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Abstract. Advanced statistical image analysis workflows were developed to segment and

quantitatively evaluate 2D electron-backscatter diffraction (EBSD) maps and 3D synchrotron

X-ray computed tomography (SXCT) volumes of a polycrystalline Al2TiO5 refractory compos-

ite that contains microcracks and pores. Several size, shape, and further geometric descriptors

were determined for both the solid phase (Al2OTi5 grains) and the pore space. The resulting

pore-size distribution is distinctly bimodal: coarse pores (tens to hundreds of micrometers),

traced to incomplete powder compaction, coexist with fine pores generated during sintering.

The two pore populations appear to be correlated with grain growth and crystallographic ori-

entation in different ways. Finally, the descriptors obtained from the 2D EBSD and 3D SXCT

data sets are internally consistent but complementary, highlighting the value of characteriza-

tions based on EBSD and SXCT in the microstructural study of refractory ceramics.
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1. Introduction9

Ceramics are typically characterized as rigid, strong, yet brittle materials. Overcoming this10

brittleness could broaden their range of applications and enhance their performance in existing11

uses [1–3]. Flexible ceramics hold potential for various applications, including antivibration12

materials and refractory components with improved resistance to thermal shocks. Due to its13

high thermal expansion anisotropy, which induces microcracking and consequently flexibility [4],14

aluminum titanate (AT) has gained increasing attention as an engineering ceramic in various15

fields [5–9], making it a particularly intriguing material. According to Bayer [10], the thermal16

expansion coefficients along its crystallographic directions are αa = −2.9 × 10−6K−1, αb =17

10.3×10−6K−1 and αc = 20.1×10−6K−1. The inherent low strength of AT is attributed to this18

anisotropy, as it leads to significant microcracking during cooling from the sintering temperature.19

These microcracks are predominantly formed at the grain interfaces because of mismatches in the20

thermal expansion coefficients, causing differential shrinkage under temperature variations and21

generating stress at the grain boundaries. Consequently, microcrack behavior can be controlled22

by designing specific microstructures (e.g., grain size and shape) to generate a customized23

network of microcracks [11].24
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In this context, microstructural features need to be characterized in detail to reliably elucidate25

the relationship between microstructure and microcraking behavior. Typically, the characteri-26

zation of such microstructural features is performed by means of 2D microscopy (see, e.g., [12]).27

However, 2D image analysis provides limited information about morphological properties such28

as grain size and shape, while 3D image analysis enables more accurate determinations of such29

quantities. Specifically, synchrotron X-ray computed tomography (SXCT) offers unparalleled30

insights into the 3D internal structure of materials [13, 14]. A key advantage of SXCT over other31

imaging techniques is its non-destructive nature, making it particularly valuable for analyzing32

delicate samples that cannot be easily sectioned or polished for microscopy. Additionally, SXCT33

data can be quantitatively analyzed, virtually sliced in any direction, or digitally modified - such34

as colorcoding specific components — to enhance visualization of the 3D morphology.35

But, in addition to costs and availability of 3D imaging techniques, the segmentation of36

complex 3D morphologies presents a greater challenge compared to 2D image data. Provided37

there is sufficient resolution and contrast, neural networks have proven to be a powerful tool38

to achieve good phase segmentations [15–17]. However, object-wise segmentations still rely39

on classical approaches, such as marker-based watershed transform, which is typically prone40

to oversegmentation of objects which are not spherical. To avoid oversegmentation, various41

methods have been proposed for thinning markers, such as the approaches in [18, 19], which42

are based on the extension of regional minimums or the so-called morphological reconstruction43

[20, 21]. Still, these approaches fail for a broad range of object geometries within one data set,44

as seen in the present application, where strongly elongated grains over a wide range of grain45

sizes lead to a simultaneous over- and undersegmentation.46

In the present paper, in order to address this issue, a novel iterative segmentation approach47

is introduced for granular materials, utilizing the iterative application of morphological recon-48

struction. At each iteration, objects that fulfill a certain convexity criterion are accepted based49

on the assumption that the true grain shape is relatively convex. The resulting segmentation50

is then employed to determine several pore and grain descriptors, allowing a comprehensive51

statistical analysis. Specifically, bivariate probability densities are determined to establish cor-52

relations between size and shape descriptors of individual pores and grains, as well as further53

geometric descriptors of the materials considered in this paper.54

2. Materials and methods55

2.1. Polycrystalline aluminum titanate. Al2TiO5(AT) crystal grains exhibit pronounced56

anisotropy in their coefficient of thermal expansion (CTE). This feature makes AT-based mate-57

rials an excellent model system for designing simplified microcracked refractory ceramics [22].58

Simplifying refractory formulations to a limited number of components, compared to conven-59

tional industrial products, is particularly advantageous, as it allows a more precise analysis of60

key microstructural parameters (such as grain size, grain coarsening, and microcrack networks)61

and their influence on the thermomechanical properties, which are crucial for refractory mate-62

rials. To explore these aspects, polycrystalline AT-based materials were synthesized on site (at63

IRCER) using a fine atomized powder (TM-20P) supplied by Marusu Company (Japan) [23].64

The processing involved natural sintering in air under different thermal cycles, which varied65

in dwell time, followed by natural cooling to room temperature (see Table 1). These different66

thermal treatments produced two grades of material with different average grain sizes and vary-67

ing degrees of microstructural damage that intend to mimic the microstructure of itacolumite,68

a very specific natural mineral consisting mainly of quartz that exhibits great flexibility [24].69
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These grades are designated as AT-F (flexible), characterized by a moderate grain size, and70

AT-VF (very flexible), which exhibits large grains.71

Reference AT-F AT-VF

Temperature 1600◦C 1600◦C
Dwell time 2h 8h
Apparent density 3.21 g/cm3 3.16 g/cm3

Porosity 90.4% 89.1%
Total pores volume fraction 9.6% 10.9%
Open pores volume fraction 8.3% 9.1%
Microcracks volume fraction 3.7% 3.9%
Total porosity excluding microcracks 5.9% 7.0%

Table 1. Sintering conditions and resulting porosity for AT-F and AT-VF. The
values were taken from [12].

The results presented in Table 1, adapted from [12], indicate that AT-F samples exhibit a72

higher porosity of 90.4%, while AT-VF samples show a slightly lower porosity of 89.1%. In73

the case of AT-VF samples, this notable reduction in relative density is attributed to a more74

extensive network of microcracks, as evidenced by the SEM images (see Figure 4 in [12]). This75

interpretation is further supported by the evolution of the open pore volume fraction, which76

accounts for microcrack-induced voids (9.1%). 2D EBSD images (see Figure 6 in [12]) clearly77

reveal that as the dwell time increases from 2h (F) to 8h (VF), the proportion of small grains78

decreases while the larger grains become dominant. Under the sintering conditions correspond-79

ing to the AT-F sample (1600◦C for 2 hours), grain growth remains below 40 µm, while the80

sintering conditions of the AT-VF sample (1600◦C for 8 hours) result in strongly elongated81

grains with sizes ranging from 7 µm to 100 µm.82

The following sections focus on a statistical analysis of the AT-VF material, since the res-83

olution of SXCT (≈ 1.4 µm) is sufficient to capture even the smaller grains contained in this84

sample. In contrast, a significant proportion of the grains of the AT-F material are at or below85

the resolution of the SXCT reconstructions, making a detailed analysis unreliable. For the sake86

of brevity, we will therefore present the methodology and the results for the AT-VF sample87

only.88

2.2. Synchrotron X-ray computed tomography (SXCT). The SXCT experiments were89

carried out at the BAMline [25, 26] at BESSY II in Berlin, Germany. BAMline features hard90

X-rays, allowing for several applications [27]. The aluminum ceramics shown are recorded with91

a voxel size of 0.72 µm. During a 180◦ rotation, 2400 projections were recorded with an exposure92

time of 400 ms each. The field of view was 1.8× 1.5mm2. A monochromatic X-ray beam at an93

energy of 25 keV, set by the W/Si double multilayer monochromator, was employed, resulting94

in an energy resolution ∆ E/E of 3-4%. For image acquisition, a sCMOS PCO.edge 5.5 camera95

with 2560 × 2160 pixel was paired with a 60 µm thick CdWO4 scintillator screen. In total,96

each SXCT acquisition took approximately 16 minutes. The projection data was reconstructed97

with internal Python code based on the tomopy package [28] using grid-rec algorithm [29]. The98

derived 3D reconstruction was cropped so that only the AT material (that is, no air) is included99

within the analyzed volume. The resulting image is of size 686.88 µm× 730.08 µm× 223.92 µm100

(=̂954 × 1014 × 311 voxels with a voxel size of 0.72 µm). An exemplary 2D cross section of a101

3D reconstructed volume is displayed in Figure 1a.102
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Lastly, a stripe-shaped artifact (due to the multilayer monochromator installed at the BAM-103

line) was manually identified and removed. The missing data was reconstructed using an in-104

painting method, implemented in the scikit-image package [30].105

2.3. EBSD measurements and segmentation. The preparation of electron backscatter106

diffraction (EBSD) samples involved embedding the samples in a low-viscosity epoxy resin (IP,107

Presi France), which was made by mixing 5g of powder with 1ml of liquid hardener. This108

mixture is then poured over the samples placed in a plastic mold and placed in a vacuum109

chamber (approximately 1 kPa) for 1 hour. The impregnation efficiency depends on the ability110

of the rasin to penetrate into the open microcrack network. After curing for 12 hours in ambient111

air, a polishing step was performed on a Minitech 233 machine (Presi, France) following the112

protocol described in detail in [12].113

The AT materials were examined using an environmental scanning electron microscope (FEI114

ESEM Quanta 450 FEG) with an electron dispersive spectroscopy (EDS) detector for chemical115

analysis. The microscope was operated at an accelerating voltage of 15 kV. The samples were116

observed in low vacuum mode without any conductive coating. All micrographs presented in117

this paper were captured in backscattered electron (BSE) contrast.118

EBSD involved directing a focused electron beam at the surface of the sample and measuring119

the diffraction patterns generated as the electrons interact with the atomic lattice. This tech-120

nique was performed using a ZEISS SUPRA 40VP scanning electron microscope equipped with121

a field emission gun, operating at an accelerating voltage of 20 kV. The scan size (ranging from122

750 × 750 µm2 to 1800 × 1800 µm2) and the step size (from 0.5 to 1.0 µm) were customized to123

collect enough data for statistically representative analysis of each sample. This image acqui-124

sition procedure resulted in a pixel size of 1 µm. Data processing was performed utilizing the125

MTEX 5.11.2 [31] software package for MATLAB [32]. A grain was defined as consisting of at126

least 10 pixels with a misorientation less than 5◦ among them. Subsequently, to smooth the127

grains, a spline filter implemented in MTEX was applied. To interpolate missing EBSD data,128

grain-wise morphological closing [33] with a disk-shaped structuring element of radius r = 2129

pixels was performed. Note that in each step of this segmentation procedure, grains consisting130

of less than 10 pixels (=̂10 µm2) were removed.131

2.4. SXCT image segmentation. To statistically analyze the three phases – pore space,132

AT grains, and silica – individual pores and grains have to be identified. In Section 2.4.1 the133

segmentation of the three phases is pointed out, followed by an object-wise segmentation of134

individual pores and grains in Sections 2.4.2 and 2.4.3, respectively.135

2.4.1. Phase-wise segmentation. For the phase-wise segmentation of the reconstructed 3D136

SXCT volume I : W 7→ [0, 255], the commercial software Dragonfly 2024.1 [34] was utilized,137

where W = {1, . . . , 954} × {1, . . . , 1014} × {1, . . . , 311} denotes the three-dimensional sampling138

window. More precisely, a 3D U-net of depth 4, patch size of 32× 32× 32 and an initial filter139

count of 32, which utilizes batch normalization, was used. It was trained on several hand-labeled140

cutouts of I. The neural network segmented I into three binary images IP∗ , IG∗ , IS∗ : W 7→141

{0, 1}, corresponding to the pore phase, the AT phase, and the silica phase, respectively. The142

pore phase image IP∗ is given by143

IP∗(x) =

{
1, if x corresponds to the pore phase,

0, else,
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for each x ∈ W . The AT phase IG∗ and the silica phase IS∗ are defined analogously. An144

exemplary 2D cutout of the phase-wise segmentation is presented in Figure 1b, where the145

pore phase is indicated gray, the AT phase white and the silica phase black. An object-wise146

segmentation of this image is shown in Figure 1c, see also Sections 2.4.2 and 2.4.3 below.147

(a) (b) (c)

Figure 1. 2D cutout of the reconstructed SXCT tomogram (a), together with
its phase-wise (b) and object-wise (c) segmentation. Note that false colors are
utilized to identify different grains.

2.4.2. Pore-wise segmentation. To analyze the properties of individual pores, a pore-wise148

segmentation IP of the pore phase image IP∗ , defined in Section 2.4.1, is determined. Mathe-149

matically speaking, a mapping IP : W 7→ {0, . . . ,mIP} is computed, which is given by150

IP(x) =

{
i, if IP∗(x) = 1 and x corresponds to the i-th pore,

0, else,

for each x ∈ W , where mIP ∈ N = {1, 2, . . .} denotes the number of individual pores.151

For this, the Euclidean distance transformation DP : W 7→ [0,∞) from the pore phase to its152

complement is determined [35]. More precisely, each voxel is assigned with its distance to the153

closest voxel belonging to either the AT or the silica phase. Note that −DP can be considered154

as a topographical map, where the value of DP(x) represents the depth at position x ∈ W .155

Typically, local minima of −DP are utilized as markers for a marker-based watershed transform156

[36–38], where each local minimum serves as a marker for a single pore. Roughly speaking, in157

the watershed transform the basins of the topographical map −DP are filled with water, by an158

uniformly rising water level, where each of these basins represents an individual pore.159

However, a direct application of this procedure to the image data considered in the present160

paper would lead to severe oversegmentation, that is, the pore phase would be decomposed into161

too many and too small pores. A possible strategy to avoid oversegmentation is the so-called162

morphological reconstruction [20, 39], which thins out the markers of the watershed transform.163

More precisely, let −d1,−d2 be two neighboring local minima of −DP with d1 ≥ d2 ≥ 0.164

Furthermore, let w ⊂ W be the watershed ridge, which is the surface where the two basins165

corresponding to d1 and d2 meet. Let w̄ ∈ w denote the minimizer of the negative distance166

transform −DP on the watershed ridge w and −d̄ the minimum of −DP on w, that is, −d̄ =167

−DP(w̄) = minx∈w −DP(x). The two pores (i.e., basins) corresponding to d1 and d2 are merged168

if169

d̄

d2
> c (1)
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for some threshold c ∈ [0, 1]. In the literature, see e.g., [39], it is also common to define c = 1−α170

and reformulate Eq. (1) as minx∈w DP(x)/d2 ≥ 1− α for some α ∈ [0, 1].171

The procedure described above is visualized in Figure 2a. Note that a value of c = 1 cor-172

responds to the classical watershed transformation, without merging any pores, while c = 0173

corresponds to merging all pores, resulting in one (not necessarily connected) pore. Since the174

actual choice of c controls the degree of oversegmentation, we will refer to it as the refinement175

parameter c in the following. Note that a good choice of c is crucial for the goodness of the176

segmentation, as a too large value of c still leads to oversegmentation. However, too small177

c results in too few and too large pores, i.e. undersegmentation. For further information on178

morphological reconstruction, we refer to [39].179
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(b)

Figure 2. Scheme of the morphological reconstruction in 2D (a). The water-
shed ridge w is highlighted in red with d̄ = minx∈w −DP(x) = 42. The classical
watershed transform would lead to two regions, separated by the watershed
ride w. In contrast, the morphological reconstruction merges these regions if
c < 42/60 = 0.7. 2D cutout of a grain-wise segmentation (b), utilizing mor-
phological reconstruction with refinement parameter c = 0.75, which leads to
oversegmentation (blue circles) and undersegmentation (orange circles) simulta-
neously.

It turned out that a choice of c = 0.1 results in a reasonable pore-wise segmentation. After180

removing pores that exhibit a thickness of one voxel, as well as pores with a volume smaller than181

100 voxels (=̂37 µm3) the final segmentation IP consists of mIP = 477 pores. In the following,182

we will refer to a pore P ⊂ W as the set of all voxels x ∈ W for which IP(x) = i for some183

i ∈ {1, . . . ,mIP}, and to P as the family containing all pores P .184

2.4.3. Grain-wise segmentation. The grain-wise segmentation IG : W 7→ {0, . . . ,mIG} of the185

AT phase IG∗ introduced in Section 2.4.1 is defined as186

IG(x) =

{
i, if IG∗(x) = 1 and x corresponds to the i-th grain,

0, else,

for each x ∈ W , where mIG ∈ N denotes the number of individual grains.187

For this, each connected component of the AT phase with a volume smaller than 100 voxels188

(=̂37 µm3) was removed. Furthermore, each connected component of the pore or silica phase,189

which is completely surrounded by the AT phase, is assigned to the AT phase.190

Like in Section 2.4.2, a classical watershed transform would lead to oversegmentation. More-191

over, since the grains are very inhomogeneous in size and degree of elongation, morphological192
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reconstruction would lead, depending on the choice of the refinement parameter c, either to193

oversegmentation, undersegmentation, or even both phenomena simultaneously, see Figure 2b.194

Recall Eq. (1), which means that the degree of over- and undersegmentation of the mor-195

phological reconstruction can be controlled by the refinement parameter c. A small value of c196

corresponds to undersegmentation, e.g., the segmentation exhibits too large grains, whereas a197

large value of c results in oversegmentation, e.g., too small grains. Note that in this application,198

undersegmented grains tend to be non-convex, whereas oversegmented grains show more convex199

shapes (see Figure 2b, orange and blue circles, respectively). Furthermore, it is generally known200

that the true grain shape is typically convex (which can also be easily verified in Figure 1), as201

the equilibrium shape of a crystal results from minimizing its anisotropic surface free energy202

under the constraint of constant volume [40]. This motivates the iterative application of mor-203

phological reconstruction with increasing refinement parameters c0 < . . . < cn to generate a204

family of n grain-wise segmentations I
(c0)
G , . . . , I

(cn)
G for some integer n ∈ N, which exhibit an205

increasing number of grains with shrinking volumes and increasing convexity. Note that a grain206

G ⊂ W is classified as correctly segmented if it is sufficiently convex. To quantify the convexity207

of a grain G ⊂ W , we consider the ratio208

c(G) =
V (G)

V (q(G))
∈ [0, 1],

where V (·) denotes volume and q(G) the convex hull of G. For the two-dimensional case, the209

concept of convexity is illustrated in Figure 5a.210

Analogously to the pore-wise segmentation, let DG : W 7→ [0,∞) denote the Euclidean dis-211

tance transformation, which associates each voxel x ∈ W with its distance to the closest voxel212

belonging either to the pore or silica phase. The local minima of −DG are utilized to deter-213

mine the segmentation I
(ci)
G : W 7→ {0, . . . ,mci} for each i ∈ {0, . . . , n}, where mci ∈ N is the214

number of grains corresponding to the segmentation I
(ci)
G . Note that each segmentation I

(ci)
G215

is based on a watershed transform, followed by morphological reconstruction with refinement216

parameter ci ∈ [0, 1]. Furthermore, let G(ci) = {G(ci)
1 , . . . , G

(ci)
mci

} represent the family of grains217

corresponding to I
(ci)
G , where G

(ci)
j = {x ∈ W : I

(ci)
G (x) = j} for each j ∈ {1, . . . ,mci}.218

Furthermore, the following algorithm is used to successively create correctly segmented grains.219

Let G = ∅ be the initial family of correctly segmented grains. For increasing i ∈ {0, . . . , n− 1},220

the grain G
(ci)
j ∈ G(ci) for each j ∈ {1, . . . ,mci} is added to G if c(G

(ci)
j ) > tconv for some221

threshold tconv ∈ [0, 1] and G
(ci)
j ∩G = ∅ for all G ∈ G. This ensures that all grains G ∈ G are222

sufficiently convex and pairwise disjoint.223

This procedure is motivated by Eq. (1), which implies that for any refinement parameter224

ci < cℓ (and thus i < ℓ) each grain G
(ci)
j of the segmentation I

(ci)
G can be represented as union225

of several grains G
(cℓ)
k ∈ G(cℓ) of I

(cℓ)
G . Thus, for each j ∈ {1, . . . ,mci} we have226

G
(ci)
j =

⋃
k∈K

G
(cℓ)
k ,

for some index set K ⊂ N with cardinality #K ≥ 1. Furthermore, if G
(ci)
j breaks down into227

several smaller grains G
(cℓ)
k , that is, #K > 1, each G

(cℓ)
k is smaller and typically more convex228

than G
(ci)
j .229

To avoid too small grains, which would arise from further increasing the refinement param-230

eter, all grains G(cn) ∈ G(cn) corresponding to the last segmentation I
(cn)
G are added to G if231

G(ci) ∩G = ∅ for all G ∈ G. Note that this may add grains G to G, with convexity c(G) ≤ tconv.232
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Through experimentation and visual inspection it turned out that233

c0 = 0.5, c1 = 0.55, c2 = 0.6, . . . , c8 = 0.9

and tconv = 0.55 serve as a good choice of parameters to balance out over- and undersegmenta-234

tion of the present data set. Figure 3 displays the evolution of the set of correctly segmented235

grains G for different steps of the iterative morphological reconstruction.236

c0 = 0.50 c1 = 0.55 c2 = 0.60 c3 = 0.65 c4 = 0.70

c5 = 0.75 c6 = 0.80 c7 = 0.85 c8 = 0.90

Figure 3. Intermediate steps of the morphological reconstruction. In each step,
correctly segmented grains, which area added to G are highlighted in different
colors, whereas falsely segmented grains are shaded red. Grains that were al-
ready classified as correct in a previous step are indicated in blue shading. Note
that falsely segmented grains are by construction undersegmented, e.g., multiple
regions disconnected by background are labeled as a single grain.

Finally, after removing grains with a volume smaller than 10 voxels (=̂3.7 µm3), as well as237

grains with a thickness of only one voxel, the family of correctly segmented grains is denoted by238

G = {G1, . . . , GmIG
}, with mIG = 14 114. The grain-wise segmentation IG : W 7→ {0, . . . ,mIG}239

is given by240

IG(x) =

{
i, if x corresponds to grain Gi,

0, else,

for each x ∈ W , see Figure 1c. Furthermore, to get a visual impression of the segmented241

grains, 3D renderings of exemplary grains for different size classes are shown in Figure 4. Note242

that although the iterative segmentation approach stated above drastically reduces over- and243

undersegmentation, there still remain some segmentation errors, see e.g. the bottom row in244

Figure 4 for size classes of 70 µm, 30 µm and 15 µm, where two different grains are classified as245

one grain.246

2.5. Geometric descriptors. The segmentations IP and IG, derived in Sections 2.4.2 and247

2.4.3, allow the computation of various descriptors characterizing the size, shape, and spatial248

orientation of individual pores and grains. These descriptors reduce the complex voxelized 3D249

morphology to a single scalar number. In particular, this allows one to determine empirical250

probability distributions of these descriptors, which will be discussed in Section 3 below.251



STATISTICAL ANALYSIS OF GRAINS AND PORES WITHIN AT-CERAMICS 9

1

d3(G) ≈ 70µm d3(G) ≈ 30µm d3(G) ≈ 15µm d3(G) ≈ 5µm

g

Figure 4. 3D renderings of exemplary segmented grains G ∈ G with different
volume-equivalent diameter d3(G), which is formally introduced in Section 2.5.1
below. Note that the grains of all four size classes are scaled to appear visually
comparable. Although the iterative application of morphological reconstruction
drastically reduced the amount of over- and undersegmented grains, there still
remain some undersegmented (non-convex) grains, see the bottom row for the
size classes of 70 µm, 30 µm and 15 µm.

First, in Section 2.5.1 geometric descriptors characterizing the 3D morphology of individual252

pores and grains are introduced. Subsequently, in Section 2.5.2 more sophisticated geometric253

descriptors are considered that characterize the interaction between pores and grains. Finally, in254

Section 2.5.3, descriptors are defined to compare virtual 2D cross sections of grains, derived from255

3D SXCT images with those of the 2D EBSD measurements. This builds on a previous paper256

[12], where the material, which is subject of the present study, was already analyzed using 2D257

descriptors, derived from 2D EBSD measurements. These 2D descriptors from different imaging258

techniques are compared with each other in Section 3.5.259

2.5.1. Geometric 3D descriptors of individual pores and grains. In this section geo-260

metric descriptors are defined, which characterize the 3D morphology of pores and AT grains,261

derived trough the segmentation procedure considered in Sections 3.1 and 3.2, respectively.262

Note that the following descriptors are defined for some set of voxels G ⊂ W , which represents263

either a pore or an AT grain. For simplification, G will be called in the upcoming sections264

“grain”, even though it can also represent pores.265

Volume-equivalent diameter. The size of a grainG ⊂ W is captured by its volume-equivalent266

diameter d3(G), being the diameter of a ball with the same volume as G, that is,267

d3(G) =
3

√
6v3(G)

π
,

where v3(G) is the volume of G, which is approximated by the number of voxels assigned to G.268

Convexity. The convexity c3(G) ∈ [0, 1] of a grain G ⊂ W is defined as the quotient269

c3(G) =
v3(G)

v3(q(G))

of the volume v3(G) of G divided by the volume v3(q(G)) of its convex hull q(G).270
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Aspect ratio. The aspect ratio e3(G) of a grain G = {x1, . . . , xn} ⊂ W , consisting of n voxels271

for some n ∈ N, is determined analogously to the procedure considered in [41], that is, by272

computing the ratio of the lengths of the minor and major axes of a best-fitting ellipsoid, which273

is derived by a principal component analysis (PCA) [42]. More precisely, consider the voxels274

x1, . . . , xn ∈ W as point cloud in the 3-dimensional Euclidean space R3. By applying a PCA275

to this point cloud, the orthonormal principal directions a1, a2, a3 ∈ R3 of the fitted ellipsoid276

are derived. Note that a1 points in the direction of the major axis, a2 in the direction of the277

intermediate axis, and a3 in the direction of the minor axis of the fitted ellipsoid. The lengths278

corresponding to the axes of the fitted ellipsoid are denoted by ℓ1, ℓ2 and ℓ3, where it holds that279

ℓ3 ≤ ℓ2 ≤ ℓ1. Finally, the aspect ratio e3(G) of G is given by280

e3(G) =
ℓ3
ℓ1

∈ [0, 1].

Note that e3(G) = 1 implies that ℓ1 = ℓ2 = ℓ3, corresponding to a spherical best-fitting ellipsoid281

and, consequently, a spherical grain G. A decreasing value of e3(G) indicates more an elongated282

ellipsoid, but does not specify whether the shape is oblate (e.g. “discuss-shaped”) or prolate (e.g.283

“cigar-shaped”). A 2D visualization of two grains with similar volume-equivalent diameters, but284

different convexities and aspect ratios is shown in Figure 5a.285

26.17µm Equivalent diameter 25.58µm
0.96 Convexity 0.77
0.90 Aspect ratio 0.48

ℓ1

ℓ2

ℓ1

ℓ2

x

y
z

w

δ

W
∣∣
x,w,δ

P

αtan(G
′, P )

αsim(G,G′)

G

G′

(a) (b)

(c) (d)

AP(G) = 0.17

Figure 5. (a) Schematic 2D representations of two grains (gray) and their con-
vex hulls (blue), having similar volumes but different convexities and aspect
ratios. (b) Illustration of the sliding window approach and (c) orientation sim-
ilarity and tangentiality. (d) The proportional shared surface of a grain with a
pore, defined as the fraction of the grain’s surface area (magenta) that is shared
with a pore (yellow).
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Orientation similarity. The orientation similarity αsim(G,G′) ∈ [0, 1] refers to the similarity286

between the directions a1, a
′
1 ∈ R3 of the major axes of two grains G,G′ ⊂ W . It is given287

by αsim(G,G′) = |⟨a1, a′1⟩|, where ⟨a1, a′1⟩ denotes the dot product of a1 and a′1. Note that288

αsim(G,G′) = 1 corresponds to a parallel alignment, while αsim(G,G′) = 0 indicates that a1289

and a′1 are perpendicular. An illustration of this descriptor is given in Figure 5c.290

Sliding window approach. The geometric descriptors stated above are utilized in Section 3291

to determine (bivariate) kernel density estimates. Additionally, the volume-equivalent diameter292

and aspect ratio are used to analyze the directional behavior of grains, employing a sliding293

window approach. For that, let294

W
∣∣
x,w,δ

= W ∩ {w − δ/2, w + 1− δ/2, . . . , w + δ/2} × N× N (2)

denote the restricted window of thickness δ+1 ∈ N for an even integer δ ≥ 0 centered on w ∈ N295

along the x-axis. The concept of a restricted window is depicted in Figure 5b.296

Furthermore, let d3(W
∣∣
x,w,δ

) denote the collection of volume-equivalent diameters d3(G) of297

grains G ⊂ W , whose centroid ξ(G) ∈ R3 is located in the convex hull q(W
∣∣
x,w,δ

) of W
∣∣
x,w,δ

.298

Note that the centroid ξ(G) of a grain G is defined by component-wise averaging as ξ(G) =299

(x̄, ȳ, z̄), where x̄ is given by300

x̄ =
1

#G

∑
(x,y,z)∈G

x,

and ȳ and z̄ are determined analogously.301

Similarly, e3(W
∣∣
x,w,δ

) and c3(W
∣∣
x,w,δ

) denote the collections of aspect ratios e3(G) and con-302

vexities c3(G) of grains G ⊂ W , whose centroid ξ(G) is located in W
∣∣
x,w,δ

. In addition, the303

number of grains G, whose centroid ξ(G) is located within the convex hull of the restricted win-304

dow W
∣∣
x,w,δ

is denoted by N(W
∣∣
x,w,δ

). Finally, we consider the volume fraction εIG∗ (W
∣∣
x,w,δ

)305

of the AT phase in the restricted window W
∣∣
x,w,δ

, which is defined as306

εIG∗ (W
∣∣
x,w,δ

) =
#{x ∈ W

∣∣
x,w,δ

with IG∗(x) = 1}
#W

∣∣
x,w,δ

,

where IG∗ → {0, 1} denotes the binary image corresponding to the AT phase, see Section 2.4.1.307

The quantities introduced above are defined analogously with respect to the y- and z-axes.308

2.5.2. Relational descriptors of pore–grain phase. We now introduce more sophisticated309

geometric descriptors that characterize the interaction between pores and grains.310

Number of neighboring grains. For any r ≥ 0, let dilr(G) ⊂ R3 denote the dilation [33] of a311

grain G with a ball-shaped structuring element with radius r. Then, putting r = 1, the number312

of neighboring grains Nneigh(G) of G is given by the number of grains which intersect with the313

set dil1(P ), that is,314

Nneigh(G) = #{G ∈ G : G ∩ dil1(G) ̸= 0},

where G denotes the family of all (correctly segmented) grains G ⊂ W .315

Proportional shared surface. The proportional surface AP(G) ∈ [0, 1] that a grain G ∈ G316

shares with the family P of all pores P ⊂ W is given by317

AP(G) =
H2

(
∂G ∩ (∪P∈P∂P )

)
H2(∂G)

,
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where H2(·) denotes the 2-dimensional Hausdorff measure in R3, which is used here to quantify318

the surface area of interfaces. The quantity AP(G) is computed on voxelized image data using319

the algorithm proposed in [43]. A value of AP(G) = 1 indicates that G is completely surrounded320

by the pore phase, whereas AP(G) = 0 corresponds to no joint surface between G and the pore321

phase. A 2D visualization of the proportional shared surface of a grain is shown in Figure 5d.322

Distance to pore phase. The (minimum) distance distP(G) > 0 of a grain G ∈ G to the pore323

phase
⋃

P∈P P is given by324

distP(G) = min
x∈G,y∈

⋃
P∈P P

∥x− y∥,

where ∥ · ∥ denotes the Euclidean norm in R3.325

Tangentiality. Of particular interest is whether the grains arrange in certain patterns around326

the pores, that is, whether the grains align tangentially to the surface of the pores. This is327

equivalent to whether the major axes of the best-fitting ellipsoids of the grains are perpendicular328

to the normal vector of the pore surface. Since determining normals (or tangent planes) of329

voxelized objects is challenging, a practical substitute for the normal vector is the connection330

vector between the centroids ξ(P ), ξ(G) ∈ R3 of a pore P ∈ P and its neighboring grain G ∈ G.331

Then, the normalized vector vG,P ∈ R3, which points from ξ(G) towards ξ(P ) is given by332

vG,P =
ξ(G)− ξ(P )

∥ξ(G)− ξ(P )∥
,

and the tangentiality αtan(G,P ) ∈ [0, 1] of G with respect to P is defined as333

αtan(G,P ) = |⟨vG,P , a1⟩|,

where a1 is the direction of the major axis of the best-fitting ellipsoid of G. Note that the tan-334

gentiality αtan(G,P ) of G with respect to P measures the arrangement between the connection335

vector vG,P and the direction of the major axis a1 of G. A tangentiality of αtan(G,P ) = 0336

indicates a perpendicular arrangement of the connection vector vG,P and the direction of the337

major axis a1, suggesting a tangential arrangement of G with respect to the surface of the pore.338

On the other hand, a tangentiality of αtan(G,P ) = 1 indicates parallel alignment. A 2D sketch339

of the notion of tangentiality is shown in Figure 5c.340

2.5.3. Geometric 2D descriptors. The focus of this paper is on the statistical description of341

the 3D properties of pores and grains, observed in aluminum ceramics. However, in [12], the342

area-equivalent diameter (grain size) as well as the aspect ratio (shape factor) of the same sample343

were analyzed utilizing 2D EBSD images. In the following, we determine these quantities for344

2D cross sections, taken from segmented 3D SXCT image data, and compare them in Section345

3.5 with the results of [12].346

In accordance with the previously introduced geometric 3D descriptors, we define analogous347

descriptors for 2D cross sections, where the cross sections of pores and grains will be considered348

as two-dimensional objects. To keep the notation as simple as possible, we will use the same349

kind of symbols as we used until now. In particular, the sampling window still bears the notation350

W ⊂ N× N, and the grains are denoted by G ⊂ W .351

Area-equivalent diameter. The area-equivalent diameter d2(G) of a grain cross section G ⊂352

W is given by353

d2(G) =

√
4v2(G)

π
,
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where v2(G) denotes the area of G, which is approximated by the number of pixels assigned to354

the grain cross section G.355

Aspect ratio. Similarly to the definition of the three-dimensional aspect ratio introduced in356

Section 2.5.1, a grain cross section G = {x1, . . . , xn}, consisting of n pixels for some n ∈ N,357

is considered a point cloud of n points x1, . . . , xn in the two-dimensional Euclidean space R2.358

By applying a principal component analysis, the directions a1, a2 ∈ R2 of the major and minor359

axes of a best-fitting ellipse are derived. The lengths of the major and minor axes are denoted360

by ℓ1 and ℓ2, respectively. The aspect ratio e2(G) of a grain cross section G is then given by361

e2(G) = ℓ2/ℓ1, representing the ratio of the lengths of the minor and major axes.362

3. Results and discussion363

In this section, the probability densities of the geometric descriptors introduced in Section 2.5364

are determined for both the pores and the AT grains. Note that the morphology of individual365

pores and grains is based on the segmentation methods pointed out in Sections 2.4.2 and 2.4.3.366

To avoid edge effects, only pores and grains that are fully contained within the sampling window367

W are considered. Probability densities were computed using kernel density estimation, as368

implemented in [44], with bandwidth selection based on Scott’s rule [45].369

3.1. Statistical analysis of pores. Recall that in Section 2.5 several geometric descriptors370

were introduced to describe the size and shape of the pores. Figure 6a shows the probability371

density of the volume-equivalent diameter d3(P ) of the pores P ⊂ W , which exhibits a bimodal372

shape with peaks at approximately 5 µm and 29 µm.373
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Figure 6. Univariate probability density of the volume-equivalent pore diame-
ter d3(P ) (a), bivariate probability densities of pairs of geometric pore descriptors
(b)-(e), the volume fraction εIP∗ (W

∣∣
·,w,δ

) of the restricted window W
∣∣
·,w,δ

cen-

tered at height w ∈ {51, 52, . . . , } with thickness δ + 1 = 101, where the dotted
lines indicate the global volume fractions (f).

The bivariate probability densities of the volume-equivalent diameter d3(P ) and the aspect374

ratio e3(P ), as well as the volume-equivalent diameter d3(P ) and convexity c3(P ) are shown in375

Figures 6b and 6c, respectively. These densities suggest that larger pores tend to be less elon-376

gated and less convex, where the correlation between volume-equivalent diameter and convexity377

is a bit less pronounced, compared to the correlation between volume-equivalent diameter and378

aspect ratio. In essence, Figures 6b and 6c confirm the visual impression of Figure 6a, that the379
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pore phase consists of two populations of pores. One population contains small pores, which380

are strongly elongated and relatively convex, and the other population consists of larger pores,381

which are less convex and less elongated.382

Figure 6d shows the bivariate probability density of the lengths of the intermediate axis383

ℓ2(P ) and the minor axis ℓ3(P ) of pores. The diagonal line represents the angle bisectrix, which384

indicates pairs of equal values; e.g., points on this line correspond to pores where the lengths of385

intermediate and minor axes are the same. Therefore, Figure 6d suggests that, independently386

of the lengths of these axes, the intermediate and minor axes are approximately equal in length,387

which implies a prolate shape of the pores. Finally, Figure 6e shows the bivariate probability388

density of the number of neighbors and the volume-equivalent diameter. It indicates that, as389

expected, larger pores tend to have more neighboring grains than smaller ones.390

These findings can be rationalized through the sintering process. During powder mixing and391

compaction, imperfect particle packing leaves inter-agglomerate voids that emerge after sinter-392

ing as relatively large blunt pores [46]. When the compact is fired at 1500–1600◦C, densification393

first drives a general reduction of the free surface energy by shrinking porosity, then the grain394

boundary energy falls as the grains grow, and finally the grains elongate along their crystallo-395

graphic a-axis to further reduce the boundary area. This anisotropic growth confines residual396

voids, stretching them into highly prolate (“cigar-shaped”) intergranular pores, while the origi-397

nal compaction voids change only slightly because sluggish Al2TiO5 sintering kinetics limit their398

interaction with surrounding grains [47, 48]. The resulting bimodal pore size distribution (i.e.,399

the coarse, low-convexity pores inherited from compaction and the fine, elongated pores formed400

during sintering) is indicative of the combined thermodynamic forces of surface energy mini-401

mization and anisotropic grain growth, highlighting the fact that the sintering process employed402

still falls short of full densification.403

The results of the sliding window analysis of the volume fraction of the pore phase, using404

a restricted window W
∣∣
·,·,δ with a thickness of δ + 1 = 101 voxels, are presented in Figure6f.405

Shaded areas indicate the interval where the restricted window W
∣∣
·,·,δ is completely contained in406

the sampling window W . Outside this range, intersections with the sampling window W may407

introduce edge effects. The volume fractions εIP∗ (W
∣∣
·,w,δ

) exhibit a relatively homogeneous408

distribution throughout the entire sampling window W , along all three directions. The other409

descriptors investigated with the sliding window approach, namely volume-equivalent diameter410

d3(W
∣∣
x,w,δ

), aspect ratio e3(W
∣∣
x,w,δ

), convexity c(W
∣∣
x,w,δ

) and number of pores N(W
∣∣
x,w,δ

),411

show similar homogeneous behaviors. These results indicate an even spatial distribution of412

porosity within the sampling window W , regardless of the investigated direction.413

3.2. Statistical analysis of grains. In this section, the descriptors introduced in Section 2.5414

are analyzed for individual grains. Motivated by the bimodal pore size distribution, revealed415

in Section 3.1, each grain G is classified as neighboring a small pore (SP), neighboring a large416

pore (LP), or not neighboring any pore (NP), where a pore P ⊂ W is considered as “small”,417

if d3(P ) < 17.5 µm, and as “large” if d3(P ) ≥ 17.5 µm. The threshold of 17.5 µm corresponds418

approximately to the local minimum observed in the probability density of the volume-equivalent419

diameters of the pores, see Figure 6a. This subdivision splits the set of AT grains G into three420

subsets with 295 grains neighboring small pores, 5893 grains neighboring large pores, and 7499421

grains neighboring no pores. Additionally, 1027 grains, which neighbor multiple pores, are422

excluded from this classification.423

Figure 7a suggests that the grain size distribution is bimodal, showing peaks at ≈ 5 µm and424

≈ 17 µm. However, the bimodal shape differs for the three grain classes. Within the NP class,425
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the two peaks are approximately of the same size, whereas for SP and LP the peak corresponding426

to larger grains is significantly more pronounced. Additionally, SP grains tend to be larger than427

the other ones. The aspect ratios in all three grain classes show a similar behavior, as shown in428

Figure 7b. Figure 7c presents the bivariate probability densities of volume-equivalent diameter429

and aspect ratio for all grains. The corresponding bivariate densities for each of the grain430

classes NP, SP, and LP reveal a similar correlation structure, that is, larger grains tend to431

have a smaller aspect ratio, indicating a more elongated shape. Furthermore, note that the432

intermediate and minor axes of grains have approximately equal lengths for the entire family of433

all grains, see Figure 7d. Analogous investigations for the grain classes NP, SP and LP imply434

similar bivariate probability densities. Taken together, the overall grain shape is prolate, where435

larger grains tend to be more elongated, which is also confirmed by the 3D grain renderings for436

different grain size classes shown in Figure 4.437
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Figure 7. Univariate probability density of the volume-equivalent grain diam-
eter (a) and aspect ration (b), together with their (joint) bivariate density (c),
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for the entire family of all grains. The univariate probability density of orienta-
tion similarity for all pairs of grains and for pairs of NP-, SP- and LP-grains (e),
as well as tangentiality of SP-and LP-grains (f).

The occurrence of a bimodal grain population (i.e. large and small grains) can be linked438

to the bimodal pore size distribution and reflects the complex interplay of thermodynamic439

and microstructural factors during sintering. Large pores appear to hinder grain growth by440

constraining mass transport and limiting boundary mobility, while small pores may actually441

enhance local grain coarsening due to their high surface energy, which drives atomic diffusion442

and promotes Ostwald ripening [49–51]. This effect leads to an accelerated growth of grains443

adjacent to small pores, which explains the scarcity of fine grains in such regions. Abnormal444

grain growth (AGG) further contributes to this bimodal distribution, as energetically favorable445

large grains consume smaller ones during sintering. The resulting prolate morphology of the446

grains and pores is induced by the crystallographic anisotropy of Al2TiO5, where grains elongate447

along the a-axis ([100] direction), minimizing the energetically costly grain boundary surfaces448

perpendicular to this direction [47, 52]. Thus, the final microstructure (i.e., elongated grains and449

pores) is the result of a combination of anisotropic grain growth, pore-induced local diffusion450

enhancement, and energy-driven coarsening mechanisms.451
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To assess whether grains have locally preferred spatial orientations, the orientation similarity452

αsim(G,G′) was analyzed only for grains G,G′ ⊂ W that are close together. More precisely,453

grains G and G′ are considered to be close to each other if the minimal distance between them454

does not exceed the value of 3.6 µm(=̂5 voxels), that is, minx∈G,x′∈G′ |x− x′| ≤ 3.6 µm. Recall455

that a value of αsim(G,G′) = 0 corresponds to a perpendicular arrangement between G and G′,456

while αsim(G,G′) = 1 implies their parallel alignment. As shown in Figure 5e, the probability457

density remains approximately constant for all αsim ∈ [0, 1], suggesting that the grains do not458

exhibit a locally preferred orientation, regardless of their classification.459

In addition, tangentiality αtan(G) describes the orientation of a grain G ⊂ W relative to its460

neighboring pore P ⊂ W . Recall that a value of αtan(G) = 0 suggests that G is tangentially461

arranged to the surface of the pore, whereas αtan(G) = 1 implies a normal arrangement. As462

shown in Figure 7f, grains adjacent to large pores exhibit a uniform directional arrangement.463

In contrast, grains that neighbor small pores tend to align more normally with respect to the464

surface of the pore. Moreover, the bivariate densities shown in Figures 8a and 8d, suggest that465

there is no significant correlation between the volume-equivalent diameter of the grains and466

their tangentiality.467
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Figure 8. Bivariate probability densities of various pairs of geometric grain
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For the analysis of local heterogeneities, AT grains within a moving restricted window W
∣∣
·,·,δ468

with δ + 1 = 51 voxels were considered to investigate their volume fraction, number, volume-469

equivalent diameter, and aspect ratio. Since these four descriptors exhibit constant values470

throughout the entire sampling window W in the three spatial directions, the presentation of471

the corresponding graphs is omitted for the sake of brevity. Anyhow, these results indicate a472

homogeneous distribution of the AT phase within the sampling window W .473

The bivariate densities of the proportion of the surface of grains, shared with pores, and474

the volume-equivalent diameter of grains are shown in Figures 8b and 8e for the SP- and475

LP-grains, respectively. Similarly, the bivariate densities of the proportion of the surface of476

grains, shared with pores, and the aspect ratio of grains are shown in Figures 8c and 8f. All477

four bivariate probability densities indicate that there is no apparent relationship between these478

descriptors. These observations suggest that the growth direction of Al2TiO5 grains is primarily479

governed by their crystallographic orientation rather than by the influence of a free surface [50].480

This conclusion aligns with previous, unpublished, findings. In these studies, unusual X-ray481
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diffraction (XRD) patterns were observed near the surfaces of sintered Al2TiO5 samples, with482

peak intensities significantly deviating from standard data, suggesting a possible surface-driven483

grain orientation effect. However, these anomalies disappeared when the surface layer was484

removed through machining, and the XRD results from the interior of the samples matched485

the expected reference patterns. In the current study, such surface effects were not detected486

via X-ray computed tomography, which is consistent with the fact that all sample surfaces487

had been machined prior to analysis, effectively eliminating any potential surface-influenced488

microstructural features.489

3.3. Qualitative analysis of silica. Since a phase segmentation into pores, AT grains, and490

silica was performed in Section 2.4.1, a comprehensive analysis of the three phases would be491

natural. However, phase segmentation relies on hand labeling, which was primarily focused492

on achieving an accurate grain-wise segmentation. This was accomplished by enforcing the493

separation of adjacent grains through a thin layer of silica, leading to an overestimation of the494

silica phase by volume, see Figure 1. Furthermore, the silica phase consists of thin layers whose495

morphologies are highly sensitive to misclassified voxels making a reliable quantitative analysis496

challenging.497

Despite the inherent bias in the morphology and volume fraction of the silica phase, a quali-498

tative analysis remains feasible. To investigate the volume fraction of the silica phase, a sliding499

window approach with a restricted window W
∣∣
·,w,δ

with thickness δ + 1 = 1 was performed.500

Similarly to the volume fractions of the pore phase (see Figure 6f) and the AT phase, the silica501

phase shows a homogeneous behavior, indicating a homogeneous spatial distribution throughout502

the entire sampling window W .503

Consequently, by overestimating the volume fraction of the silica phase, the volume fraction504

of the AT phase is underestimated. However, since the AT phase has a clearly higher volume505

fraction, and the shape of individual grains is more bulky, the affectation of misclassified voxels506

is negligible and was not taken into account in the previous analysis of the AT phase.507

3.4. Phase and grain segmentation of the “flexible” material. The segmentation ap-508

proach stated in Section 2.4 was also applied to a second aluminum titanate ceramic, referred509

to as the “flexible” (F) scenario, introduced in Section 2.1. This material differs from the pre-510

viously discussed “very flexible” (VF) material by a shorter dwell time during sintering. For a511

detailed comparison between AT-F and AT-VF, we refer to Table 1.512

The results of the segmentation procedure for AT-F are presented in Figure 9. From the raw513

SXCT image (Figure 9a) it is evident, that obtaining a reliable and trustworthy segmentation,514

even by the human eye, is very challenging, if not impossible. Therefore, we have not conducted515

a detailed analysis for the flexible scenario as we did for the very flexible one.516

However, a comparison of the probability densities of area-equivalent diameters and aspect517

ratios of virtual cross sections of grains obtained from segmented 3D SXCT images with those518

derived from EBSD images reveals a notable similarity, see Figures 10c and 10d. This implies519

that even for features of a scale similar to the resolution, the presented segmentation procedure520

can derive appropriate results. For a detailed discussion of the comparison between virtual521

SXCT cross sections and 2D EBSD images, see Section3.5.522

3.5. Comparison of virtual SXCT cross sections and EBSD data. In this section, the523

results of the analysis of 2D EBSD images, which were presented in a previous paper [12], are524

compared to those obtained for virtual 2D cross sections derived from 3D SXCT reconstructions.525

More precisely, these virtual 2D cross sections can be considered as restricted windows W
∣∣
· ,w,δ

526
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as defined in Eq. (2) with δ + 1 = 1 and some equidistant distance of w = 36 µm (=̂ 50 voxels).527

To ensure consistency and eliminate biases from the methods used in [12] and the present paper,528

all quantities were determined utilizing the methods described in Section 2.5.3. Furthermore,529

to avoid edge effects, the cross sections of grains cut off by the 2D sampling window W
∣∣
· ,w,1

530

or the sampling window of the 2D EBSD image were not considered. It is important to note531

that because the EBSD measurements do not distinguish between the pore phase and the silica532

phase, only the AT phases are compared to each other.533

(a) (b) (c)

Figure 9. 2D cutout of an SXCT image for the “flexible” scenario AT-F (a),
its phase-wise (b) and grain-wise (c) segmentation.
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Figures 10a and 10b present a comparison of the probabilities densities of the area-equivalent534

diameter and aspect ratio derived by SXCT and EBSD for the VF scenario. The area-equivalent535

diameters exhibit similar probability densities for virtual cross sections along the three coordi-536

nate axes, confirming spatial homogeneity, as mentioned in the previous sections. Furthermore,537

the area-equivalent diameters derived from the EBSD measurements show qualitatively similar538

behavior. However, grains measured with EBSD tend to be slightly larger. In fact, EBSD539

allows for a better definition of the grain boundaries, thanks to its high spatial resolution. In540

addition, the probability densities of the aspect ratio, see Figure 10b, show no significant dif-541

ferences between the grains measured by SXCT and EBSD, respectively. Note that the good542

agreement between the virtual and EBSD cross sections can be considered as validation of the543

3D segmentation of SXCT images, based on iterative morphological reconstruction.544

When comparing the probability densities of area-equivalent diameters derived from (virtual)545

2D cross sections with those of volume-equivalent diameters derived from the complete 3D im-546

age, significant differences appear due to stereological effects. In Figure 10a, the curve corre-547

sponding to the volume-equivalent diameter exhibits two peaks, representing the two grain pop-548

ulations discussed in Section 3.2. In contrast, the four curves corresponding to area-equivalent549

diameter determined from 2D cross sections show a unimodal distribution. This discrepancy550

can be explained by two effects. Firstly, the probability of intersecting a grain by a random551

plane is proportional to its size [53], making smaller grains less likely to appear in (experimen-552

tal or virtual) cross sections. Secondly, since grains are generally not intersected through their553

centers, cross sections appear smaller than the actual size of the grain. These two effects may554

lead to a smooth and unimodal distribution of area-equivalent diameters derived from 2D cross555

sections.556

Furthermore, the aspect ratios (see Figure 10b) determined from 3D grains tend to be smaller,557

implying more elongated grains. This aspect ratio represents the minimum aspect ratio, which558

would be observable in a 2D cross section. It would correspond to a cross section that would be559

perpendicular to the a1−a3−plane of the grain (and goes through its center). As in Section 2.5.1,560

a1, a2, a3 indicate the direction of the major, intermediate, and minor axes of a grain. Conversely,561

if the cross section is perpendicular to the a2 − a3−plane, the maximum in the observable 2D562

aspect ratio would be obtained, which in the present paper is approximately equal to one, since563

ℓ2 ≈ ℓ3, see Figure 7d. Since the cross sections can be considered random, the grain cross564

sections are realized between these two extreme scenarios, corresponding to aspect ratios within565

this range.566

Figures 10c and 10d show probability densities of equivalent diameters and aspect ratios cor-567

responding to the F scenario. Analogously to the VF scenario, the curves corresponding to both568

the equivalent diameter and the aspect ratio, derived from virtual cross sections along different569

directions, are matching and show a similar behavior compared to the curves obtained from the570

2D EBSD image. Furthermore, the discrepancies between 2D- and 3D-based descriptors show571

the same behavior as in the VF case and can be explained with the same arguments.572

It is interesting to note that the 2D-based aspect ratios of the F and VF materials exhibit573

a similar behavior, although the 3D-based aspect ratios for the VF scenario tend to be smaller574

than those observed for the F material. This suggests that quantifying the degree of grain575

elongation based solely on 2D cross sections is a challenging task.576



20 STATISTICAL ANALYSIS OF GRAINS AND PORES WITHIN AT-CERAMICS

4. Conclusion577

Through the use of advanced statistical methods, microstructural 2D EBSD and 3D SXCT578

data of aluminum titanate (AT) refractory materials were analyzed and various geometric de-579

scriptors were determined.580

In particular, a novel object-wise segmentation algorithm was developed that is capable of581

segmenting strongly elongated grains. It is based on an iterative application of morphologi-582

cal reconstruction combined with a watershed transform. The performance of this advanced583

algorithm is validated by comparing virtual 2D cross sections of 3D SXCT data to experimen-584

tal ones derived from 2D EBSD measurements. For a comprehensive performance evaluation585

against other segmentation methods, benchmark tests are required within a set-up where the586

ground true segmentation is known. Furthermore, the presented algorithm can be generalized to587

other applications by adapting the criterion to accept correctly segmented objects. For example,588

the convexity used in this paper could be replaced by an aspect ratio-based criterion.589

Following the segmentation of individual pores and AT grains, various size, shape and further590

geometric descriptors were determined. These revealed two populations of pores and grains,591

which differ in their morphological properties. The properties of these populations are correlated592

with the mechanisms of diffusion and grain growth, as well as pore coalescence, during sintering.593

In particular, large, irregular-shaped pores may stem from poor powder compaction, while small594

pores may emerge during sintering. Furthermore, a correlation between the spatial orientation595

of grains and the presence and size of pores is observed. Small pores may promote grain growth,596

while large pores tend to inhibit it.597

Finally, descriptors derived from 2D EBSD data are compared to those from virtual 2D cross598

section extracted from 3D SXCT image data. Strong agreement of these two types of descriptors599

is observed, which offers insight in the complementary information on the morphology of such600

materials derived by both imaging techniques.601
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