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Abstract. We are going to introduce the concept of stochastic 3D modeling of geometrically
complex (disordered) microstructures as a tool for virtual materials testing, including applica-
tions to battery electrodes as well as to electrodes of fuel cells, and solar cells. Using stochastic
3D models, one can generate a large variety of stochastically simulated micrsotructures with
little computational effort. These virtual microstructures can be used as data basis to elucidate
microstructure-property relationships. In this way, for example, effective conductivity can be
expressed by microstructural characteristics such as volume fraction, tortuosity (windedness of
transport paths) and costrictivity (bottleneck criterion) of the considered material phase. In an-
other recent simulation study, we analysed more than 8000 virtual microstructures for various
microstructural scenarios. Using data mining techniques like artificial neural networks and
random forests, we were able to accurately predict effective conductivities given microstructure
properties like volume fraction, tortuosity and constrictivity.

1



Matthias Neumann and Volker Schmidt

1 INTRODUCTION

In many applications the functionality of materials strongly depends on their - mostly amor-
phous - microstructure. This is the case for, e.g. anodes in lithium-ion (Li-ion) batteries, which
are a key technology for electric vehicles. The microstructure of these electrodes, consisting
mainly of graphite particles and pores, strongly influences both, the transport of ions and elec-
trons as well as degradation processes within the electrode, which are in turn important for the
performance and lifetime of the battery. For microstructure effects in Li-ion batteries, see e.g.
[1] and the references therein. Porous microstructures appear also in electrodes of solid oxide
fuel cells (SOFC), a technology for electricity generation, which is more efficient, more reliable
and has less environmental impact compared to conventional energy generation. Like in Li-ion
batteries the porous microstructures in SOFC are of high relevance for the performance of these
fuel cells as well as for their degradation processes. See e.g. [2] for the microstructure influence
in SOFC electrodes where the solid phase consists of nickel (Ni) and yttria-stabilized zirconia
(YSZ).

Due to this microstructural influence on the functionality of Li-ion batteries and SOFC, two
issues have to be clarified in order to improve the functionality of these materials. At first, it is
important to understand how the microstructure of the electrode is quantitatively related to the
corresponding effective properties. The second issue is how the production parameters of the
electrodes influence the microstructure.

The progress in tomographic 3D imaging during the last decades has enabled detailed mi-
crostructure analysis, see [3] for a methodological overview. For microstructure analysis in the
context of Li-ion batteries and SOFC we refer, e.g., to [4] and [5]. By the aid of numerical
modeling it is possible to simulate the corresponding effective properties, like effective conduc-
tivity. Although this combination of image analysis and numerical simulation allows a direct
investigation of the relationship between well-defined microstructure characteristics and effec-
tive transport properties ([6] to [9]), it is strongly limited by the high costs of tomographic 3D
imaging.

An alternative approach which combines image analysis and numerical simulations with
stochastic 3D modeling of amorphous microstructures solves this problem. Tools from spatial
statistics and stochastic geometry, see e.g. [10], are used to develop parametric stochastic 3D
models for the generation of virtual but realistic microstructures on the basis of image data from
real microstructures. Once developed, a stochastic 3D model can be used to approach both of
the above mentioned issues. On the one hand, the parameters of the stochastic 3D model can
be varied to obtain virtual microstructures within a wide range of microstructure characteris-
tics. Then, numerical simulations can be applied to these virtual microstructures to simulate the
corresponding effective properties, such that the quantitative relationship between microstruc-
ture characteristics and effective properties can be efficiently investigated, see e.g. [11] and
[12]. On the other hand, in case that there is image data of microstructures available, where
the microstructures are produced under different conditions (e.g. under different sinter temper-
atures like in [13]), the parameters of the stochastic 3D model might be fit to microstructures
generated with different production parameters. An interpolation between model parameters
and production parameters allows to predict virtual microstructures for production parameters
where no 3D images are available. This was succesfully done for solar cells produced with
different spin coating velocities in [14]. Once the relationship between production parame-
ters and microstructure is understood one can find optimal production parameters by numerical
simulations of effective properties.
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Summarizing the above, stochastic 3D modeling can be used for investigating the relation-
ship between microstructure characteristics and effective properties as well as the relationship
between microstructure characteristics and production parameters. Where we test the func-
tionality of virtual microstructures by simulating their effective properties, the combination of
mathematical image analysis, stochastic 3D modeling of amorphous microstructures, and nu-
merical modeling of (spatially resolved) effective properties on complex geometries is, what we
refer to as virtual materials testing.

In the present paper we give an overview of stochastic 3D modeling of amorphous mi-
crostructures, which is essential for virtual materials testing. The paper is organized as follows.
Models for electrode materials in Li-ion batteries ([15], [16]), and for SOFC ([13], [17]) are
reviewed in Sections 2 and 3, respectively. In Section 4 we present a method to derive empirical
formulas that describe the quantitative relationship between microstructure characteristics and
effective conductivity in porous microstructures ([11], [12]). Section 5 concludes the paper.

2 LITHIUM-ION BATTERIES

In [16] a stochastic 3D model for the anode microstructure of so-called energy cells in Li-ion
batteries has been developed on the basis of experimental image data obtained by X-ray tomog-
raphy, see Figure 1. The anode mainly consists of a connected network of graphite particles and
pores between the particles.

Figure 1: 2D slice of experimental image data: Grayscale image obtained by X-ray tomography (left) has been
binarized (center). The application of the watershed transform has led to an extraction of single particles (right).2

2.1 Stochastic modeling of particle shapes

Since the shape of graphite particles observed in data is neither spherical nor ellipsoidal, the
single particles in the considered anode material have been modeled by the so-called spher-
ical harmonics expansion, see [15] and [18]. This approach is based on the fact that any
(star-shaped) particle in 3D is completely determined by its barycenter and a function r :
[0, π] × [0, 2π) −→ [0,∞), where r(θ, φ) denotes the elongation of the particle in direc-
tion (sin θ cosφ, sin θ sinφ, cos θ). By the aid of the so-called spherical harmonics functions
{Y m

l : [0, π]× [0, 2π) −→ [0,∞) : l,m ≥ 0}, the radius function r can be represented as

r(θ, φ) =
∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) ≈

L∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) (1)

2Reprinted from [16], Figure 1, with permission from Elsevier.
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for L ≥ 1 large enough and spherical harmonics coefficients cml ∈ R with 0 ≤ l and −l ≤ m ≤
l. For details and the definition of the spherical harmonics functions Y m

l the reader is referred
to [15].

Figure 2: 3D voxel representation of graphite particles (left) and their spherical harmonics representation (right).3

Equation (1) implies that each (star-shaped) particle is completely determined by its spheri-
cal harmonics coefficients and, therefore, the particle can be approximated by a finite number of
coefficients. In [15] a method for estimating L and the spherical harmonics coefficients cml ∈ R
with 0 ≤ l ≤ L and −l ≤ m ≤ l from image data is described. This method has been suc-
cessfully applied to experimental image data showing particles in battery anodes, see Figure 2.
The single particles have been extracted from grayscale images with well-known methods from
image analysis, to be more precise the watershed transform, see e.g. [19], has been used after
binarization of the grayscale images, see Figure 1.

Since the shape of each graphite particle is appropriately described by a finite number of real-
valued coefficients, the spherical harmonics representation leads to an enormous compression
of information contained in the original (grayscale) image data.

2.2 Stochastic modeling of anode microstructure

In total, a parametric representation of image data is obtained by the method proposed in [15].
The anode material is completely described by the barycenters of particles and their spherical
harmonics coefficients. In [16] statistical analysis of this parametric representation is the basis
for stochastic 3D modeling of anode microstructures in Li-ion batteries.

Figure 3: 2D sketch of the modeling idea: Random tesselation model determines the locations of particles (1).
Connections between particles have been modeled by a random graph (2). Particle shapes have been modeled
using spherical harmonics (3). Connected particle system before (4) and after morphological closing (5).4

3Reprinted from [15], Figure 11, with permission from Elsevier.
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The model idea, sketched in Figure 3, is the following. At first the locations, at which the
single particles are placed, have been modeled by a random Laguerre tessellation, see [20].
That is to say that the 3D space is partitioned into polytopes, the size distribution of which
can be controlled by model parameters. In a second step, connections between single particles
have been modeled by a completely connected random graph, i.e., edges are put between neigh-
boring polytopes according to a certain probabilistic rule. Within each polytope a particle is
placed using spherical harmonics, such that particles overlap if they are connected by an edge
in the random graph. This graph model ensures that the modeled particle system is completely
connected. Finally, morphological closing is applied to the particle system in order to smooth
the sharp edges at the contacts between particles. Note that the volume fraction of the particle
system can be adjusted by model parameters, which have been fitted to experimental image
data.

Besides a visual comparison between virtual microstructures generated by the fitted model
and experimental image data, see Figure 4, an extensive quantitative validation regarding cer-
tain microstructure characteristics has been performed and discussed in [16]. Exemplarily, the
spherical contact distribution functions [10] of the particle phase, which are nearly identical for
virtual and experimental microstructures, are shown in Figure 4.

Figure 4: 2D slice of experimental image data from anode material (left) compared to a 2D slice of a virtual 3D
microstructure generated by the stochastic model (center). Spherical contact distribution functions computed for
experimental (red) and simulated (blue) microstructures are nearly identical (right).5

Thus, in [15] and [16] flexible modeling techniques have been developed for 3D microstruc-
tures in Li-ion batteries. In particular, a stochastic 3D model has been established which is able
to generate virtual microstructures that are statistically similar to experimental microstructures.
In a forthcoming paper, the model is further validated by numerical 3D electrochemical sim-
ulations, which are applied to experimental and virtual anodes [21]. Additionally, extensions
of the stochastic microstructure model, which overcome small differences in electrochemical
behaviour, are proposed. The model will be used for investigating the relationship between
microstructure characteristics and the functionality of Li-ion batteries, i.e. for virtual materials
testing.

3 SOLID OXIDE FUEL CELLS

In this section we summarize the modeling approaches proposed in [13] and [17]. While
in [13] a stochastic microstructure model has been fitted to three cathode materials produced

4Reprinted from [16], Figure 2, with permission from Elsevier.
5Reprinted from [16], Figures 10 and 11, with permission from Elsevier.
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with different sinter temperatures, the model in [17] is able to generate virtual, but realistic
three-phase microstructures, where all three phases are completely connected.

3.1 Stochastic 3D modeling of La0.6Sr0.4CoO3−δ cathodes

The considered La0.6Sr0.4CoO3−δ(LSC) cathodes consist of sintered spherical LSC particles,
which form a connected particle system, and pores, see Figure 6. Thus the microstructure has
been modeled by a completely connected union of slightly overlapping spheres. To begin with,
a structural segmentation of the binarized image data, obtained by FIB-SEM tomography, has
been performed to represent the LSC phase by a union of overlapping spheres. For this purpose,
tools from image analysis like the watershed algorithm [19] and the Hough transform [22] are
used.

Figure 5: Modeling idea for the midpoints of the sphere system sketched in 2D: Non-overlapping large spheres are
randomly distributed (1), where pore former (red circles) is modeled in the remaining space (2). Cluster centers of
small spheres (3) determine regions (4) in which the midpoints of small spheres are distributed (5).

Like in the case of battery anodes considered in Section 2, this kind of structural segmen-
tation can be understood as a compression of image data, since the microstructure has been
appropriately represented by the midpoints and radii of the spheres. In a second step a model
for random sphere systems, a so-called germ-grain model [10], is developed which generates
sphere systems that are similar to those extracted from image data.

Figure 6: 3D images of real (top) and virtual microstructures (bottom). The structures correspond to different
sinter temperatures (from left to right: 750◦C, 850◦C, 950◦C).6
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The modeling of sphere midpoints takes into account that small particles are accumulated
around large spheres and that large void regions occur due to pore former. The sphere midpoints
have been modeled in three steps using random point processes, see e.g. [10]. At first large
spheres are distributed completely at random under the condition that they do not overlap each
other. Then, the void regions are determined according to a Boolean model [23] with spherical
grains in the remaining space. Finally the midpoints of small spheres are clustered around the
large spheres, see Figure 5. The radii of the small spheres are determined such that volume
fraction and connectivity properties of the sphere systems extracted from experimental image
data are statistically matched. Similar as in [16] a graph model is used for this purpose. For
further details we refer to [13].

The model has been fitted to three cathodes, produced with three different sinter temperatures
of 750◦C, 850◦C and 950◦C. Figure 6 shows a good visual accordance between image data and
virtual structures generated by the model. Furthermore, in [13] a quantitative comparison of
microstructure characteristics is performed and, in combination with numerical modeling, the
influence of different sinter temperatures on the electrode performance can be investigated. The
achieved goodness-of-fit shows a high flexibility of the model since all three microstructures
produced with different sinter temperatures can be described by one and the same model type,
although their microstructure characteristics differ strongly from each other.

3.2 Stochastic 3D modeling of three-phase Ni-YSZ anodes

In Sections 2.2 and 3.1 the material to be modeled consists of pores and mainly one single
(homogeneous) solid phase. In this section a model for three-phase microstructures with two
different solid (sub-) phases is described, which has been introduced in [17]. The model exhibits
the desirable property that it reproduces microstructures where all three phases are completely
connected. Three-phase microstructure modeling is important since not only the geometry of
single phases influences the functionality of Ni-YSZ anodes, but also the length and the geom-
etry of the triple phase boundary (TPB), at which chemical reactions take place.

Figure 7: Modeling idea: Three random point patterns (consisting of blue, gray and red points, respectively) are
distributed completely at random in the three-dimensional space (left). On each of these point patterns a geometric
graph is modeled (right).

A parametric random graph in the three-dimensional space has been modeled for each phase,
the vertices of which are distributed completely at random, see Figure 7. These graphs build
the backbones of the three phases, which are Voronoi tessellations with respect to the edge set

6Reprinted from [13], Figure 15, with permission from Elsevier.
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of the three graphs, i.e. each point x ∈ R3 is allocated to the phase the corresponding graph of
which is closer to x than the other two graphs.

By this approach the model is able to mimic connectivity properties of experimental image
data gained by FIB-tomography. It is even possible to simulate virtual microstructures with
arbitrary volume fractions and completely connected phases. A slight generalization of the
model has enabled a good fit to the experimental image data recently discussed in [24], see
Figure 8.

Figure 8: Image data of real (left) and virtual (right) Ni-YSZ anodes.

Simulations of the effective conductivity σeff for image data of real and virtual Ni-YSZ an-
odes by means of the finite element method (FEM) has shown that the model is close to the
real microstructures with respect to effective properties. Besides the development of new tech-
niques for stochastic 3D modeling of three-phase microstructures, the model proposed in [17]
is the basis of virtual materials testing for Ni-YSZ anodes. In a further work the area specific
resistance (ASR) of virtual Ni-YSZ microstructures with systematically varied microstructure
characteristics is simulated by a FE model for the anode reaction mechanism that takes into
account the specific microstructure characteristics, in particular the length of TPB. Performing
this kind of virtual materials testing we expect new insights about the microstructure influence
on the ASR.

4 VIRTUAL MATERIALS TESTING

In the previous sections stochastic 3D models have been presented, which are fitted to image
data of real microstructures in order to study the microstructure of various energy materials.
Moreover, it is of general interest to investigate quantitative relationships between microstruc-
ture characteristics and effective properties. In this section we focus on the so-called M -factor,
a normed measure for the microstructure influence on effective conductivity. It is defined by

M =
σeff

σ0

, (2)

where σ0 denotes the intrinsic conductivity of the material. Virtual materials testing contributes
to find an expression of the M -factor in terms of microstructure characteristics ([11], [12]).

Leaned on [25] the investigations in [11] and [12] assumed that volume fraction ε, tortuosity
τ measuring the length of (shortest) transport paths and a constriction factor β measuring the
strength of bottleneck effects are the most important characteristics for effective conductivity
in porous microstructures. For tortuosity, two different approaches, i.e., mean geometric and
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mean geodesic tortuosity denoted by τgeom and τgeod have been taken into account [12]. The
definition of β is based on the concept of continuous phase size distribution and a geometric
simulation of mercury intrusion porosimetry [26].

The idea was to develop a stochastic 3D model which is flexible regarding the microstructure
characteristics ε, τgeom, τgeod and β. Then, σeff , and thus theM -factor, of virtual microstructures
with different constellations for ε, τgeom, τgeod and β can be simulated by FEM. The generated
database has enabled an efficient investigation of the quantitative microstructure influence on
the M -factor.

Figure 9: Modeling idea: Vertices are distributed completely at random (left), before edges are put (center).
Random dilation of edges leads to virtual microstructures (right).7

The stochastic 3D model is based on an anisotropic random graph model, where the anisotropy
can be controlled by model parameters. The vertices of the graph are distributed completely at
random in the three-dimensional space. The edges of the graph are randomly dilated, where
the variance of the dilation radii influences the constrictivity of the microstructure strongly.
Note that the model graph is completely connected which ensures complete connectivity of the
conducting phase. The modeling idea is visualized in Figure 9.

By means of the stochastic 3D model 49 virtual microstructures for a wide range of ε, τgeom,
τgeod and β have been generated and the corresponding effective conductivites are simulated by
FEM. Using error-minimization the relationship

M = min

{
1, 2.03

ε1.57β0.72

τ 2
geom

}
(3)

has been established in [11] and further refined in [12] using the concept of geodesic tortuosity
instead of geometric tortuosity. This has led to

M =
ε1.15β0.37

τ 4.39
geod

. (4)

Both relationships fit better to the virtual microstructures than the existing ones from literature.
Furthermore, validation with experimental image data has been performed in [12], which shows
that Equation (4) derived by virtual materials testing is able to predict the M -factor of real
microstructures quite well by the microstructure characteristics ε, τgeod and β.

A forthcoming paper [27] is under preparation in which an extensive simulation study with
around 8000 virtual microstructures is performed. In this work methods from statistical learn-
ing [28] are combined with virtual materials testing for further improvement of quantitative
relationships between microstructure characteristics and the M -factor.

7Reprinted from [11], Figure 3, with permission from J. Wiley & Sons.
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5 CONCLUSION

In the present survey paper the concept of virtual materials testing is presented. It is a
method, which combines mathematical image analysis, stochastic 3D modeling of amorphous
microstructures, and numerical modeling of (spatially resolved) effective properties on complex
geometries for an efficient investigation of the relationship between microstructure characteris-
tics of functional materials and their effective properties.

The focus of the present paper is on stochastic 3D modeling of microstructures in Li-ion
batteries and SOFC. In Section 4 it is described how quantitative relationships between the
microstructure characteristics volume fraction, tortuosity, constrictivity on the one hand and
effective conductivity on the other hand can be established. Virtual materials testing is neither
restricted to Li-ion batteries and SOFC nor to effective conductivity. Virtual materials testing
opens the possibility to investigate amorphous structures of various further materials, e.g., in
polymers solar cells [12] or aluminium alloys [29] as well as various further effective properties
like e.g. exciton quenching efficiency [14] or mechanical stress-strain curves [30].
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