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Abstract

Wide-angle light scattering (WALS) offers the possibility of a highly tempo-

rally and spatially resolved measurement of droplets in spray-based methods

for nanoparticle synthesis. The size of these droplets is a critical variable af-

fecting the final properties of synthesized materials such as hetero-aggregates.

However, conventional methods for determining droplet sizes from WALS image

data are labor-intensive and may introduce biases, particularly when applied to

complex systems like spray flame synthesis (SFS). To address these challenges,

we introduce a fully automatic machine learning-based approach that employs

convolutional neural networks (CNNs) in order to streamline the droplet sizing

process. This CNN-based methodology offers further advantages: it requires few

manual labels and can utilize transfer learning, making it a promising alterna-

tive to conventional methods, specifically with respect to efficiency. To evaluate

the performance of our machine learning models, we consider WALS data from

an ethanol spray flame process at various heights above burner surface (HABs),

where the models are trained and cross-validated on a large dataset comprising

nearly 35000 WALS images.

Key Words: Inverse problem, machine learning, convolutional neural network,

WALS imaging, nanoparticle synthesis, spray flame synthesis, hetero-aggregate



1. Introduction

In modern nanotechnology, the significance of spray-based methods for tai-

lored nanoparticle synthesis is paramount, serving as a key for advancing materi-

als science. Notably, with techniques such as spray flame synthesis (SFS) [1] and

oppositely charged electrosprays (ES) in combination with high-temperature

furnace systems [24], not only the production of diverse ceramic nanoparticle

systems such as titania, silica, alumina and iron oxides is feasible, but also of

so-called hetero-aggregates. Such particle systems, composed of distinct materi-

als with defined interface-contacts, may introduce novel electronic, mechanical,

and optical properties that transcend those of their individual constituents.

For example, a noteworthy application in the realm of photocatalysis involves

hetero-aggregates formed by titanium dioxide (TiO2) and tungsten trioxide.

The interface-contacts in these hetero-aggregates play a crucial role in spatially

separating photogenerated electron-hole pairs. This separation minimizes their

direct recombination, thereby enhancing the photocatalytic performance beyond

that of pure TiO2 [12, 16, 22].

For the production of hetero-aggregates by SFS, the control of the atom-

ization and evaporation processes is crucial as the resulting droplet size distri-

butions profoundly influence the final nanoparticle characteristics, such as size,

morphology, and composition. Therefore, a sophisticated in situ measurement

of droplet sizes and their distribution is required for a detailed understanding

of the underlying processes and a controlled particle synthesis [14].

The investigation of droplet sizes hereby requires noninvasive laser-based

measurement techniques as they provide high temporal and/or spatial resolu-

tion. Phase Doppler anemometry (PDA) is commonly used in fluid dynamics

research and industrial applications to determine statistical distributions of the

size and velocity of droplets. Fast photodetectors allow the rapid detection of

thousands of individual droplets in comparably short measurement times of a

few seconds to minutes [11]. However, accurate droplet sizing is limited to ho-
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mogeneous and spherical objects and thus prone to errors when investigating

processes such as the SFS, where evaporating droplets and already synthesized

nanoparticles of various shapes might be present in the measurement volume si-

multaneously. Here, the wide-angle light scattering (WALS) approach [7, 15] is

favorable as it allows the detection of almost continuous scattering patterns and

hence a separation of the different angular scattering patterns from nanoparti-

cles and micrometer-sized droplets [1, 2, 3].

Aßmann et al. [3] developed an evaluation algorithm for droplet sizing based

on the characteristic local maxima in the Mie scattering patterns from homo-

geneous spheres with diameters above 1 µm. In this way, the determination of

droplet size distributions is possible even with a smooth scattering background

from nanoparticles allowing a comprehensive in situ investigation of SFS pro-

cesses with respect to both droplet evolution and nanoparticle formation [3].

However, the detection of the local maxima via the parameterized MATLAB-

based function in WALS data might lead to biased or erroneous results when

investigating different SFS systems or sprays. Moreover, a manual and time-

consuming verification of a correct detection of local maxima is required for

validation. Here, the implementation of convolutional neural networks (CNN)

might improve the evaluation of droplet sizes from WALS data. Specifically,

by employing CNNs, we can provide a more efficient method for the predic-

tion of droplet sizes in WALS images that requires less manual labeling. Such

CNN-based approaches have been applied to a variety of different tasks, e.g, the

efficient labeling of image data, see [18], or image classification and regression

tasks, see [9, 10, 25]. While first attempts to apply machine learning algorithms

for the evaluation of scattering data from nanoparticles and heterogenous mate-

rials were successful [19, 23], a similar approach for the evaluation of scattering

from single droplets has not been applied so far.

Therefore, in this study, we investigate the potential of machine learning

techniques, specifically CNNs, to predict the size of droplets in WALS images.

To test the effectiveness of this approach, we utilize droplets observed in WALS

images that are the result of a spray flame process with ethanol at heights above
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burner surface (HABs) ranging from 20 mm to 120 mm. This range provides

a useful testbed for evaluating the performance of our machine learning-based

approach.

The rest of this paper is organized as follows. In Section 2 we describe

the WALS data as well as the CNN-based methods, which we use to predict

the droplet sizes. The results of our analysis, including an evaluation of how

well the predictions allow to derive a droplet size distribution, are presented in

Section 3. In Section 4 the obtained results are discussed. Finally, Section 5

concludes and gives an outlook to possible future research.

2. Materials and methods

In this section, we present our data and methods in detail. In particular, we

describe how we applied CNNs to predict the size of droplets in WALS images.

2.1. Image data acquisition

The experimental setup for the spray flame burner (SpraySyn), its opera-

tion and the WALS measurements system is described in detail in [2, 3, 20],

Thus, here only a brief summary of the spray flame burner and the acquisi-

tion of scattering data utilizing the WALS approach is given. Schemes of both

the SpraySyn burner and the WALS measurement principle, respectively, are

depicted in Figure 1.

The SpraySyn burner features a two-fluid nozzle, which atomizes a (precursor-

laden) solution with a dispersion gas into a hot pilot flame. The nozzle is sur-

rounded by a bronze sinter-matrix that directs the premixed combustion gas for

the pilot flame inward and shields the flame using an inert sheath gas. Flow

rates for gases are controlled by mass flow controllers and set to 10 slm oxygen

for atomization, a mixture of 2 slm methane and 16 slm oxygen for the pilot

flame and 120 slm pressurized and dried air for the sheath gas. Pure ethanol

(EtOH) is used as solvent and pumped through the inner capillary at 2 ml/min

by a syringe pump.
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Figure 1: Spray flame burner (SpraySyn) (left) and WALS measurement principle (right)

The essential component of WALS measurements is an ellipsoidal mirror with

two focal points at a defined distance. In the first focal point, the probe volume,

objects such as droplets are irradiated by a beam of monochromatic (λ = 532

nm) and vertically polarized laser light guided through two slits on each half of

the mirror. The elastically scattered light is captured by the mirror surface in

the horizontal scattering plane and directed through an aperture in the second

focal point of the mirror and a camera lens (f = 12.5 mm) onto a CCD sensor.

The diameter of the laser beam (1.0 mm) and the aperture of the camera (f /2.0)

define the size of the cylindrically shaped probe volume (length ≈ 12 mm) and

thus the spatial region from which scattered light is recorded by the camera.

The maximum angular resolution (≈ 0.2°) is determined by the pixel size of the

CCD sensor of the equipped camera (Pike F-100 B, Allied Vision Technologies

GmbH, 1000 × 1000 pixel) and the maximum angular region (10° to 170°) by

the two slits in the mirror through which the laser beam is guided, resulting in

a WALS measurement image for which the scattering information is located in

two ring-shaped segments, see, for example, Figure 2 (non-black region).

In this paper, we reused the WALS measurement data acquired from the

EtOH spray flame at HABs between 20 mm and 120 mm (10 mm step) [2].

At each HAB between 2000 and 6000 scattering images (nearly 35000 in total)

were acquired and serve as a database for the training and evaluation of the
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CNN-based approach described in Section 2.3.

2.2. Generation of training data

To effectively train neural networks for the purpose of predicting droplet

sizes from WALS image data, it is essential to obtain accurate ground truth

labels, i.e., the size of a droplet observed in a WALS image. These labels

were determined using the algorithm introduced in [3] for each WALS image

considered in the present paper. Importantly, each WALS image is divided

into two ring-shaped segments, left and right, and droplet sizes are initially

determined independently for each.

The division of each WALS image into two separate ring-shaped segments,

left and right, allows for more precise measurements in some scenarios, e.g., when

multiple droplets enter the probe volume or a measured droplet is significantly

off-center. In these cases, the signals on the right- and left-hand sides may differ,

leading to inaccuracies in size predictions if the entire ring were considered as

a whole. By independently determining droplet sizes for each segment, these

potential discrepancies can be identified more efficiently.

More specifically, the first step of this process involves converting the 2D

WALS image data into scattering data using the method described in [7]. In

this context, scattering data refers to a 1D representation of each ring-shaped

segment of the original 2D WALS image, where each point in the 1D data

corresponds to an angle with respect to the center point in the 2D image and

has an intensity value that is the average intensity over the corresponding angle

in the ring-shaped segment.

A peakfinder algorithm is then applied to this scattering data in order to

isolate peaks that exceed a specific intensity threshold. By analyzing simulated

scattering data, a correlation was established between the distance separating

these peaks and the size of the droplets, i.e., allowing us to predict the droplet

size from the distance between isolated peaks in the scattering data. After

droplet sizes were determined using this correlation, images leading to erroneous

detection of local maxima are manually identified, see [2, 3] for details.
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Even though the droplet size for such erroneously detected images is un-

known, they can still be utilized during the training of the neural network.

More specifically, two separate networks are trained. The first network is a bi-

nary classifier that checks if a droplet can be detected using the algorithm (and

the manual removal) mentioned above, while the second network estimates the

size of the detected droplet. The binary classifier network, which decides if a

droplet size can be detected, is trained using images for which droplet size is

available and those for which it is not.

Using the algorithm described above, each experimentally measured WALS

image is assigned two scalar values s∗L, s
∗
R, corresponding to the droplet sizes

determined for the left and right ring-shaped segments, respectively. In cases

where no droplet size can be determined, the placeholder value of −1 is as-

signed instead. In order to simplify the subsequent analysis, the resulting

vector (s∗L, s
∗
R) is converted into a ground truth vector (s1, s2, s3, s4), where

s1 = 1(s∗L > 0), s2 = 1(s∗R > 0) and (s3, s4) = (s∗L, s
∗
R). Here, 1 denotes the

indicator of the given condition, which outputs 1 if the condition is true and 0

otherwise.

2.3. CNN-based approach for the estimation of droplet size

In this section, we detail a machine learning-based approach for the auto-

matic prediction of droplet sizes from WALS image data using a CNN. Our goal

is to predict the entire ground truth vector s = (s1, s2, s3, s4) introduced above,

which includes both the droplet sizes s3, s4 and whether or not a droplet was

detected, as indicated by the categorical variables s1, s2. Eventually, our goal is

to consolidate this vector s, or its estimations, to determine a single, accurate

droplet size for each WALS image. Details on this can be found in Equation 1

and Section 3.

Compared to the procedure used to generate the ground truth, see Sec-

tion 2.2, the CNN-based approach offers several advantages. Most importantly,

it is fully automatic and does not require manual intervention, which can be

time-consuming and prone to errors. Therefore, given the necessity to ana-
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lyze vast amounts of data, the CNN-based approach can help to streamline

the synthesis of complex particles, such as hetero-aggregates. Additionally, if a

suitable ground truth is given consisting of additional descriptors, other than

the droplet size, the approach can easily be extended in order to predict such

additional descriptors.

However, before using the WALS image data for training a CNN, it is es-

sential to preprocess the data. This preprocessing step is crucial for enabling

the CNN to efficiently process the data and accurately predict the ground truth

vector. In the following, we will outline in detail how this preprocessing step

is performed and how it helps to improve the performance of the CNN-based

approach.

1000 × 1000 56 × 496

25 × 19

Figure 2: A side-by-side comparison of the original WALS data (left) and the preprocessed

image (right). The preprocessing involved applying a polar transformation and removing

imaging artifacts (gray spots in the magnified cutout). The original image has a resolution of

1000× 1000, while the preprocessed image (right) has a resolution of 56× 496.

2.3.1. Data preprocessing

The WALS image data can be described as a map I : W → R, where the

pixel space W = {0, 1, . . . , 999} × {0, 1, . . . , 999} is a discretized square and

I(v) ∈ R denotes the grayscale value of pixel v = (v1, v2) ∈ W . However, due

to the nature of the WALS device, only those pixels within a ring around a pole
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(c1, c2) ∈ [0, 999]× [0, 999] are illuminated, pixels outside of that ring contain no

information with respect to the droplet, see Figure 2 (left). Therefore, several

steps were taken to prepare the images for analysis. The most important step

involves the application of a polar transformation to the images, which is useful

for unwrapping circular objects (such as WALS image data).

More specifically, the polar transformation is applied to the input image I in

order to obtain a transformed image Ip : Wp → R, where the polar pixel space

Wp is a set with equidistant points that spans the entire two-dimensional polar

coordinate system (0, 500] × [0, 2π). For that purpose, Cartesian coordinates

(v1, v2) ∈ W are transformed into polar coordinates (r, θ) ∈ (0, 500] × [0, 2π)

with respect to a given center point (c1, c2) ∈ [0, 999]× [0, 999]. More precisely,

the polar coordinates (r, θ) are calculated from the Cartesian coordinates (v1, v2)

using the following equations:

r(v1, v2) =
√
(v1 − c1)2 + (v2 − c2)2

θ(v1, v2) = tan−1

(
v2 − c2
v1 − c1

)
.

In this manner we obtain the pair of polar coordinates (r(v1, v2), θ(v1, v2)) and

the corresponding intensity value I(v1, v2) for each pixel (v1, v2) ∈ W . The

intensity values of the transformed image Ip, which are defined on the set Wp,

are then determined by linear interpolation.

In order to maintain a high image quality while also reducing the image size,

the size of the polar transformed image is chosen to be 500× 500. Furthermore,

in order to determine the region of interest in the polar transformation of I

(i.e., the ring in which WALS signals are measured), a reference image was

additionally transformed. More precisely, this reference image was obtained by

using a separate image in which the entire mirror area was well-lit, highlighting

the pixels that could potentially contain relevant information. We obtained the

range of r and θ values that corresponded to the region of interest by identifying

the illuminated region in the transformed reference image. Then, the polar

transformation Ip is cropped to only include this region, thus resulting in a

reduced image size of 56 × 496, while retaining all relevant information. Note
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that, in addition to identifying the region of interest, the reference image was

also used to obtain the center point exploited for the transformation into polar

coordinates.

However, before applying the polar transformation and cropping the images,

a common type of imaging artifacts is identified and removed. These artifacts

manifest as singular bright spots with intensity value equal to the maximum

intensity value of 255. By “singular,” we mean that these bright spots are

isolated and not part of a larger pattern or structure in the image, as can be

seen by the singular gray spots (corresponding to a grayscale value of 255) in the

bottom-left magnified cutout of Figure 2 (left). It is important to remove these

bright spots because, during the training of a CNN, they can strongly influence

convolutions and lead to overfitting. This is implemented by determining all

pixels with intensity value equal to 255. For each such pixel v ∈ W with

I(v) = 255, we compute the average grayscale value of its neighboring pixels,

where a pixel is considered a neighbor if it is horizontally, vertically, or diagonally

adjacent to the pixel under consideration. If the average grayscale value of these

neighboring pixels is below a threshold value of 128, we replace I(v) by the

calculated average value.

In summary, we applied several preprocessing steps to the WALS image data

in order to reduce the input size, while retaining all relevant information and

improving the quality of the images for further analysis. From this point on, all

analyses and model training steps are performed exclusively on this preprocessed

WALS image data.

2.3.2. Deep neural network architecture

It is important to reiterate that two different networks are used in order

to predict the class labels s1, s2 and the quantitative descriptors of droplet

size s3, s4. Nonetheless, both networks possess the same basic architecture,

which consists of two main parts: a convolutional part and a dense part. The

convolutional part is designed to extract and process features from the input

data, while the dense part is used to perform classification on the extracted
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features. A schematic representation of the architecture is shown in Figure 3.

conv1

conv2

conv3

fc5 fc7

56 x 496 x 64

28 x 248 x 128

14 x 124 x 256

7 x 62 x 512 1 x 31 x 512

1 x 1 x 124 1 x 1 x 32

convolutional + ReLU

max pooling

fully connected + ReLU

Output

diluted convolutional +
ReLU

conv4

1 x 1 x 64

fc6

Figure 3: Schematic representation of the deep neural network architecture for the choice of

hyperparameter nf = 64.

The convolutional part of the architecture includes several residual blocks

and a dilated residual block, similar to the downsampling part in the U-net

architecture used in [4]. Each residual block consists of several convolutional

layers with a specified number of filters, followed by batch normalization and

rectified linear unit (ReLU) activation layers. The input of each residual block is

added to its output in order to form a residual connection, allowing the residual

block to learn residual mappings between the input and output, see [6]. The

use of such residual blocks has been shown to improve learning in deep neural

networks, see [5]. The residual blocks also include a max-pooling layer with

a specified pool size. These max-pooling layers are used to reduce the spatial

dimensions of the output from each block, as in [18]. The dilated residual block

is designed to increase the receptive field of the network without increasing the

number of parameters. The dilated residual block consists of several dilated
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convolutional layers with a specified dilation rate and number of filters, each of

which are followed by batch normalization and ReLU activation layers. In this

design, each successive residual block doubles the number of filters, starting

from an initial hyperparameter value nf, the model architecture for nf = 64

is depicted in Figure 3. This approach ensures a progressive increase in the

network’s capacity to extract increasingly complex features at each residual

block.

The dense part of the architecture is used to perform classification and pre-

diction on the extracted features of the convolutional part. The output of the

final convolutional layer is flattened and passed through three dense layers with

2 · nf, nf and
nf

2 units, respectively, and ReLU activation functions. The final

layer, i.e., the output layer, of the base architecture consists of two units, where

the activation function is either a sigmoid (for the architecture which deter-

mines the class labels s1 and s2) or a ReLU function (for the architecture which

predicts the droplet sizes s3 and s4).

We aim to identify an effective choice for hyperparameter nf that strikes a

balance between the network’s ability to capture essential features and reduced

model complexity. For that purpose, we systematically vary nf by putting it

to values in the set {8, 16, 32, 64}, details of this selection process are described

in Section 2.3.5. The remaining neural network parameters, denoted by ϕ,

which we will refer to as trainable parameters, are chosen via gradient descent

as described in the next section.

2.3.3. Training procedure

In order to accurately predict the presence and size of droplets from pre-

processed WALS images, we need to train our neural networks on datasets of

labeled examples. This training process involves adjusting the network’s train-

able parameters to minimize the discrepancy between the predicted and true

outputs.

The available data, denoted by D, consists of n pairs of input images and

their corresponding output vectors for some integer n > 1, i.e., D = {(I(i)p , s(i))}ni=1
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where I
(i)
p is the i-th input image and s(i) = (s

(i)
1 , s

(i)
2 , s

(i)
3 , s

(i)
4 ) is the cor-

responding ground truth vector. We use two neural networks: one for pre-

dicting the binary labels s1, s2, which indicate whether a droplet was detected

on the left and right ring-shaped segments, respectively; and another one for

predicting the quantitative descriptors s3, s4 of droplet size, corresponding to

the ground truth droplet size measured in the left and right ring-shaped seg-

ments, respectively. Thus, the respective training sets Dtrain,1 and Dtrain,2 for

the two networks consist of the following pairs of input images and their cor-

responding output vectors: Dtrain,1 = {(Ip, (s1, s2)) : (Ip, s) ∈ Dtrain}} and

Dtrain,2 = {(Ip, (s3, s4)) : (Ip, s) ∈ Dtrain with s1 + s2 > 0}}, where Dtrain ⊂ D

denotes the data that can be utilized during training. The condition that

s1+s2 > 0 for Dtrain,2 ensures that the training set for the droplet size prediction

network includes only those images for which a droplet size can be detected on

at least one ring-shaped segment. In order to increase the variety in the training

data, we use training data augmentation [13, 21]. This involves the application

of random transformations to the input images in order to generate additional

training data. Specifically, we use reflection and translation as options for data

augmentation.

Reflection involves flipping the image vertically with a probability of 0.5. If

the image is flipped vertically, the ground truth values are adjusted accordingly.

This adjustment is necessary due to the polar transformation applied to the

original image. In this polar transformation, the y-axis of the transformed im-

age corresponds to the angular coordinate in the polar system, which is defined

with respect to a reference axis drawn from the center to the top edge of the

original image. Therefore, a vertical flip of the transformed image is equivalent

to a horizontal flip of the original image in Cartesian coordinates. Because the

ground truth labels are assigned specifically to the left and right ring-shaped

segments of the WALS image, this change in orientation necessitates an adjust-

ment of the ground truth values to maintain the correct association of the labels.

By reflecting a WALS image, we essentially create a mirror image of the droplet,
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i.e., as if it were captured in a different spot. Therefore, applying reflections

during training improves the model’s ability in detecting droplets consistently,

no matter where they appear in the measurement area. For translation, we

shift the image in both the x- and y-directions by a maximum of two pixels

which corresponds to an angular change of approximately 1.5 degrees in the

original WALS image. Importantly, all movements within this range are equally

likely, ensuring a uniform distribution of translations for the data augmentation

process. This method is chosen to train models that remain consistent despite

minor variations within the experimental setup. This characteristic is crucial

for the dependable and practical analysis of future experimental data.

During the training phase for each neural network, we employ a mini-batch

gradient descent approach in order to update the trainable parameters. More

specifically, for a given batch size b ≤ n, we repeatedly select batches of b

random images from their designated training sets and input them into the cor-

responding neural network, producing predictions. These predictions are then

compared to the ground truth labels and the discrepancy is quantified via a spe-

cific loss function. Subsequently, the gradient of this loss function with respect

to the trainable parameters is computed to refine the model. Based on this

gradient, adjustments to the parameters are made using the Adam optimizer,

as referenced in [8]. This optimizer adapts the learning rate for each parameter

depending on the first and second moments of the gradients. This iterative pro-

cess of batch selection, prediction generation, loss computation, and parameter

updating is conducted for up to 150 epochs, each containing 100 batches. The

maximum number of epochs was chosen due to computational limitations. For

more details, please refer to Section 2.3.5.

During network training, the quality of our predictions is continuously as-

sessed. This assessment is primarily driven by the loss functions, which highlight

the difference between the predictions and corresponding ground truth values.

In the next section, the loss functions considered in this paper are described in

detail.
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2.3.4. Loss function

To train our neural networks in order to accurately predict the binary labels

s1, s2 and the quantitative descriptors of droplet size s3, s4, we need to consider

suitably chosen loss functions. They measure the discrepancy between the pre-

dicted values ŝj and the true values sj , for j = 1, 2, 3, 4, providing a feedback

mechanism for the neural networks to adjust their parameters during training.

Given the distinct nature of our two tasks - one of them performing classification

and the other one performing quantitative scalar prediction - we employ differ-

ent loss functions for each case. This allows us to tailor our approach according

to the specific requirements of each task.

For training the droplet detection network, we use the mean absolute error

(MAE) as loss function, where the MAE calculates the mean absolute differ-

ence between the first two components of the predicted labels ŝ = (ŝ1, . . . , ŝ4)

and the corresponding ground truth labels s = (s1, . . . , s4). Specifically, for

a set of b predictions ŝ(1), ŝ(2), . . . , ŝ(b) and corresponding ground truth labels

s(1), s(2), . . . , s(b), the MAE for the j-th component is given by

MAEj =
1

b

b∑
i=1

|ŝ(i)j − s
(i)
j | for j ∈ {1, 2, 3, 4}.

Moreover, for the training of the droplet detection network, we consider both

MAE1 and MAE2 as they relate to the binary labels for droplet detection on

the left and right ring-shaped segments, respectively. Therefore, the training

loss for the detection network is the average of MAE1 and MAE2, i.e., the value

of (MAE1 +MAE2)/2.

For the droplet size estimation network, using the MAE is not optimal be-

cause the relative impact of an absolute error is much more pronounced for

smaller droplets. Therefore, we need a loss function that equally emphasizes

the importance of errors across all droplet sizes during training. This can be

achieved by a loss function which is based on the symmetric mean absolute

percentage error (SMAPE). The SMAPE calculates the absolute percentage

difference between predicted labels ŝ and the ground truth s. Specifically, the
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SMAPE for the j-th component is defined as

SMAPEj =
1

b

b∑
i=1

2|ŝ(i)j − s
(i)
j |

|ŝ(i)j |+ |s(i)j |
for j ∈ {3, 4}.

As already mentioned above, the advantage of using the SMAPE for the

droplet size estimation network is that it is a scale-invariant measure of accuracy.

This means that it assigns equal importance to relative errors, regardless of the

magnitude of the true values. This property is particularly useful when dealing

with data that spans a wide range, such as droplet sizes.

However, as outlined in Section 2.2, our approach for the generation of

ground truth labels involves analyzing both ring-shaped segments of the WALS

image separately. Consequently, a significant number of images in our dataset

only has ground truth values for droplet sizes on one ring-shaped segment, e.g.,

s
(i)
1 = 1 and s

(i)
2 = 0, in which case we can calculate a meaningful size discrep-

ancy for the left ring-shaped segment, but not for the right one. To effectively

utilize this data as well, we employ a weighted SMAPE loss function, where the

weights are used to exclude data points without ground truth droplet size val-

ues by multiplying the computed discrepancy with a weight of 0. This ensures

that the SMAPE is computed only for the ring-shaped segments of the WALS

image in which droplets were detected. As a result, this approach enables us

to accurately evaluate the performance of our size estimation network on all

available data. The weights of 1 and 0 correspond to the cases whether or not

a droplet was detected in the ground truth. For example, if s
(i)
1 = 1 then s

(i)
3

is a valid droplet size. Therefore, the weighted SMAPE (SMAPEw) of the j-th

component is given by

SMAPEw,j =
1

b

b∑
i=1

s
(i)
j−2

2|ŝ(i)j − s
(i)
j |

|ŝ(i)j |+ |s(i)j |
for j ∈ {3, 4}.

Again, finally, we consider the average of the losses computed on the left and

right ring-shaped segments, i.e., the value of (SMAPEw,3 + SMAPEw,4)/2.

This combination of the loss functions described above allows us to accu-

rately measure the performance of the neural networks while taking into account
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all available data.

2.3.5. Model selection and early stopping

The goal of this section is to describe the methodology used to determine

suitable model parameters, i.e., the number nf of filters (see Section 2.3) and

trainable parameters such that the resulting neural network performs well on

previously unseen data.

More specifically, we aim to determine a suitable choice for hyperparameters

nf ∈ {8, 16, 32, 64} and trainable parameters ϕ ∈ Rdnf , where the dimension of

ϕ depends on the choice of nf, such that

(nf,ϕ) = argmin
(nf,ϕ)

Lnf,ϕ;Dtest
.

Here the argmin is taken over all admissible parameters (nf,ϕ) ∈ {8, 16, 32, 64}×

Rdnf and the value of

Lnf,ϕ;Dtest
=

∑
(Ip,s)∈Dtest

L(Mnf,ϕ(Ip), s)

represents the loss on the test dataset Dtest ⊂ D \Dtrain for the loss function L,

where Mnf,ϕ(Ip) denotes the output of the neural network with hyperparameter

nf and trainable parameters ϕ.

For that purpose, we iterate through hyperparameters nf ∈ {8, 16, 32, 64}

and obtain a suitable ϕ by applying the training procedure as described in

Section 2.3.3. This training proceeds for up to 150 epochs, continually updating

the trainable parameters, resulting in different models M
nf,ϕ

(nf)
e

, where ϕ(nf)
e

denotes the trainable parameters of the neural network that has been trained for

e epochs on the dataset Dtrain with hyperparameter nf. In order to evaluate the

goodness-of-fit for each of the considered models at these epochs, we evaluate

their performance on a validation dataset Dval ⊂ D \ (Dtrain ∪ Dtest). More

precisely, we compute the validation loss at the e-th epoch L(val)
e,nf = L

nf,ϕ
(nf)
e ;Dval

.

To optimize the training process and prevent overfitting, we employ an early

stopping mechanism based on this validation loss as discussed in [17]. More

specifically, if L(val)
e,nf does not improve in three consecutive checks performed
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every fifth epoch, we terminate training. Formally, if e ∈ {20, 15, . . . , 150} is

the smallest number of epochs such that

L(val)
e−15,nf

≤ L(val)
e−10,nf

≤ L(val)
e−5,nf

≤ L(val)
e,nf

,

then training is stopped at epoch e, denoted by eend,nf
= e. If no such epoch e

exists, then training terminates at epoch 150 and eend,nf
= 150.

Finally, we select the hyperparameter nf and corresponding trainable pa-

rameters ϕ such that

nf = argmin
nf∈{8,16,32,64}

L(val)
enf

,nf
and ϕ = ϕ(nf)

enf
,

where enf
denotes the epoch for which the lowest validation loss has been ob-

tained when training with the hyperparameter nf, i.e., enf
= argmine≤eend,nf

L(val)
e,nf .

Meaning that the model with the lowest validation error is chosen, indicating

good performance and generalization capabilities.

3. Results

In this section, we present the results of our analysis for the characterization

of droplets using WALS images. We evaluate the performance of two network

models: one for droplet detection and one for droplet size estimation. The

ground truth for each WALS image was obtained using the methodology de-

scribed in Section 2.2, more details on this methodology and the resulting data

can be found in [3]. In order to ensure that our models are able to generalize

to new data, we consider the following cross-validation process. Different pairs

of droplet detection and droplet size prediction models were trained for each

HAB, using only the data from the other HABs for training (85% of the data)

and validation (15% of the data). After training and model selection, see Sec-

tion 2.3.5, we evaluate the resulting models on the data from the HAB that was

not used for training or validation. This cross-validation process is repeated for

all HABs. More precisely, let H = {20, 30, . . . , 120} denote the set of all HABs.

Then, for each HAB h ∈ H, we train two models with data associated with the
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remaining HABs from H \ {h}. The models trained in this way, we denote by

M1,h and M2,h, respectively, where M1,h denotes the model for droplet detec-

tion and M2,h is the model for the prediction of droplet sizes. Note that the

results presented in this section are averaged across all HABs, unless otherwise

specified. Thus, if for i = 1, 2 we consider some function Φi(h) that assigns the

model Mi,h some performance measure that has been computed on the HAB

h ∈ H, then we generally consider the cross-validation value Φi given by

Φi =
1

#H

∑
h∈H

Φi(h),

where #H denotes cardinality of the set H, i.e., #H = 11 in our case.

3.1. Model performance for different numbers of training epochs

Figure 4 shows the influence of the hyperparameter nf on the resulting mod-

els’ performances, where the performance of the droplet detection networks is

quantified by the classification rate, i.e., the probability that a WALS image is

misclassified. The performance of the droplet size estimation networks is quan-

tified by the MAE of the predicted droplet sizes. Note that, while the SMAPE

is used during training to ensure that errors are considered in relation to droplet

size, the MAE is a more interpretable performance measure, which is used here

for visualization purposes. For each HAB, the models that obtained the best

validation scores during training are highlighted, showcasing that, except for a

few cases, our model selection process adequately determines hyperparameters

that lead to models with a relatively good performance on the corresponding

test sets. However, we noted that optimal validation losses were often achieved

after the 130th epoch, which would indicate that the maximum number of 150

epochs might not allow for optimal performance. To investigate this convergence

behavior, Figure 5 shows plots of model performance for different numbers of

training epochs for the two network models considered in this paper, each using

nf = 64. As it can be seen in Figure 5, the performance improves rapidly until

training epoch 20, after which the rate of improvement slows down. Both models
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continue to improve their performance until epoch 100, after which their per-

formance plateus. This indicates that, while training for more than 150 epochs

might yield better validation scores, the model performance calculated on the

test data does not significantly improve after epoch 100.
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Figure 4: Values of performance measures (on test data) for the trained neural networks

resulting from the different choices of hyperparameter nf. Hyperparameter choices yielding

the minimal validation loss are highlighted with colored circles.
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Figure 5: Values of performance measures for different numbers of training epochs for the

droplet detection model (left) and the droplet size estimation model (right) with nf = 64.

3.2. Misclassification rate and droplet size across different HABs

Furthermore, we performed an analysis of the classification rate across dif-

ferent HABs. Figure 6 shows large discrepancies between the measured and

20



20 30 40 50 60 70 80 90 10
0

11
0

12
0

HAB / mm

0

200

400

600

800

1000

1200

Nu
m

be
r o

f d
et

ec
te

d 
dr

op
le

ts

Ground truth
CNN-based prediction

Figure 6: Measured and predicted numbers of droplets for each HAB from the set H =

{20, 30, . . . , 120} at a training epoch of 100.

predicted numbers of droplets at four HABs (30, 40, 50 and 60 mm), indicat-

ing that the model predicts a substantially larger number of droplets at certain

HABs when compared to the ground truth.

However, it is possible that these additional droplets detected by the model,

but absent in the ground truth data, follow a size distribution similar to that

of the droplets in the ground truth. Therefore, we analyzed the impact of these

additional droplets on the resulting size distribution.

For that purpose, it is important to recall that the images have individual

labels for both the left and right ring-shaped segments, assigning a droplet

size to the corresponding ring-shaped segment if a droplet was detected. In

order to consolidate the droplet sizes from both ring-shaped segments into a

single value per image corresponding to the size of the measured droplet, we

consider the quantity SD, which takes the four-dimensional ground truth vector

s = (s1, s2, s3, , s4) as input, where

SD =


-1, if s1 = 0 or s2 = 0,

-1, if s1 > 0, s2 > 0 and
|s3 − s4|

max{s3, s4}
> 0.15,

s3 + s4
2

, otherwise.

(1)

In addition, this formula is applied to the corresponding predicted four-

dimensional vector ŝ = (ŝ1, ŝ2, ŝ3, ŝ4) to determine the predicted droplet size
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ŜD. Formula (1) specifies that if a droplet is not detected on both ring-shaped

segments or if the estimated sizes from each ring-shaped segment disagree by

more than 15%, then no droplet is considered to have been measured, as in-

dicated by the fictitious value −1. The threshold of 15% has been selected

heuristically and can be adjusted for new data sets if necessary.

As shown in Figure 7, the histograms of droplet size determined by means of

Equation (1) for ground truth (left) and predictions (middle) are quite similar.

To further quantify this similarity, we compared the median and interquartile

range (IQR) of both the ground truth and predicted droplet sizes. Note that the

median provides a measure of the central tendency of the distribution, while the

IQR provides a measure of its spread, where we obtained a median of 10.4µm

and an IQR of 5.5µm for the ground truth data, and a median of 10.6µm and

an IQR value of 5.6µm for the predicted distribution. This indicates that both

the central tendency and spread of the two distributions are similar, suggesting

that the additional droplets detected by the prediction model do not significantly

alter the resulting size distribution.
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Figure 7: Droplet size histograms for ground truth (left), predictions (middle) and difference

(right) across different HABs.

3.3. Comparison of two different methods for the prediction of droplet sizes

Moreover, we compared the CNN-based approach considered in the present

paper with another automatic method for droplet size prediction, see Figure 8.
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The latter method, which we refer to as the ”baseline method,” considers the

droplet characterization process as described in Section 2.2, however, without

the manual removal of erroneously detected WALS images, see [3]. In particular,

this means that the baseline method predicts the same droplet sizes for those

WALS images that did not need to be manually removed. Therefore, when the

necessity for manual removal of images is low, the baseline method can provide

a reasonable estimation of droplet size.

On the other hand, the baseline method lacks the ability to discern and ex-

clude erroneously detected WALS images, which can lead to inaccurate predic-

tions of droplet size. Therefore, when the data contains many such erroneously

detected images, the performance of the baseline method can be significantly

impaired and thus impact subsequent analyses.
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Figure 8: Boxplot of droplet sizes at different measuring heights, computed for ground-truth

data and two different prediction methods. The boxes represent the IQR of the data. The

whiskers extend to the most extreme data points within 1.5 times the IQR from the first and

third quartiles. The horizontal line inside each box indicates the median of the data, and any

outliers are plotted as individual points beyond the whiskers.

Comparing the performance of the CNN-based approach with that of the

baseline method is essential as it allows us to assess the improvements brought

by the incorporation of CNNs in droplet size prediction. Furthermore, by com-
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paring results of the present paper with those obtained by the baseline method at

each individual HAB, we better understand how the performance of the CNN-

based approach varies under the different measurement conditions associated

with each HAB. The results of this analysis are depicted in Figure 8, which pro-

vides a visual comparison of the droplet sizes determined by the ground truth,

the CNN-based predictions, and the baseline method at different HABs. Each

boxplot represents the median, IQR, and outliers for each respective set of data.

3.4. Parametric distributions of droplet sizes

To further analyze the similarity between the ground truth and CNN-based

prediction of droplet sizes, we fit parametric distributions to both datasets.

Specifically, we consider the log-normal distribution, which is commonly used

to model droplet size distributions. Note that the probability density function

of the log-normal distribution is given by

f(x) =
1

x lnσg

√
2π

e
− (ln x−lnµg)2

2(ln σg)2 , for each x > 0,

where µg, σg > 0 are model parameters. The model parameters µg and σg

correspond to the geometric mean and the geometric standard deviation of the

resulting probability distribution, respectively. We determined the values of

these parameters using maximum likelihood estimation and compared the values

obtained for the ground truth data and the CNN-based predictions, respectively,

see Table 1.

Moreover, in Figure 9, log-normal probability densities of droplet sizes are

shown, where it is clearly visible that, for the HAB of 30 mm, the probability

density fitted to CNN-based predictions approximates the probability density

of ground truth data better than the probability density fitted to data obtained

by the baseline method. When data from all available HABs is considered,

both the CNN-based approach as well as the baseline method lead to accurate

approximations of the log-normal probability density computed from ground

truth data, see Figure 9.
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Table 1: Comparison of model parameters. The pairs (µgt, σgt) and (µpred, σpred) are the

parameter values fitted to the ground truth and CNN-based prediction of droplet sizes, re-

spectively.

measuring height / mm µg,gt / µm σg,gt µg,pred / µm σg,pred

20 12.9 1.31 13.9 1.25

30 11.9 1.36 12.1 1.34

40 11.1 1.44 11.2 1.41

50 10.1 1.47 10.2 1.43

60 9.7 1.49 9.6 1.49

70 9.2 1.52 9.2 1.50

80 9.1 1.53 9.1 1.54

90 8.9 1.57 9.1 1.51

100 9.0 1.56 8.9 1.58

110 9.1 1.53 9.3 1.55

120 9.2 1.62 9.3 1.58

Aggregated 10.0 1.51 10.2 1.48

4. Discussion

The obtained results indicate that the model for droplet detection exhibits

a misclassification rate of approximately 10%, while the model for droplet size

estimation demonstrates high accuracy with an MAE of approximately 0.5µm.

These results suggest that the CNN-based approach considered in the present

paper is able to accurately detect individual droplets, and estimate their size,

in WALS images.

Our analysis also revealed that the performance of the models varies across

different HABs. In particular, four HABs (30, 40, 50 and 60 mm) exhibit large

discrepancies between the number of measured and predicted droplets. However,

when investigating the resulting droplet size distributions by combining the

output of both models using Equation (1), it is indicated that these additional

droplets do not significantly alter the resulting size distributions, as shown in
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Figure 9: Comparison of log-normal droplet size densities, for the measuring height of 30 mm

(left), and for the aggregated data across all measuring heights (right).

Figure 7. This suggests that the methodology presented in this paper is able to

accurately capture the underlying size distribution of droplets in WALS images.

Moreover, in Figure 8 we also evaluated another automatic method for

droplet size prediction, which we called the baseline method and which op-

erates similarly to the ground truth method except for the fact that it does not

involve manual removal of erroneously detected WALS images. Consequently,

the baseline method naturally aligns very closely with the ground truth at HABs

where almost no manual removal was necessary.

Despite that, at HABs of 30 and 40 mm the droplet sizes predicted by the

CNN-based approach resulted in medians and IQRs that were substantially

closer to the ground truth than those resulting from the droplet sizes predicted

by the baseline method, for HABs 50 and 60 mm both methods were accurate.

These differences are visualized by the vertical line (median) and box bound-

aries (IQR) in Figure 8. Furthermore, Figure 9 (left) visualizes this divergence

of the results of the baseline method from the ground truth with respect to the

resulting fitted log-normal probability densities at the HAB of 30 mm. Most

importantly, this deviation from the ground truth (of the results obtained by

the baseline method at these particular HABs) coincides with a higher rate

of manual filtering, as noted in [3], and provides a context for understanding

the performance of the CNN-based approach. In particular, the CNN-based

approach considered in the present paper achieves a closer alignment with the
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ground truth at the HABs of 30 and 40 mm, which indicates its effectiveness in

dealing with erroneously detected images. This suggests that the CNN-based

approach offers significant improvements over the baseline method in scenar-

ios requiring extensive manual filtering, underlining the value of incorporating

CNNs in droplet size determination.

However, there are several challenges that need to be addressed in future

research. One such challenge is the investigation of the robustness of our network

models to variations in the amount of training data. Specifically, this could be

investigated by withholding large parts of the training data during training.

Additionally, we only investigated data coming from a specific experimental

setup and it would be desirable to extend our approach to other experimental

setups in order to better evaluate the generalization capabilities of the CNN-

based approach.

Despite these challenges, our results demonstrate the potential of using ma-

chine learning models for droplet characterization from WALS images.

5. Conclusion and outlook

When investigating the formation of hetero-aggregates, the accurate char-

acterization of large amounts of droplets is important in order to refine the

synthesis processes of hetero-aggregates. Therefore, in this study, we presented

a fully automatic method for droplet characterization from WALS images using

machine learning models.

The obtained results indicate that the CNN-based approach proposed in this

paper is able to accurately detect droplets and estimate their sizes from WALS

images. The accuracy of this CNN-based approach was consistent across all

investigated HABs in the range of 30 mm to 120 mm, which was not the case

for a state-of-the-art approach for automatic droplet size characterization from

WALS images, which we used as a benchmark. However, we also identified

several challenges that need to be addressed in future research.

One promising direction for future research is the generation of synthetic
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data with known ground truth to train our models. This could potentially

bypass the need for manual labeling of training data and allow for a more

systematic investigation of model performance. Moreover, when the density

of measured droplets is high (as it is the case for smaller HABs), multiple

droplets are present in the WALS probe volume at the same time, leading to

overlapping scattering data. The resulting images are currently classified as

erroneous images in the ground truth, whereas a combination of synthetic data

and machine learning could potentially estimate accurate droplet sizes in those

cases as well.

Overall, our results demonstrate the potential of using machine learning

models for droplet characterization from WALS images. These results are sig-

nificant for enhancing droplet analysis techniques through the application of

machine learning advancements.
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