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Abstract

The microstructure influence on conductive transport processes is described in terms of volume frac-

tion ε, tortuosity τ, and constrictivity β. Virtual microstructures with different parameter constellations

are produced using methods from stochastic geometry. Effective conductivities σeff are obtained from

solving the diffusion equation in a finite element model. In this way a large database is generated, which

is used to test expressions describing different micro-macro relationships such as Archie’s law, tortuosity

and constrictivity equations. It turns out that the constrictivity equation has the highest accuracy indicating

that all three parameters (ε, τ, β) are necessary to capture the microstructure influence correctly. The pre-

dictive capability of the constrictivity equation is improved by introducing modifications of it and using

error-minimization, which leads to the following expression: σeff = σ0 2.03 ε1.57 β0.72/τ2 with intrinsic

conductivity σ0. The equation is important for future studies in e.g. batteries, fuel cells and for transport

processes in porous materials.

Keywords: constrictivity, effective conductivity, electric conduction, FEM, geometric tortuosity, ionic

diffusion, M-factor, stochastic model

Introduction

The study of transport phenomena is a well-developed branch in physics (see e.g.1), which is of major

importance for many applied sciences such as earth science (e.g. for gas and oil exploration studies2;3), soil

science (e.g. hydrology and contamination studies4), materials science (e.g. charge transport in electrodes of

fuel cells and batteries5;6), or for chemical and bio-medical engineering (e.g. transport through membranes

and percolating networks of vessels7;8). For many engineering applications a continuum description at
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macroscopic scales is often the main target. For this purpose the effective materials properties must be well

known. In this context it is important to note that the effective transport properties are strongly influenced by

morphological features at micro-scales such as narrow bottlenecks or tortuous pathways. Consequently, a

basic understanding of the relationships between microstructure parameters and effective transport properties

must be established. In the ideal case, it should be possible to predict the effective transport properties based

on specific microstructure parameters.

In literature there exist several formulas, which relate volume-averaged structural parameters and effec-

tive transport properties (e.g.5;7;9;10;11;12;13). Those formulas will be discussed in a separate section below.

In summary, the focus of morphological characteristics relevant for transport is a) on volume fraction ε of

the transporting phase, b) on geometric tortuosity τ, which characterizes the typical sinuousness of transport

pathways and c) on a constrictivity parameter β, which describes the so-called bottleneck effect. Unfortu-

nately, it is very difficult to test the validity of the proposed formulas describing the micro-macro relation-

ship with experimental methods. The experimental limitations are partly caused by the fact that a systematic

variation of the structural parameters results in a very large number of samples. Such a large testing matrix

cannot be analyzed with reasonable experimental resources. In addition, the available fabrication techniques

generally do not allow varying the microstructure parameters independently from each other and over a large

range.

An alternative approach to test the formulas for a micro-macro relationship is based on the application

of micro-scale transport models (micro-models), which are suitable to study microstructure effects. For this

purpose, Lattice Boltzmann modeling (LBM)14;15;16 or finite element modeling (FEM)17 respectively, can

be used to solve transport equations based on a structural grid. This grid, which represents the 3D mor-

phological details of the microstructure, can be obtained by transformation of 3D-data from high-resolution

tomography18;19. In this way, the micro-models provide a direct link between the microstructure, which is

intrinsically represented by the grid, and the effective transport properties, which result from the simulation

itself. Consequently, the micro-models can be used to empirically establish quantitative relationships be-

tween effective transport properties (e.g. effective electric conductivity σeff) and corresponding microstruc-

ture parameters (ε, τ, β). The latter parameters are determined by 3D image analysis from the tomographs,

as demonstrated in earlier studies2;5;6;20;21;22. A major drawback of transport studies based on micro-models
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is the limited number of samples that can be analyzed, since the simulation requires extensive computational

resources. In addition, when tomographs from real materials are used as a basis for the simulations, then

the problem of a limited structural variation arises, similar to the limitations mentioned above for the experi-

mental studies. Due to these limitations in experimental and modeling studies, the quantitative relationships

between microstructure parameters and effective macroscopic transport properties are not yet established in

a conclusive way.

For the present study we thus propose a different methodological approach, which enables testing of pro-

posed formulas from literature based on a larger range of samples and microstructures, respectively. Thereby

we investigate the transport properties of virtual 3D microstructures that are generated with methods from

stochastic geometry23;24. In earlier studies it was proven that such stochastic models are capable to precisely

describe the topology of advanced energy materials such as electrodes for fuel cells and batteries21;25;26.

A stochastic modeling approach is used to produce a set of virtual microstructures with varying con-

stellations of structural characteristics (ε, τ, β). The corresponding transport properties are determined with

FE-simulations. This virtual materials testing (VMT) approach provides a statistically sound analysis of the

quantitative relationships between the structural parameters and the effective transport properties.

In the following sections we will give a detailed introduction to the topic. We first define the transport

mechanisms and corresponding effective transport properties, for which the established relationships are

considered to be valid. Subsequently, we introduce the basic microstructural characteristics, which have a

critical influence on effective transport properties according to literature. Then the most widely used empir-

ical relationships between effective transport properties and structural characteristics are briefly reviewed.

An important part of the paper is dealing with the methodologies for VMT by stochastic modeling and FEM.

The formulas from literature are then evaluated on the basis of our results from VMT. The results are com-

pared with experimental data from a Ni-cermet anode for SOFC. Based on our results, a refined formula for

micro-macro relationships can be proposed, which has a more general meaning than the existing formulas

in literature, due to the extensive set of microstructural data, on which it is based.
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Transport Processes and Effective Transport Properties

In the present study we consider effective transport properties of composite materials, where transport takes

place only in one phase and the other phase(s) is (are) not conducting. An example is the electric conductivity

in a porous Ni-YSZ anode for SOFC, where electric transport takes place only in the nickel-phase. The

electric charge transport is described by Ohm’s law

J = −σ
dU
dx

(1)

and

dU
dt

= σ
d2U
dx2 , (2)

where J is the current density, σ is the conductivity, U is the electric potential and t is time. With con-

stant boundary conditions, such systems tend to approach a steady state, which is described by the Laplace

equation

d2U
dx2 +

d2U
dy2 +

d2U
dz2 = 0, (3)

where x, y and z are the space coordinates. In principle, an analogy can be drawn to transport processes,

which obey the same mathematical description (e.g. diffusive mass transport by Fick’s law, or heat diffusion).

For a detailed discussion, see1. The influence of the microstructure on the macroscopic behavior described

in (1) and (2) is introduced with a microstructure-factor (M-factor), as follows:

σeff = σ0 M. (4)

Here σeff is the effective conductivity, σ0 is the intrinsic conductivity (i.e. without geometric constraints)

and M is a correction factor, which describes the transport limitations caused by microstructure effects.

The aim of the present study is to find quantitative expressions for the M-factor in terms of phase volume

fraction (ε), tortuosity (τ) and constrictivity (β) with the aid of FE simulation of electrical conduction. Based

on the concept of analogy, the same expressions should in principle also be applicable for a description of

microstructure effects in systems with mass transport by diffusion or energy transport by heat conduction.

However, it has to be emphasized that our considerations of microstructure effects are limited to the rather
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basic cases where transport takes place in only one phase of the composite material. Furthermore, our

considerations also do not include transport processes that require a different mathematical treatment such

as advective, radiative or reactive transport and any kind of flow (viscous, turbulent). Additional limitations

for the validity of the established micro-macro relationships occur for systems where the interaction between

phase boundary and transported species becomes important due to physi- and chemi-sorption. This is usually

the case for very fine microstructures (e.g. nanoporous samples) and for materials with a relatively high

surface potential on the pore wall, see e.g.27.

Microstructure Parameters Relevant for Transport

In this section we summarize the definitions and principles of image processing, which are required for

quantitative analysis of the transport relevant parameters28;29;30. These parameters include volume fraction

of the transporting phase ε, geometric tortuosity τ and constrictivity β. For the characterization of the volume

averaged parameters, let us assume that the material under consideration consists of several phases and it

is given on a finite observation window W = [0, xmax] × [0, ymax] × [0, zmax] with volume νW . The volume

fraction of the phase of interest ε is then defined by the ratio of the volume of this phase νI divided by the

total volume of the observation window νW , i.e., ε = νI/νW .

The microstructure parameter tortuosity is often considered as a major morphological parameter, which

potentially controls the macroscopic transport properties. However, there is confusion about the tortuosity

concept, since there exist many different definitions and different measurement techniques for it (see e.g.13).

In this study, we concentrate on the ‘geometric tortuosity’ τ, which is defined as the ratio of the mean

shortest transport path length `e divided by the direct length of sample thickness `, i.e. τ = `e/`. In order to

determine the geometric tortuosity, the mean shortest paths length `e is computed based on 3D image data

e.g. from tomography, see Figure 1. In particular, the phase of interest of this 3D image is first transformed

into a 3D graph, see Figure 1 (center). In our case, the 3D graph is computed using the skeletonization

algorithm implemented in the software Avizo 7VSG – Visualization Sciences Group – Avizo Standard. Within this graph

we define inlet- (bottom) and outlet-points (top), see Figure 1 (center). In terms of the so-called ‘geometric

tortuosity’, for each inlet point only the path is selected, which has a minimum length to one of the outlet-

points, see Figure 1 (right). The mean value of all these shortest path lengths is considered as the mean
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shortest paths length `e. An algorithm for the identification of shortest pathways from complex 3D graphs is

described in32. Note that the inlet-points for the calculation of shortest paths are the vertices v = (vx, vy, vz)>

of the graph located at the bottom, i.e., vz ∈ [0, zb], and correspondingly for the outlet-points at the top, i.e.,

vz ∈ [zmax − zb, zmax]). Thereby, zb > 0 is chosen so that the graph contains more than hundred inlet- and

outlet-points, respectively, in order to obtain a sufficiently large number of shortest pathways for estimating

τ.

In the next step, we present a volume-averaged structural parameter β characterizing the ‘constrictivity’

of a microstructure. Note that β is a quantitative description of bottleneck effects (i.e. constrictivity) in

complex microstructures. It has been introduced in5 as the ratio of minimum cross-section (bottleneck)

over maximum cross-section (bulge). This expression reduces to β = (rmin/rmax)2 where rmin indicates the

radius of ‘characteristic bottleneck median’ and rmax the radius of phase size median. In order to compute

rmin and rmax from a 3D microstructure the concept of the continuous phase size distribution (cPSD) and

a computational tool (MIP-PSD), which allow the simulation of mercury intrusion porosimetry (MIP) are

needed, c.f.20. The cPSD P(r) describes the volume fraction of the phase of interest, which can potentially be

covered by spheres with radii r where the spheres have to be completely located in this phase. The parameter

rmax is defined by rmax = P−1(0.5) being the radius r of the cPSD P(r) filling 50% of solid volume νS , see

Figure 2. Thus, rmax can be regarded as the radius of the phase size median. Mercury Intrusion Porosimetry

(MIP) is an experimental technique to characterize the pore size distribution in porous materials. The MIP

measurements are strongly influenced by narrow constrictions along the intrusion pathways. Therefore,

the characteristic peak in MIP-PSD, which is also called ‘break-through radius’, is considered as being

equivalent with the characteristic size of the bottlenecks. In our image analysis approach, the concept of

the MIP-PSD is closely leaned on that of the cPSD, in the sense that both methods are based on the same

type of Euclidean distance map. However, for the MIP-PSD additional constraints are introduced in order

to simulate the intrusion of mercury from the bottom of the sampling window to the top. The basic idea is

to consider a ‘directed filling’ of the phase of interest by spheres. More precisely, those regions of the phase

of interest are filled, which can be reached by a sphere with radius r, starting e.g. from the bottom of the

material. Thereby the sphere is not allowed to intersect other phases. We denote the volume fraction of these

regions by M(r). The parameter rmin is defined by rmin = M−1(0.5). It can be considered as the radius of
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the characteristic bottleneck median, see Figure 2. For further information about the cPSD, MIP-PSD, and

constrictivity β the reader is referred to5;20.

Empirical Relationships Describing Microstructure Influence on the Effective Trans-

port Properties

The three parameters introduced in the previous section (ε, τ, and β) appear in different expressions, which

are discussed in literature to describe the microstructure effect M of equation (4). These expressions are

briefly reviewed in this section.

Transport properties of porous sediments are intensively investigated in geo-science in the context of oil

and gas exploration which led to the postulation of an exponential relationship known as Archie’s law9:

M = εm , (5)

where m ∈ R is a constant that is characteristic for each type of sedimentary rock. However, the exponent m

cannot be explained in terms of any specific topological or morphological feature. Therefore, Archie’s law

does not really help to fundamentally understand the influence of microstructure on the transport properties.

The concept of tortuosity τ was first introduced in12 and later refined in11. This concept states that the

length of transport pathways has a significant influence on the effective transport properties. In literature

(e.g.33) this is usually expressed as follows:

M =
ε

τ2 . (6)

Note that throughout the paper we call this expression the ‘tortuosity equation’. Unfortunately, there

exists no unique definition of τ in literature, c.f.13 for a detailed discussion. Many authors do not apply the

concept of the geometric tortuosity for τ as introduced in the previous section. Instead the tortuosity can

be indirectly computed by (physically) measuring Deff,D0, and ε and solving equation (6) with respect to τ,

called experimental tortuosity τexp. Alternatively, the tortuosity can be simulated (e.g. by FEM or LBM),

called effective tortuosity τeff. In both cases, τexp and τeff, unrealistically high values are often achieved for

tortuosity (i.e. up to 10 and even higher)33;34;35;36. Geometric models show that such long pathways are

not realistic (e.g.33;34;35;36;37). In a recent study7, geometric and experimental tortuosities were determined
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for porous membranes covering a large range of porosities (i.e. ε ∈ [0.3, 0.8]). It turned out that the

experimental tortuosities vary from 1.0 up to larger than 5.0, whereas the geometric tortuosities in the same

samples exhibit very similar values between 1.5-1.7. These results indicate that experimental tortuosity

tends to include additional microstructure effects other than the tortuous pathways. As a consequence, we

restrict our consideration of tortuosity τ in the present study exclusively to the notion of geometric tortuosity.

The apparently high values for experimental tortuosities could be explained by the fact that it includes the

influence from narrow bottlenecks. Thus, the concept of tortuosity given in (6) was then combined with the

consideration of bottleneck effects which led to the following expression (see e.g.10):

M =
ε β

τ2 . (7)

Note that throughout the paper we call this expression the ‘constrictivity equation’. A major problem

for the practical use of the constrictivity equation was the fact that there were no techniques available for

measuring the constrictivity in real samples. Obviously this is the reason why in many experimental studies

all microstructure effects are assigned to the (experimental) tortuosity. However, recently a new methodology

for measuring constrictivity has been introduced with image processing techniques based on cPSD and MIP-

PSD5;20, as summarized in the previous section. The significance of this methodology is the fact that it can

be applied to 3D data from real samples with disordered microstructures. This opens new possibilities to

distinguish microstructure effects originating from narrow bottlenecks and from tortuous pathways.

Methods – Towards a Virtual Materials Testing Laboratory

In the previous section, the most widely used empirical relationships have been introduced relating structural

characteristics and the corresponding effective materials properties. To evaluate the predictive capabilities

of these formulas we introduce a VMT approach. More precisely, a stochastic simulation model produces

microstructures with predefined structural characteristics ε, τ, and β. On these synthetic microstructures the

effective transport properties and the M-factors are computed by means of FE simulations. This database

is then used to systematically analyze the relationships between structural characteristics and the effective

material properties in an empirical way.
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Stochastic 3D Microstructure Model

In this section, a stochastic simulation model is introduced, which generates two-phased 3D microstructures

with a large spectrum of three structural characteristics, ε, τ and β. Simulations drawn from the stochastic

model are realistic representations of real microstructures as e.g. anodes of SOFC. The construction of

such a stochastic model which simulates microstructures with independently varied structural parameters is

challenging since it is natural that a high volume fraction (≈ 1) e.g. leads to a low tortuosity (≈ 1). Contrarily,

if the volume fraction tends to 0 then the constriction factor is typically low (≈ 0) and the tortuosity tends to

increase.

Our basic idea for the construction of the stochastic microstructure model is as follows. In a first step a

random geometric graph G = (V, E) is introduced where V = {V1,V2, . . .} represents the set of vertices and

E = {(Vi1 ,V j1 ), (Vi2 ,V j2 ), . . .} the set of edges, which describes the line segments connecting two vertices.

This graph determines the main morphological features of the structure. The vertex set V of the graph G

follows a random 3D point process, c.f. Figure 3 (left). Moreover, the edges connecting the vertices V

are set such that the graph G is completely connected (with probability 1) and the direction distribution

of edges (anisotropy of edge directions) can be nicely controlled, see Figure 3 (center). Note that in this

way, the (geometric) tortuosity of the graph can be controlled, too. Finally, all edges are dilated in 3D with

independent random radii following some distribution, c.f. Figure 3 (right). Thereby, the radius of the solid

phase median rmax and the bottleneck radius median rmin can be regulated and in this way the constrictivity

β can be controlled. Since the stochastic microstructure model is constructed by a random graph, we call it

a stochastic spatial graph model (SSGM).

Stochastic Modeling of Spatial 3D Graph

The random spatial 3D graph is constructed by a two-stage approach. First, the vertex set V of the graph

G is described by a homogeneous 3D Poisson point process24 with some intensity λ > 0. A Poisson point

process realized in a bounded observation window W consists of a Poisson distributed number of points

with expectation λνW depending on the intensity λ and the volume of the observation window νW , where the

points are independently sampled and uniformly distributed in W.
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In a second step, the set of edges E given the vertex set V is modeled by a modified version of the relative

neighborhood graph (RNG)38. The RNG defines an undirected graph on a set of points (i.e., in our case on

V = {V1,V2, . . .}) where two points Vi and V j are connected by an edge whenever there does not exist a third

point Vk (for all k < {i, j}) that is closer (with respect to the Euclidean distance d) to both Vi and V j than they

are to each other, i.e., d(Vi,V j) ≤ max{d(Vi,Vk), d(V j,Vk)} for all k < {i, j}. Note that the RNG is completely

connected if the set of vertices V is finite or V is described by a class of point processes following some

regularity conditions (see38 for more details), as the Poisson point process does. For isotropic point patterns

V , the RNG yields an isotropic edge set.

Besides the creation of a completely connected graph G embedded in the 3-dimensional space, we aim

to control the tortuosity of the graph by including anisotropy to the set of edges. Thus, the RNG is modified

by substituting the Euclidean distance d in the definition of the RNG by another distance measure dα, that is

given by

dα(Vi,V j) = d(Vi,V j) max
{

0.01,
(
1 −

2ϕ(Vi,V j)
π

)}α
,

where ϕ(Vi,V j) = min
{
^
(
Vi − V j, (0, 0, 1)>

)
, ^

(
Vi − V j, (0, 0,−1)>

)}
denotes the acute angle between the

line segments Vi−V j and (0, 0, 1)>. Following the argument provided in38, it can be shown that the resulting

graph is completely connected on V for each α ∈ R, since 0 ≤ 2ϕ(·, ·) ≤ π and thus max
{
0.01,

(
1 − 2ϕ(Vi,V j)

π

)}α
is bounded on both sides.

Note that the parameter α of the mRNG controls the anisotropy of the edge set E with respect to the

z-direction (i.e., (0, 0, 1)> direction). In the case that α < 0 (α > 0), the distance dα(Vi,V j) between two

vertices Vi and V j becomes small (large) if the acute angle ϕ(Vi,V j) is small. Thus, for α < 0 (α > 0), pairs

of vertices (Vi,V j) having a small (large) acute angle to (0, 0, 1)> are preferred to be connected in the mRNG.

In other words, for α < 0 (α > 0), vertically (horizontally) oriented edges are preferred, see Figure 5 (left

and right, respectively).

For both cases (i.e. α < 0 and α > 0), the dependence between the values of dα(Vi,V j) and ϕ(Vi,V j)

becomes stronger for a larger absolute value of α. If α = 0 the mRNG coincides with the classical RNG

and thus the directional distribution of edges is isotropic if the underlying point process is isotropic too, see
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Figure 5 (center). Note that the spatial graph model G = (V, E) is uniquely described by the parameters λ

and α.

Local Dilation of Edges

So far, the spatial 3D graph model introduced in the previous section consists of an ensemble of random

line segments. From a mathematical point of view, the 3D volume of this arrangement of line segments

is equal to zero. Therefore, to complete the stochastic microstructure model, we dilate each edge of the

spatial graph model G with a sphere as structuring element where the radius of the sphere is random. More

precisely, each edge Ei is assigned an independent and identically distributed random radius Ri following a

shifted Gamma distribution, where the Gamma distribution, uniquely described by their mean value g1 > 0

and variance g2 > 0, is shifted by 1 to the right. To shift the Γ-distributed radii by 1 is reasonable to ensure

that the dilation radius of the edges is larger than the voxel resolution since otherwise the edge could not be

displayed when discretizing the microstructures to a 3D image. Subsequently, each edge Ei of the graph G

is dilated with the sphere b(0,Ri) as structuring element with origin as center point and radius Ri, see29;30.

Note that the dilated graph defines the SSGM. Realizations drawn from the SSGM are visualized in Figure 6.

Also note that the dilation of edges has an significant influence on the structural characteristics ε, τ and β.

The (geometric) tortuosity τ is mainly determined by the anisotropy parameter α of the graph model G, but

when dilating the edges of the graph by spheres with large radii it may occur that neighboring edges overlap.

In this case, the extracted graph for the computation of the tortuosity τ consists of different edges as G which

may lead to a significantly decrease of τ in comparison to the tortuosity computed for the (non-dilated) graph

G. In summary, we have chosen the parameters (λ, α, g1, g2) of the SSGM such that we are in the position to

obtain a wide spectrum of volume fractions ε, tortuosities τ and constriction factors β.

Single Tube with Random Hyperbolic Bottlenecks

As discussed earlier there is evidence from experimental studies7 that the variation of geometric tortuosity

in real samples is very limited (ca. 1.5-2.0). This indicates that the large variation of the experimental

tortuosity (between 1.3 and 10!) reported in literature13, does not reflect true variations of the path lengths

but instead it is related to other microstructure effects such as the influence of narrow bottlenecks. In order to
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study this bottleneck effect without any influence of geometric tortuosity, we have thus developed a so-called

hyperbolic bottleneck model (HBM). It consists of a single tube with sequences of hyperbolic bottlenecks.

More precisely, the HBM generates 3D microstructures by rotation of 2D microstructures realized on a

rectangle with hyperbolic bottlenecks, see Figure 7. Thus, geometric tortuosity τ is fixed at 1 since the

shortest pathways are described by a single straight line segment running through the center of the tube.

This allows us to analyze the specific influence of β and ε on effective transport properties while keeping

τ constant. Furthermore, FE simulations based on structures with rotation symmetry can be done in a very

time-saving way.

For construction of the HBM we restrict the observation window to a rectangle with width 100 and length

10000, i.e., [0, 100] × [0, 10000] (see Figure 7, left). To this rectangle (2D tube) a sequence of hyperbolic

bottlenecks is added where the diameters of the hyperbolic bottlenecks (the diameter of the constrictions) are

chosen by a sequence of independent and uniformly distributed random variables Amin =
{
A1

min, A
2
min, . . .

}
,

where Ai
min ∼ U[r1, r2] with 0 ≤ r1 ≤ r2 ≤ 100 and i ∈ N. Furthermore, the sequence of distances

{D1,D2, . . .} between bottlenecks depends on Amin and a further parameter dm, where for each i ∈ N it holds

that Di = (Ai
min/dm) tan(acos(Ai

min/100)) (Figure 7, center and right). Note that the sequence of bottlenecks

can be chosen in a deterministic way if we set r1 = r2. By the choice of these three model parameters, the

volume fraction ε and the constrictivity parameter β are controlled, whereas the tortuosity τ is equal to 1.

Experimental Analysis of Ni-Cermet Anodes for SOFC

The relationship between 3D-microstructure and effective electrical conductivity is experimentally investi-

gated for the Ni-phase in composite Ni-YSZ anodes of SOFC. Thereby the anode material is considered in

its initial state (after the first reduction) and in a degraded state after exposure to 8 redox-cycles. Hence,

the experimental investigations include fabrication of the anode samples, degradation test by exposure to

8 redox-cycles, and measurement of electrical conductivity, see39 for further information. Electrical con-

ductivity is characterized with 4-point measurements for the initial state and for a degraded state after 8

redox-cycles.

As a result it was found that the electric conductivity σeff in the anode material is dropping from 600

S/cm (initial state) to 200 S/cm (after redox). The microstructure effects, i.e. the M-factors, can be calculated
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by substituting the measured effective conductivities σeff and the known intrinsic electrical conductivities σ0

into equation (4), which are subsequently termed Mmeas. With σ0 = 22100 S/cm (at 950◦C) we obtain

Mmeas = 0.027 for the initial state and Mmeas = 0.0095 for the anode exposed to 8 redox-cycles. Hence the

microstructure effect is much more limiting for electrical current in the anode, which suffered degradation

compared to the anode in the initial state.

In another previous study we have characterized the 3D microstructure of the porous Ni-YSZ anode

samples by FIB-tomography. For a detailed description of the imaging and image analysis techniques, we

refer to6. The nickel phase, which conducts electrical current through the anode, undergoes significant mor-

phological changes due to the redox exposure, see Figure 8. The nickel degradation is dominated by grain

growth (i.e. coarsening) and loss of connectivity (i.e. formation of isolated grains). In particular, the nickel

volume fraction is decreasing from εbefore = 0.317 to εafter = 0.180, which is due to the loss of connectivity

(i.e. isolated grains are excluded from the effective nickel volume fraction). Also the constrictivity is de-

creasing from βbefore = 0.291 to βafter = 0.188. In contrast, geometric tortuosity remains nearly constant with

τbefore = 1.726 and τafter = 1.765 (see also Table 3).

Finite Element (FE) Computation of Effective Transport Properties

For computation of transport properties, we use SESES, which is an in-house FE code for multi-physics

simulation developed at Zurich University of Applied Sciences (ZHAW), see40. The effective electrical

conductivity is evaluated in SESES by applying an external potential difference and by solving for the

resulting current densities via ohms law. In our simulations we assign an intrinsic conductivity of 1 S/cm to

the conducting phase. In this case the M-factor coincides with the computed effective conductivity, see3. FE

simulations are performed based on 3D grid representations. For FE simulations based on SSGM structures,

we create meshed grids based on data cubes of 500×500×500 voxels (resolution 20 nm). For FE simulations

with real SOFC anodes, we crop cubes of 400 × 400 × 400 voxels (resolution 20 nm) from the segmented

FIB data. When the grids from SSGM are reproduced with the same stochastic input parameters, then

reproducibility of the structural parameters (ε, τ and β) is within 2 %. The good reproducibility also shows

that the cube size (ROI) is representative. For the transformation of voxel-based data into meshed grids,

we use Avizo software, seeVSG – Visualization Sciences Group – Avizo Standard. On the left side of Figure 9, the surface
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of the nickel phase in the anode (before redox) is shown. This surface is represented by 0.3 106 faces and

the 3D grid is represented by 106 tetrahedrons. Figure 9 (right) represents a virtual microstructure from

SSGM, which has the same morphological characteristics as the nickel phase from FIB-tomography (before

redox) in terms of volume fraction (ε), tortuosity (τ) and constrictivity (β). It is also represented with a

similar resolution (i.e. surface : 0.3 106 faces; 3D grid : 106 tetrahedrons). According to the hypothesis

of the present work, the microstructure influence on transport properties is fully described by ε, τ and β.

Consequently, the FE simulations of the two structures from real anode and from SSGM in Figure 9 should

provide the same effective transport properties (see Figure 9 and the discussion thereof).

FE simulations are also performed on single tubes with rotational symmetry from HBM. For this geomet-

rical setup, we perform pseudo-3D transport simulations, which are based on 2D pixel-images representing

the tubes with hyperbolic constrictions, and applying corrections for the 3D rotational case. These simu-

lations are much more efficient than the calculations based on complex 3D-meshes and thus the full pixel

image resolution can be maintained. The physics (i.e. Ohms law, external potential as a driving force, intrin-

sic material properties, etc.) is defined in the same way as described above for the meshed structures from

SSGM.

Results

In this section we present the results obtained by our VMT approach. First we document the range of virtual

microstructures that were realized with both, the SSGM and the HBM. The virtual 3D microstructures are

used as structural input for FE simulations. As a result the corresponding effective transport properties (i.e.

the M-factors) are obtained. In order to validate our VMT approach, we compare our results from virtual

structures to those from two real SOFC anodes.

Synthetic 3D Microstructures

Figure 10 illustrates the range of structural parameters, which is covered by the microstructures used in this

study. We distinguish between two classes of microstructures: 3D microstructures gained from the SSGM

are shown in black and microstructures drawn from the HBM are shown in green. We have performed a large
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simulation study with SSGM, where the parameter space of the stochastic model is systematically scanned,

i.e., we simulate a 3D microstructure for each parameter constellation of the set

{(λ, α, g1, g2) : λ ∈ {1000, 2000, . . . , 6000}, α ∈ {0.5, 1, . . . , 5},

g1 ∈ {2, 3, . . . , 12}, g2 ∈ {2, 3, . . . , 12}}.

In this way, we generate 7260 microstructures where each of them is given by a 3D image stack of size 500×

500 × 500 with cubic voxels. The size of the image window exceeds the representative elementary volume

(REV), i.e. the variation of the structural characteristics computed on replications for a fixed parameter

constellation is small. For all these simulated microstructures the structural characteristics ε, τ, and β are

computed. For the subsequent FE simulations, the voxel-based realizations of virtual microstructures have

to be transformed into structural grids (i.e. meshes). Thereby, two sets of SSGM structures are chosen.

One set consists of 36 ‘realistic microstructures’, which means that they cover a similar range of structural

parameters as we typically observe in our experimental studies of SOFC electrodes (see e.g.6):

{(ε, β, τ) : ε ∈ {0.15, 0.325, 0.5}, β ∈ {0.05, 0.2, 0.28, 0.55}, τ ∈ {1.5, 1.85, 2.0}}.

To obtain microstructures with these characteristics, the database with 7260 structural 3D scenarios from

SSGM is scanned for parameter constellations that are closest to the predefined characteristics. Thereby,

we also selected 2 structural scenarios, which have equivalent parameters as the nickel phase in the two

SOFC anodes used for experimental validation. In a second set, we select 9 structures with rather ‘extreme

constellations’ of the structural characteristics in order to extend the statistical basis and to obtain a more

generalized picture of the micro-macro relationship, as follows:

(ε, β, τ) ∈ {(0.002, 0.08, 1.96), (0.16, 0.38, 3.93), (0.86, 0.68, 1.55), . . .} .

It has to be emphasized that the parameters in the SSGM structure are not fully independent from each

other. However, for extreme constellations of constrictivity we can use the HBM.

Experimental and numerical investigations7;37 indicate that the geometric tortuosity in isotropic materi-
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als varies only in a limited range. In particular, these studies indicate that variations of effective transport

properties are not primarily induced by tortuosity, as it is often reported e.g. in experimental studies. In-

stead, in many cases the bottleneck effect may play a more important role for the transport properties.

In order to test this hypothesis, we generate simplified microstructures of straight tubes (geometric tor-

tuosity = 1) with varying cross-sections, by using the HBM. In Figure 10, the HBM structures are indi-

cated with green symbols. The goal of the simulation study based on the HBM is to produce a bunch

of microstructures with a large spectrum (in particular, including extreme values) of ε and β. For this

purpose, the parameters (r1, r2, dm) of the model are varied, where we produce tubes with determinis-

tic bottlenecks (Figure 7, center) by putting r1 = r2 and random bottlenecks r1 < r2 (Figure 7, right).

For generating the ‘deterministic’ structures the parameters of the HBM are varied with respect to the set

{(r1, r2, dm) : r1 = r2, r1 ∈ {10, 20, 30, 40, 60, 80}, dm ∈ {0.01, 0.1, 0.25, 0.5, 1, 2, 4}} and for the ‘random’

structures with respect to the set {(r1, 100, dm) : r1 ∈ {10, 20, 30, 40, 60, 80}, dm ∈ {0.1, 0.5, 2}}.

In total we have created 105 virtual 3D microstructures, as illustrated in Figure 10. Note that 45 structures

are drawn from the SSGM (Figure 10, black symbols). 60 structures are simulated by means of the HBM

(Figure 10, green). In addition, from two FIB-SEM analyses of cermet anodes we have extracted the 3D

structures of the corresponding Ni-phases. (Figure 10, pink).

FEM Results

Effective electrical conductivities are computed by means of FE simulations for all of the 105 virtual mi-

crostructures. Thereby we assume an arbitrary value for the intrinsic conductivity of 1 S/cm. In this way the

effective electrical conductivity is identical with the M-factor, which describes the sum of all microstructure

effects (see (4)). Figure 11 shows histograms of the resulting effective conductivities and M-factors, respec-

tively. We see that the values for microstructures drawn from the SSGM are located in the interval [0.0, 0.3],

whereas the values based on the HBM are uniformly spread in the interval [0.0, 1.0]. Thus, the range of

effective conductivities computed for the data generated by the SSGM corresponds with the M-factors mea-

sured for ‘realistic’ functional materials as e.g. SOFC anodes (compare with results in6). In contrast, the

M-factors based on the HBM span over a wider range and they also include extremely high values up to 0.9,

where the microstructure effect on transport is almost negligible. Combining both data sets, we cover a large
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range of M-factors with the corresponding microstructures.

In the next section, we use the database consisting of microstructural characteristics ε, τ, β and com-

puted Msim via FEM for the 105 virtual microstructures in order to investigate the relationship between

microstructural features and corresponding effective transport properties in detail.

Discussion

The first goal of this section is to check the accuracy of the hitherto existing formulas for predicting the

influence of microstructure on effective transport properties (i.e. prediction of M-factors). Therefore we

substitute the computed structural characteristics (i.e. ε, τ and β) from virtually generated microstructures

described in the previous Section into formulas (5), (6) and (7). The resulting predictions are subsequently

called ‘Mpred’. These values are then compared with the M-factors obtained from FE simulations, which are

performed on meshed grids representing the virtual microstructures. The results from FE simulations are

subsequently termed ‘Msim’. It turns out that the predictive capabilities of the three formulas do not lead

to satisfying results (i.e. significant differences occur between Mpred and Msim). Thus, in a second step we

introduce modifications of the known formulas. With these modifications the predictive capability can be

improved significantly.

Predictive Capability of Formulas from Literature

For the evaluation of the predictive capabilities we introduce a quality criterion, which is the mean absolute

percentage error (MAPE) of predicted and simulated M-factors. More precisely, let (x1, . . . , xn) be the

predicted values obtained by substitution of ε, τ and β in one of the three known formulas and let (y1, . . . , yn)

be the corresponding simulated values from FEM. Then, the MAPE of (x1, . . . , xn) and (y1, . . . , yn) is given

by

MAPE((x1, . . . , xn), (y1, . . . , yn)) =
1
n

n∑
i=1

|xi − yi|

yi
100 .

The MAPE values are determined in two different ways: MAPEtotal is based on all 105 virtual microstruc-
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tures, and MAPESSGM includes only 45 structures from SSGM. The latter selection is motivated by the fact

that the morphological characteristics in microstructures drawn from the SSGM are much closer to those in

real microstructures (as observed in our experimental investigations of SOFC electrodes5;6;22). In contrast

the microstructures drawn from the HBM extend the range of structural characteristics to high M-values,

which however may not be relevant for most practical applications. Since the present evaluation is focusing

mainly on the prediction of realistic microstructures, the MAPESSGM is considered as being more relevant

for practical applications than the MAPEtotal. The MAPE is determined separately for each of the three

formulas (5), (6) and (7) from literature. In order to apply Archie’s law it is necessary to determine the expo-

nential factor m, c.f. equation (5). For reasons stated above, Archie’s m-exponent is fitted to the data based

on the SSGM, i.e., m is chosen such that the MAPESSGM is minimized. This optimization problem is solved

by the simulated annealing algorithm41 being a stochastic optimization technique, which can handle global

optimization problems. As a result we obtain m = 3.194 for the exponent of ε in Archie’s law. Figure 12

shows the percentage errors of predicted and simulated M-factors for each of the 105 microstructures that

were generated with SSGM (black) and with HBM (green). Note that in the ideal case of a perfect prediction

the percentage errors of each data point would be located on the horizontal line {(x, y) ∈ R2 : x = 0, y = 0}

(red line of Figure 12). Hence, a small mean percentage error (MAPE) is taken as an indication for good

predictions. The percentage errors (MAPESSGM and MAPEtotal) for the three formulas (5), (6) and (7) are

summarized in Table 1. The results indicate that predictions based on Archie’s law (5) (with m = 3.194)

and on the constrictivity equation (7) have a much better quality (with MAPESSGM ≤ 50) than predictions

based on the tortuosity equation (6) (with MAPESSGM = 341). On a first glance the relatively small errors

obtained with Archie’s law are surprising, considering the fact that it only takes into account the phase vol-

ume fraction ε and it neglects information of tortuous pathways and narrow bottlenecks in terms of τ and β,

respectively. However, it must be noticed, that the application of Archie’s law requires a preceding fit of the

m-factor (as explained above). Hence, the percentage error for Archie’s law can be expected to be relatively

small, because its prediction includes a fitting procedure. In contrast, the predictions with the tortuosity- and

constrictivity equations (6) and (7) do not include any preceding fitting and they are therefore considered as

being more ‘honest’ predictions. Nevertheless the percentage errors for the tortuosity equation in Figure 12

are relatively high. Furthermore, a trend can be observed with increasing errors for decreasing M-factors.
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Hence, the stronger the microstructure effect, the more the tortuosity equation overestimates the effective

transport properties. This trend indicates that the small M-factors are not well explained when only the

tortuosity effect is taken into account. A better prediction is obtained with the constrictivity equation, which

has relatively small percentage errors also for data points with small M-factors. Obviously, the bottleneck

effect represents an important morphological feature that needs to be included for predictions of the effective

transport properties, especially in samples with a strong microstructure effect.

Predictive Capability of Modified Formulas

In this section we modify the formulas (5), (6) and (7) in order to improve the quality of prediction of the

M-factor and to decrease the percentage errors. In particular, we are interested in parametric classes of

functions

f : [0, 1] × [0, 1] × [1,∞]→ [0, 1]; (ε, β, τ) 7→ f (ε, β, τ),

where f (ε, β, τ) predicts the microstructure influence (i.e. M-factor) on the effective transport properties.

Parametric Classes of Functions

As a first modification approach, we consider a parametric class of functions f , which can be seen as a

generalization of the constrictivity equation (7), i.e.,

f (ε, β, τ) = min
{

a εb βc

τd , 1
}
∈ [0, 1] with a, b, c, d ∈ R . (8)

Thus, for the generalization of equation (7) we have introduced additional degrees of freedom, in par-

ticular, by a linear pre-factor a and exponential parameters b, c and d, which describe the varying impact

of ε, τ, and β on transport. In the following, we introduce simplified versions of this modified formula. By

comparison with the simulated M-factors we then optimize the parameters a, b, c and d in order to achieve

a small MAPESSGM, which is used as a quality indicator. A good quality of the fit indicates that a specific

function of ε, τ, and β potentially captures the relevant features of the microstructural effects.
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We introduce modifications that help to understand whether or not the pre-factor a of (8) is of importance.

For this purpose we compare equation (8) with the following class, where the pre-factor is put to a = 1

f (ε, β, τ) =
εb βc

τd ∈ [0, 1] with b, c, d ∈ R . (9)

In addition we study the influence of the constrictivity factor β and the geometric tortuosity τ on the effective

transport properties. For this purpose we consider the following three classes

f (ε) = min
{
a εb, 1

}
∈ [0, 1] with a, b ∈ R , (10)

f (ε, τ) = min
{

a εb

τd , 1
}
∈ [0, 1] with a, b, d ∈ R , (11)

f (ε, β) = min
{
a εb βc, 1

}
∈ [0, 1] with a, b, c ∈ R . (12)

Moreover, we are also interested in the influence of the tortuosity-exponent d. In literature it is widely

accepted that the impact of tortuosity on the transport is described by τ−2 see22. For comparison, we thus

introduce expressions where the exponent d of τ in (8) and (9) is fixed to 2. This class is investigated once

with a pre-factor a and once without a pre-factor. Consider

f (ε, β, τ) = min
{

a εb βc

τ2 , 1
}
∈ [0, 1] with a, b, c ∈ R , (13)

f (ε, β, τ) =
εb βc

τ2 ∈ [0, 1] with b, c ∈ R . (14)

Choice of Parameters

In the next step, the parameters for each class of functions are chosen such that the corresponding MAPESSGM

is minimized. This optimization problem is solved again by means of the simulated annealing algorithm.

The fitted parameters of the formulas (8)-(14) and the corresponding MAPEs are listed in Table 2. Based

on the fitted parameters from SSGM we then also evaluate the MAPEtotal, which considers all 105 virtual

microstructures. It basically indicates whether the expression fitted for realistic microstructures (SSGM)

is also capable to predict the micro-macro relationships in samples with high M-factors (represented by

structures from HBM).

In Figure 13 percentage errors resulting from the difference between predicted and simulated M-factors

are plotted against Msim from FEM for each of the modified formulas. For the discussion of these results we
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first consider the basic form of the equations (i.e. whether or not it includes constrictivity or tortuosity) and

the corresponding impact on the quality of prediction, represented by MAPESSGM. In a second step we then

discuss details in the modifications of the favored type of equation.

Equation (10) has a simple form, which only takes into account ε. It can be considered as a modification

of Archie’s law. Its MAPESSGM = 46, which is nearly identical to the one obtained with the conventional

form of Archie’s law MAPESSGM = 47. Equation (11) represents a modification of the tortuosity equation.

The corresponding MAPESSGM is 45, which is a significant improvement compared to the conventional

tortuosity equation with a MAPESSGM of 341. But it is still relatively high. Hence, the two equations, which

do not include β, have a poor predictive capability. Equation (12), which includes β but excludes τ has a

MAPESSGM of 34, which is only a moderate improvement. In contrast all equations, which include all three

parameters ε, τ, and β , have significantly lower MAPESSGM between 15-27. These equations (i.e. (8), (9),

(13),(14)) represent modifications of the constrictivity equation. The most general expression of this type

is given by (8). Hence, modifications of the constrictivity equation are considered as the most suitable type

of expression, which provide a precise prediction of the transport properties. In the following section we

discuss different modifications of this type of expression.

Influence of Particular Parameters

Influence of pre-factor a

Comparable modifications with and without pre-factor a tend to have the better fits (smaller MAPESSGM)

when a pre-factor is used (compare e.g. equations (8) vs (9), (13) vs (14)). The fit with the general equation

(8) results in a pre-factor of 2.34. When the tortuosity exponent d is fixed to d = 2 in (13), then the pre-factor

is close to 2.0. Thus, based on the virtual testing, a pre-factor a of a ∈ [2.0, 2.34] seems to be necessary.

In this context it must be emphasized that the structural parameters such as β and τ in complex disordered

materials have no simple geometric definition. Instead, the measurement of these parameters depends on

specific geometric concepts for image analysis (such as ‘shortest pathways’ and ‘median axis’. Therefore, it

seems justified to introduce an empirically derived pre-factor, which describes the relationship between the

measured geometric parameters with the M-factor and with the corresponding effective transport properties.

Influence of exponent b of volume fraction ε
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In order to obtain adequate weighting of volume fraction, which effectively contributes to the transport, ε

must be corrected by the bottleneck effect. This can be achieved by multiplying the total volume fraction ε

with constrictivity β. In all equations, which include constrictivity, the exponent b is usually below 2. For

the expressions with the lowest MAPESSGM, i.e. for the generalized form (8) and its equivalent with a fixed

tortuosity of 2.0, i.e., (13), b becomes 1.57. In those cases, where constrictivity β is not included (c.f. (10),

(11)), relatively large values of b are necessary to capture the apparent influence of volume fraction ε. This

is a further argument, which documents the importance of the constrictivity parameter for the prediction of

effective transport properties.

Influence of exponent c of constrictivity β

For the exponent c of constrictivity β, all results of the fitting give c-values in a relatively narrow range

around 0.6 to 0.7. For the favored equations (8) and (13) c is 0.71 and 0.72. The exponential behavior

indicates that for microstructures with very narrow bottlenecks (i.e. β < 0.1) a small change of the neck

dimensions has a large impact on the effective transport properties. In contrast, when constrictivity is close

to 1 (i.e. ‘open’ cylindrical pores), then the transport properties are less sensitive to variations of β.

Influence of exponent d of tortuosity τ

Based on theoretical considerations it is concluded that the exponent d of tortuosity should be 2.0 (as dis-

cussed earlier, see also13). The fit of the generalized equation (8) results in a d-value of d = 2.3 with a

relatively small mean percentage error (MAPESSGM = 0.15). A similarly small MAPESSGM of 0.16 is ob-

tained when d is fixed to d = 2.0 (see (13)). Hence, these results and the theory consistently point to a value

of (approximately) 2.0 for the exponent d of tortuosity.

In summary, the modified formulas (8) and (13) lead to very good predictions of M-factors, which

have significantly lower MAPESSGM than the three formulas from literature. Thereby, the equation (13) is

preferred by the authors due to its simplicity. This equation represents a modification of the constrictivity

equation, whereby the exponent of tortuosity is fixed to d = 2.0, which is in accordance with theoretical

considerations in literature. The exponential behavior of β0.72 documents a strong influence of constrictivity

on the transport properties, in particular for structures with low M-factors. Furthermore, this expression

exhibits the lowest MAPEtotal, which indicates that it is capable to capture the relevant microstructure effects

over the entire range of M-factors, including the HBM-structures.
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Validation of Virtual Materials Testing Approach

In order to validate the VMT approach we compare the results with experimental data of a Ni-YSZ anode

for SOFC. The electric conductivity was determined by a 4-point measurement under anode conditions

for the original anode (‘before’) and for an anode that was exposed to eight redox-cycles (as described

in6). The results are summarized in Table 3. We obtain three pairs of samples, which represent the anode

microstructures before and after redox cycling: 1a/1b) real microstructures from FIB-tomography, 2a/2b)

virtual microstructures from SSGM, which have identical structural characteristics as the real ones from

FIB-tomography, and 3a/3b) real samples, which are used for conductivity measurements. In a first step we

consider the change of M-factors due to the redox degradation. The experimental measurements show that

the effective electrical conductivity is 2.7% of the intrinsic conductivity (i.e. Mmeas of 3a = 0.027). Upon

redox cycling this value drops to 1% (i.e. Mmeas of 3b = 0.01). This drop of conductivity can be attributed to

changes of constrictivity (β) and volume fraction of connected Ni-phase (ε), whereas the geometric tortuosity

(τ) is almost unaffected by the Nickel degradation. FE-simulations based on structural input from FIB-

tomography (of Ni-phase in the real SOFC anodes) also show a significant drop of Msim from 7.7% (1a)

to 0.6% /1b). Furthermore, also the FE-simulations based on virtual structures from SSGM (with identical

structural characteristics as 1a/1b) show a significant drop from 4.5% (2a) to 1.6% (2b). Hence all three

pairs show the same trend in the influence of redox degradation, which leads to a drop of M-factors and

associated effective electrical conductivities. Using equation (13) with the fitted values for pre-factor and

exponents as given in Table 3, we can predict the effective conductivities (i.e. Mpred) based on ε, τ and β.

Since all three pairs have (almost) identical structural characteristics, these predictions result in (almost)

identical values for Mpred of (4.8) 4.9% before and 1.3% after redox cycling. As shown in Table 3, the

simulations based on virtual microstructures from SSGM perfectly match with the predictions (i.e. difference

of <0.3%). However for the real microstructures the simulated (Msim; 1a, 1b) and the measured values

(Mmeas; 3a, 3b) differ up to 2.9%, which corresponds to a %-error (i.e. (Msim − Mpred)/Mpred)) of 60.4

(see 1a). Since the M-factors are quite low, a difference of a few % results in rather large %-errors for

some of the data-points. The reason for the relatively large %-errors can be multifold. Each set of data

bears some uncertainties (e.g. contacting problem in experimental conductivity measurements, segmentation
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uncertainty in image analysis of FIB-tomography). In addition, one also has to take into account that there

are potential differences between the virtual microstructures from SSGM and the real microstructures from

FIB-tomography, which are currently not captured with ε, τ and β. This scenario is for example likely

to occur when the real microstructures contain so-called ‘dead ends’. For an accurate prediction of such

effects an additional structural parameter needs to be introduced. In summary, a comparison of virtual with

experimental data indicates, that predictions based on equation (13) and with structural parameters (ε, τ, β)

are capable to capture the effective electrical conductivity with a precision of a few percentages. This is

sufficient to predict for example the trends of redox degradation in SOFC anodes. However, the % errors

for structures with low M-factors are relatively large. At this stage the source of the %-errors cannot be

determined conclusively.

Comparison of Different Approaches for the Study of Microstructure Effects

In this study we use different approaches to describe the influence of microstructures on the effective trans-

port properties. Figure 15 summarizes the corresponding computing (and processing) times of each step

in the workflow. We consider 3D-structures consisting of 5003 voxels. When analyzing real samples the

total acquisition time by FIB-tomography and subsequent 3D-reconstruction is approximately 24 hours. In

contrast, virtual microstructures can be generated for example with SSGM in less than 15 minutes. Hence,

for a parametric study with numerous different samples the VMT approach is much more efficient, whereas

the experimental approach with real microstructures may be too slow (and also too expensive). Nevertheless

real experimental data is required for the validation of the VMT approach. The influence of the microstruc-

ture on effective transport properties can then be described either via image analysis (i.e. with Mpred) or by

FE-simulation (i.e. with Msim). For Mpred the determination of ε, τ, β requires approximately 0.5-4 hours,

whereas Msim can be obtained by FE-simulation (including mesh generation) in approximately 2-5 hours

(also depending how much manual adjustments are necessary). Hence, the approach with FE-simulation

is comparably fast. However, it must be emphasized that image analysis provides detailed insight into mi-

crostructure effects, which cannot be achieved by FE-simulation. For example the performance degradation

of an SOFC anode (i.e. drop of electrical conductivity, as discussed earlier), can be assigned to the decrease

of connectivity in the network of the nickel phase (ε) and to a drop of constrictivity (β), based on results
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from 3D image analysis. This example illustrates, that the recent progress in image analysis, which allows

quantitative description of critical microstructure parameters, together with the quantitative relationships (as

presented in this study) represents a powerful combination of methods, which opens new possibilities for the

study of microstructure effects. This is important not only for the study of degradation mechanisms, but it

can also be useful for improved materials processing due to knowledge based microstructure optimization.

Conclusion

In the present paper we investigate the hypothesis that effective transport properties such as electric conduc-

tivity in a porous SOFC electrode can be predicted based on the critical structural parameters (i.e. ε, τ, β

). In literature the link between effective transport properties and microstructure parameters is described

with different expressions for the M-factor. Here we investigate the predictive capabilities of Archie’s law

(5), tortuosity equation (6) and constrictivity equation (7). For this purpose we use a VMT approach based

on stochastic simulation. VMT enables to build up an extensive database consisting of 105 microstruc-

tures characterized in terms of the relevant volume-averaged characteristics ε, τ and β by 3D image analysis

and their corresponding M-factors gained by FE simulations. The quality of prediction is characterized by

the so-called mean absolute percentage error (MAPE), which considers the difference between predicted

and simulated M-factors for the entire set of chosen microstructures. It turns out that predictions based on

Archie’s law ((5) depending solely on ε) and on the well-known tortuosity equation ((6), which is a function

of ε and τ) have limited or even a poor qualities. Better results are achieved with the constrictivity equation

(7), which is a function of all three structural parameters (ε, τ, β). The quality of prediction can be further

improved by introducing modifications of the constrictivity equation, which include a linear pre-factor and

exponential coefficients for ε, τ and β. The pre-factor and the coefficients are determined with a fitting

procedure, which minimizes the MAPE of the modified expressions. Based on these methodologies and by

taking into account the large database from VMT the following equation (c.f. (13)) can be postulated as

an empirical expression with a high predictive capability for the M-factor and associated effective transport

properties:

M = 2.03 ε1.57 β0.72/τ2 .
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With this expression a good quality of prediction is achieved as well for microstructures that are similar to the

ones in real technical materials such of SOFC electrodes (i.e. MAPESSGM = 16), as also for HBM structures

with extreme configurations such as high volume fractions or high constrictivities (i.e. MAPEtotal = 20).

Based on the results from all modified expressions (8)-(14) a strong correlation is identified between volume

fractions and M-factors. Hence, as a first approximation, the effective transport properties are dominated by

ε. However, the results also document that constrictivity has an essential influence on the M-factor. This

influence of β is particularly strong for materials with low M-factors (i.e. with a strong bottleneck effect).

Finally, also the influence of geometric tortuosity is significant due to the corresponding exponent of 2. The

VMT approach is validated by comparison with experimental results from two SOFC anodes before and

after redox degradation. It is shown that the favored expression (13) is capable to predict qualitatively the

influence of microstructure degradation on effective electrical conductivity. Apparently, for microstructures

with a low M-value, the %-error (i.e. the relative difference between Mpred and Msim (or Mmeas) are quite

large (up to 60%) and the reasons for this uncertainty are not yet identified conclusively. Hence, more

experimental work needs to be done for the validation of the VMT approach. In summary, the investigations

based on the VMT approach give deeper insight into the relationship between microstructure and effective

transport properties. It must be emphasized that the study is only valid for composite microstructures where

transport takes place in a single phase. In future, the postulated relationship (13) can be used to describe

the influence of microstructure on electric or ionic conductivity in composite materials. This is of particular

interest for studies dealing with materials for energy conversion such as electrodes of fuel cells and batteries

or membranes in electrolysis cells.
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Figure 1: Basic idea of geometric tortuosity τ explained on a 2D example: material with white colored phase

of interest (left), extraction of graph (center), and computation of shortest paths (green line, right) from a

chosen inlet-point (red circle, right) to the corresponding outlet-points (blue circles, right). The geometric

tortuosity τ is then given by the mean length of shortest paths `e divided by the material thickness `
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Figure 2: Left: determination of rmax by cPSD. The radius of the blue sphere is determined as rmax, when

50 % of the phase of interest (bright green area) can be covered by union of spheres (blue) with radii rmax;

right: determination of rmin by MIP-PSD. The radius of the blue sphere is determined as rmin, when 50 %

of the phase of interest (bright green area) can be covered by union of spheres (blue) with radii rmin, but

with the important restriction of a directed filling from the bottom. Note that this union of spheres is always

connected to the bottom.
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Figure 3: Basic idea of the stochastic microstructure model: modeling of vertices by a 3D point process

(left), introducing edges (center), and dilation of edges by independent random radii (right)
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Figure 4: Relative neighborhood graph of the set of vertices V1,V2,V3
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Figure 5: Realizations of the modified relative neighborhood graph (mRNG) with fixed intensity λ =

4.63 · 10−6 of vertices and with α = −5 (left, vertically orientated edges); α = 0 (center, isotropic directions

of edges), and α = 5 (right, horizontally orientated edges)
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Figure 6: Realizations drawn from the stochastic spatial graph model (SSGM) with different degrees of

dilation. All three structures have the following identical parameters
(
λ = 4.63 10−6, α = 0, g1 = 5

)
but g2 is

varied, i.e., g2 = 1 (left), g2 = 4 (center), and g2 = 7 (right)
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Figure 7: Illustration of the hyperbolic bottleneck model (HBM). 3D tubes with rotational symmetry are

created from a single 2D tube with sequences of hyperbolic bottlenecks. The radii of and the distances

between bottlenecks are chosen either deterministically (center) or at random (right)
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Figure 8: Illustration of the nickel morphology in Ni-YSZ anodes before (left) and after (right) redox

cycling. Due to the degradation, the nickel phase is coarsening and some grains are forming isolated islands,

which do not contribute to the transport of electrical current (reproduced from6)
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Figure 9: Visualization of meshed grids for FE simulation. Left: nickel phase in SOFC anode before redox,

based on FIB-tomography; right: grid representation of a virtual structure generated with SSGM, which has

the same morphological characteristics (i.e. same ε, τ, β) as the nickel phase in the anode before redox.

41



Figure 10: Illustration of parameter constellations obtained from the 107 microstructures, which are selected

for transport simulation by FEM. The two plots show the variation of constrictivity (left) and geometric

tortuosity (right) as a function of volume fraction (x-axes). Black = structures from SSGM, green = HBM,

pink = FIB-tomography of Ni-YSZ anodes
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Figure 11: Histograms of the M-factors computed by FE simulations for the microstructures drawn from

the SSGM (left), from the HBM (center), and from the SSGM and HBM (right)
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Figure 12: Percentage errors calculated from the difference between simulated (via FEM) and predicted

M-factors, whereby the predictions are based on one of the known formulas (5), left, (6), middle and (7),

right. The errors of 105 virtual microstructures are plotted against the simulated M-factors on the log2 scale.

Data based on the SSGM and HBM are plotted in black and in green colors, respectively
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Figure 13: Percentage errors originating from the difference between Msim (via FEM) and Mpred using

formulas (8)-(14) plotted against Msim given on the log2 scale. Data based on the SSGM (HBM) are plotted

in black (green) color
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Figure 14: Comparison of M-factors simulated by FEM Msim and predicted by formula (13) Mpred for

microstructures generated by SSGM (black), HBM (green), experimental 3D anode data sets (blue, or pink

when referring to Mmeas instead of Msim) and corresponding SSGM microstructures fitted to the experimental

microstructures (gray). Msim (Mmeas) given on the log2 scale plotted against Mpred
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Figure 15: Overview of processing steps for the study of microstructure influences on effective transport

properties. The computation time may vary with the type of microstructure under consideration. It should

also be noted, that for some steps the manual set-up of the procedure requires considerable amount of time,

which is included in the estimated ‘computing time’
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Table 1: MAPESSGM and MAPEtotal computed for Mpred and Msim where Mpred is based on the three known

formulas (5), (6) and (7)
Archie’s law (5) tortuosity-eqn. (6) constrictivity-eqn. (7)

MAPESSGM 47 341 37
MAPEtotal 50 625 37
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Table 2: Fitted parameters of the formulas (8-(14) by means of the simulated annealing algorithm
eqn. matrix a b c d MAPESSGM MAPEtotal

(8) 2.346 1.569 0.709 2.298 15 25
(9) – 1.327 0.689 1.478 25 28

(10) 1.105 3.27 – – 46 48
(11) 2.943 3.136 – 2.01 45 47
(12) 1.04 2.194 0.58 – 34 44
(13) 2.03 1.57 0.724 2 (fixed) 16 20
(14) – 1.156 0.668 2 (fixed) 27 26
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Table 3: Compilation of structural characteristics (ε, β, τ) and different M-factors from simulation (Msim),

from prediction with equation (13) (Mpred) and from conductivity measurement (Mmeas) for Ni-cermet anodes

and SSGM data

color Msim(1a-2b)
method sample (Fig. 14) ε β τ Mmeas(3a,3b) Mpred Msim-Mpred %-error

1a FIB-SEM anode blue 0.32 0.3 1.73 0.077 0.048 0.029 60.4
before redox

1b FIB-SEM anode blue 0.18 0.19 1.78 0.006 0.013 -0.007 -53.8
after redox

2a SSGM fitted gray 0.32 0.31 1.73 0.045 0.049 -0.004 -8.2
to 1a

2b SSGM fitted gray 0.19 0.19 1.85 0.016 0.013 0.003 23.1
to 1b

3a 4-point anode pink 0.32 0.3 1.73 0.027 0.048 -0.021 -43.8
meas. before redox

3b 4-point anode pink 0.18 0.19 1.78 0.01 0.013 -0.003 -23.1
meas. after redox
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