsisteny of the empirial ovariane matrix Σ̂
(3)
k .16



Asymptoti goodness-of-�t tests for stationary point proesses5.2 Geostatistially marked point proessesLet X =
∑

n≥1 δXn be an unmarked simple PP on R
d and M = {M(x), x ∈ R

d} be ameasurable random �eld on R
d taking values in the Polish mark spaeM. Further assume that

X andM are stohastially independent over a ommon probability spae (Ω,A,P). An MPP
XM =

∑
n≥1 δ(Xn,Mn) with atoms Xn of X and marks Mn = M(Xn) is alled geostatistiallymarked. Equivalently, the random ounting measure XM ∈ NM an be represented by meansof the Borel sets M−1(C) = {x ∈ R

d : M(x) ∈ C} (if C ∈ B(M)) by
XM (B × C) = X(B ∩M−1(C)) for B × C ∈ B(Rd)× B(M) . (5.1)Obviously, if both the PP X and the mark �eld M are stationary then so is XM and vieversa. Furthermore, the m-dimensional distributions of M oinide with the m-point Palmmark distributions of XM . The following Lemma allows to estimate the β-mixing oe�ient(2.9) by the sum of the orresponding oe�ients of the PP X and the mark �eld M .Lemma 5.1. Let the MPP XM be de�ned by (5.1) with an unmarked PP and a random mark�eld M being stohastially independent of eah other. Then, for any B,B′ ∈ B(Rd) ,

β
(
AXM

(B),AXM
(B′)

)
≤ β

(
AX(B),AX(B

′)
)
+ β

(
AM(B),AM (B′)

)
, (5.2)where the σ-algebras AX(B),AX(B′) and AM (B),AM (B′) are generated by the restritionof X and M , respetively, to the sets B ,B′.To sketh a proof for (5.2), we regard the di�erenes ∆(Ai, A

′
j) = P(Ai ∩A′

j)− P(Ai)P(A
′
j)for two �nite partitions {Ai} and {A′

j} of Ω onsisting of events of the form
Ai =

k⋂

p=1

{XM (Bp × Cp) ∈ Γp,i} , A′
j =

ℓ⋂

q=1

{XM (B′
q × C ′

q) ∈ Γ′
q,j} with Γp,i,Γ

′
q,j ⊆ Z+ ,with pairwise disjoint bounded Borel sets B1, ..., Bk ⊆ B and B′

1, ..., B
′
ℓ ⊆ B′. This su�essine the supremum in (2.9) does not hange if the sets Ai and A′

j belong to semi-algebrasgenerating AXM
(B) and AXM

(B′), respetively. Making use of (5.1) ombined with theindependene assumption yields the identity
∆(Ai, A

′
j) =

∫

Ω

∫

Ω

(
PAX(B)⊗AX(B′) − PAX(B) × PAX(B′)

)
(Ai ∩A′

j) dPAM (B)⊗AM (B′)

+

∫

Ω

∫

Ω

PAX(B)(Ai)PAX(B′)(A
′
j) d
(
PAM (B)⊗AM (B′) − PAM (B) × PAM (B′)

)
,whih by (2.9) and the integral form of the total variation on�rms (5.2).5.3 Cox proesses on the boundary of germ-grain modelsLet Ξ =

⋃
n≥1(Ξn + Yn) be a germ-grain model, see e.g. [13℄, governed by some stationaryunmarked PP Y =

∑
n≥1 δYn in R

d with intensity λ > 0 and a sequene {Ξn}n≥1 of indepen-dent opies of some random onvex, ompat set Ξ0 (suh that P(o ∈ Ξ0) = 1) alled typialgrain. With the radius funtional ‖Ξ0‖ = sup{‖x‖ : x ∈ Ξ0}, the ondition E‖Ξ0‖d < ∞ensures that Ξ is a random losed set. The germ-grain model is alled Boolean model if the17



Asymptoti goodness-of-�t tests for stationary point proessesPP Y is Poisson. We onsider a marked Cox proess XM , where the unmarked Cox proess
X =

∑
n≥1 δXn is onentrated on the boundary ∂Ξ of Ξ with random intensity measurebeing proportional to the (d− 1)-dimensional Hausdor� measure Hd−1 on ∂Ξ. As marks Mnwe take the outer unit normal vetors at the points Xn ∈ ∂Ξ, whih are (a.s.) well-de�ned for

n ≥ 1 due to the assumed onvexity of Ξ0. This example with marks given by the orientationof outer normals in random boundary points may our rather spei�. However, in this wayour asymptoti results may be used to onstrut asymptoti tests for the �t of a Booleanmodel to a given dataset w.r.t. its rose of diretions. For instane, if the typial grain Ξ0is rotation-invariant (implying the isotropy of Ξ), then the Palm mark distribution P o
M ofthe stationary MPP XM =

∑
n≥1 δ(Xn,Mn) is the uniform distribution on the unit sphere

S
d−1 in R

d. We will now disuss assumptions ensuring that Condition β(δ) and (3.11) hold,whih are required for our CLT (3.2) and the onsistent estimation of the ovarianes (3.3),respetively. Using Lemmas 5.1 and 5.2 in [13℄ (with improved onstants) we obtain that
β
(
AXM

(Ka),AXM
(Kc

a+b)
)

≤ β
(
AY(Ka+b/4),AY(Kc

a+3 b/4)
)

+ λ 2d+1
( (

1 +
4a

b

)d−1
+
(
3 +

4a

b

)d−1
)
E‖Ξ0‖d1I{‖Ξ0‖ ≥ b

4
}for a, b ≥ 1/2. Aording to (2.10) with c0 = 4 we may thus de�ne the β-mixing rates β∗

XM
(r)and β∗∗

XM
(r) for r ≥ 2 to be

β∗
XM

(r)=β∗
Y(

r

2
) + c4 E‖Ξ0‖d1I{‖Ξ0‖ ≥ r

4
} ≥ sup

a∈[1/2,r/4]
β
(
AXM

(Ka),AXM
(Kc

a+r)
)
,

β∗∗
XM

(r)=2d−1 β∗∗
Y (

r

2
) + c4

4d−1

rd−1
E‖Ξ0‖d1I{‖Ξ0‖ ≥ r

4
} ≥ sup

a≥r/4

β
(
AXM

(Ka),AXM
(Kc

a+r)
)

ad−1with c4 = λ 4d (1 + 2d−1) and rate funtions β∗
Y
(r), β∗∗

Y
(r) whih are de�ned in analogy to(2.10) for c0 = 4.It is easily seen that E‖Ξ0‖2d < ∞ and (A) : r2d−1β∗∗

Y
(r) −→

r→∞
0 imply r2d−1β∗∗

XM
(r) −→

r→∞
0.Moreover, (Bδ,p) : E‖Ξ0‖2d(p+δ)/δ < ∞ and (Cδ,p) :

∫∞
1 rd−1

(
β∗
Y
(r)
)δ/(2p+δ)

dr < ∞ ensure
∫∞
1 rd−1

(
β∗
XM

(r)
)δ/(2p+δ)

dr < ∞ for any p ≥ 0 and δ > 0. Further, the random intensitymeasure of X on Eo and thus also X(Eo) has moments of order q ≥ 1 if EY(Eo)
q < ∞ and

E‖Ξ0‖d < ∞. Now we are in a position to express Condition β(δ) and (3.11) by onditionson Ξ0 and Y.Lemma 5.2. For the above-de�ned stationary marked Cox proess XM on the boundary ofthe germ-grain model Ξ generated by the PP Y and typial grain Ξ0, the assumptions ofTheorem 3.1 resp. Theorem 3.5 are satis�ed whenever, for some δ > 0,
EY(Eo)

2+δ < ∞ , (A) , (Bδ,1) , (Cδ,1) resp. EY(Eo)
4+δ < ∞ , (Bδ,2) , (Cδ,2) .Remark: If the stationary PP Y of germs is Poisson the onditions EY(Eo)

4+δ < ∞, (A)and (Cδ,2) are trivially satis�ed for any δ > 0. Thus, the assumptions on the marked Coxproess XM in Lemma 5.2 an be redued to E‖Ξ0‖d+ε < ∞ resp. E‖Ξ0‖2d+ε < ∞ forarbitrarily small ε > 0. The fat that XM is m-dependent if ‖Ξ0‖ is bounded allows us toapply an approximation tehnique with trunated grains as in [13℄, pp. 299�302, showingthat the onditions with ε = 0 su�e. There exist substantial examples of β-mixing PPs(e.g. obtained by dependent thinning or lustering) whih are far from being m-dependent.An example is formed by the verties of Poisson-Voronoi ells yielding exponentially deaying
β-mixing rates, see [9℄ for details. 18



Asymptoti goodness-of-�t tests for stationary point proesses6 Simulation studyOur aim was to �nd out whether the goodness-of-�t test for the Palm mark distributionsuggested by (3.8) is suitable for the detetion of anisotropy in Boolean models using dire-tionally marked Cox proesses on their boundary as de�ned in Setion 5.3. This approahhas been applied to quality ontrol of tomographi reonstrution algorithms, see [17℄. Suhalgorithms typially introdue elongation artifats of objets when the input data su�ers froma missing wedge of projetion angles as typial for eletron tomography, see [18℄. The au-ray of data varies loally with the geometry of the speimen and may be redued by use ofappropriate reonstrution algorithms, see [17℄. Our study is based on simulated 2D Booleanmodels formed by diss with gamma distributed radii (sale and shape parameter 4.5 and 9).These an be viewed as 2D slies of a 3D tomographi reonstrution of a omplex foam-likematerial. Note that in the parallel beam geometry of eletron tomography 3D volumes arestaks of 2D reonstrutions generated from 1D projetion data, whih motivates this modelhoie in view of the appliation in [17℄. Anisotropy artifats were simulated by transfor-mation of the diss into ellipsoids with axes parallel to the oordinate system. The majoraxis lengths were taken as multiples of the minor axis lengths for fators ce ∈ {1.135, 1.325}.These values are typial elongation fators of standard reonstrution algorithms for missingwedges of 30◦ and 60◦, respetively, see [17℄. The intensity of the Poisson PP Y of germswas hosen as 1.5 · 10−4 and the intensity of the Poisson PP of boundary points as 0.1.Our asymptoti χ2-goodness-of-�t test is based on the test statisti Tk de�ned in (3.8). If
(P o

M )0 denotes a hypothetial Palm mark distribution, the hypothesis H0 : P o
M = (P o

M )0 isrejeted, if Tk > χ2
ℓ,1−α, where α is the level of signi�ane, and χ2

ℓ,1−α denotes the (1 − α)-quantile of the χ2
ℓ -distribution. The bins C1, . . . , Cℓ ∈ B(S1+) for the χ2-goodness-of-�t testwere hosen as

Ci =

{
(cos θ, sin θ)T : θ ∈

[
(i− 1)

π

ℓ+ 1
, i

π

ℓ+ 1

)}
, i = 1, . . . , ℓ.We will disuss the ase ℓ = 8, where the bins had a width of 20◦. If (Σ̂)k in (3.8) is hosenas the L2-onsistent estimator (σ̂ (3)

ij )k, the test will be referred to as `test for the typial markdistribution' (TMD). The onstrution of (σ̂ (3)
ij )k involves the sequene of bandwidths {bk}hosen as

bk = c|Wk|−
3

4d for some onstant c > 0. (6.1)The onstant c is ruial for test performane, as disussed below. The asymptoti behaviorof the tests was studied by onsidering squared observation windows orresponding to anexpeted number of 300, 600, . . . , 3000 points. Due to the orresponding side lengths of theobservation windows, (6.1) entailed ondition (wb) and hene (σ̂
(3)
ij )k was L2-onsistent.The hoie of the bandwidths {bk} an be avoided if Σ is not estimated from the data tobe tested but inorporated into H0. This means, we speify an MPP as null model, suhthat Σ0 is either theoretially known or otherwise an be approximated by Monte-Carlosimulation. By means of the ombined null hypothesis H0 : P o

M = (P o
M )0 and Σ = Σ0, thetest exploits not only information on the distribution of the typial mark but additionallyonsiders asymptoti e�ets of spatial dependene. The test an thus be used to investigateif a given point pattern di�ers from the MPP null model w.r.t. the Palm mark distribution.We will therefore refer to it as `test for mark-oriented goodness of model �t' (MGM). By thestrong law of large numbers and the asymptoti unbiasedness of (σ̂ (2)

ij )k, a strongly onsistent19



Asymptoti goodness-of-�t tests for stationary point proessesMonte-Carlo estimator for Σ0 in an MPP model XM is given by
Σ̂k,n =

1

n

n∑

ν=1

(σ̂
(2)
ij )k(X

(ν)
M ),where X

(1)
M , . . . ,X

(n)
M are independent realizations of XM . Thus, for large k and n the teststatisti Tk,n = Y⊤
k Σ̂

−1
k,nYk has an approximate χ2

ℓ distribution. The estimator Σ̂k,n analso be used to onstrut a test for the typial mark distribution if independent repliationsof a point patterns are to be tested. In that ase X
(1)
M , . . . ,X

(n)
M are the repliations. Notethat for repliated point patterns, H0 does not inorporate an assumption on Σ and henethe orresponding test di�ers from the MGM test. The edge-orreted unbiased estimator

(σ̂
(1)
ij )k was not used for the Monte-Carlo estimates in our simulation study, sine (σ̂ (2)

ij )k anbe omputed more e�iently.All simulation results are based on 1000 model realizations per senario. Type II errors wereomputed for Boolean models with elongated grains, whih means that the mark distributionwas not uniform on S
1
+, whereas H0 : P o

M = U(S1+) hypothesized a uniform Palm markdistribution on S
1
+.The performane of the MGM test is visualized in Fig. 1. Empirial type I errors of the MGMtest were lose to the theoretial 5% level of signi�ane, at whih all tests were onduted.Experiments with the TMD test revealed that the hoie of the bandwidth parameter c in(6.1) is ritial for test performane (Fig. 1). Whereas large values of c result in a orretlevel of type I errors, they derease the power of the test. On the other hand, small values for

c lead to superior power but at least for small observation windows with a limited number ofpoints inrease type I errors (Fig. 1).The relatively high errors of seond type for the small elongation fator of ce = 1.135 are to beexpeted, sine the investigated strutures are only slightly anisotropi. Nevertheless, for anexpeted number of 3000 points the MGM and TMD tests ahieve a power of ∼ 60% and 40%,respetively, for ce = 1.135 and rejet the null hypothesis with probabilty 1 for ce = 1.325.In summary, our simulation results indiate that the MGM test outperforms the TMD testespeially with respet to power. This result is plausible sine the additional informationinorporated into H0 by spei�ation of a model ovariane matrix an be expeted to resultin a more spei� test.AknowledgementsWe are grateful to the anonymous referees for their valuable suggestions to improve themanusript.Referenes[1℄ Bene², V., Hlawizková, M., Gokhale, A. and Vander Voort, G. (2001).Anisotropy estimation properties for mirostrutural models. Mater. Charat., 46 93�98.[2℄ Böhm, S., Heinrih, L. and Shmidt, V. (2004). Asymptoti properties of estimatorsfor the volume frations of jointly stationary random sets. Stat. Neerl., 58 388�406.[3℄ Bradley, R. (2007). An Introdution to Strong Mixing Conditions. Vol. 1, 2, 3,Kendrik Press, Heber City. 20
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