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Abstract. Cold gas spraying is an emerging technology in additive manufacturing, known for its versatility and

broad range of applications. This process enables the deposition of various materials, such as metals, ceramics and

polymers, onto substrates by accelerating particles to high velocities within a Laval nozzle. To achieve optimal
manufacturing quality at low cost, continuous and precise adjustment of process parameters is essential. However,

due to the complex behavior of the gas dynamics, assessing quality during manufacturing is challenging. To address

this issue, we describe and compare two data-driven modeling approaches that connect process parameters to particle
descriptors within the spray jet: a fast and easy-to-implement radial basis function network (RBFN) method and

a low-parametric copula-based method in order to probabilistically model the high-dimensional dependencies among

particle descriptors. These two modeling approaches are illustrated through an example of data-based optimization
of process parameters for a cold gas spray in free jet, but are directly applicable to non-free jet data, if available.

Additionally, both methods have low computational cost, making them suitable for applications even in autonomous

process control.
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1. Introduction

The cold gas spray process has, in recent decades, rapidly developed into an established method in additive manufac-
turing, enabling energy-efficient three-dimensional (3D) production [1, 2]. It is commonly used for surface coating,
including corrosion protection, such as coating steel with copper or aluminum[3], minimization of material degrada-
tion [4], and widely employed in the field of repairing operations across various sectors [5–9]. In this process, particles
dispersed in a heated inert gas stream (nitrogen or helium) are accelerated through a Laval nozzle to a velocity in
[200m s−1, 1000m s−1]. Since the particles are heated well below their melting point in an inert gas, the method
is especially suitable for oxygen-sensitive materials [10]. In addition, the cold gas spray process is not limited to
layer-by-layer deposition of the sprayed material [11], but can be applied from any spray angle that can be adjusted
during the manufacturing process [12].

The physical principles of this process are based on the cold gas process [6, 10, 13, 14]. When particles collide
with a substrate material, a high-energy impact occurs, which leads to strong plastic deformation. The energy
released in a short impact time causes a weld-like bond between the particle and substrate material, due to the
mechanism of adiabatic shear instability [15]. The success of the particle bonding depends, in particular, on the impact
velocity. Particle deposition occurs when a minimum velocity, the so-called critical velocity, is surpassed [16]. The
critical velocity is a material-dependent quantity that is influenced by temperature, density and thermo-mechanical
properties of both the particle and the substrate, described by the averaged tensile strength and the averaged
melting temperature [16, 17]. The acceleration of particles to the critical velocities is an energy intensive process
and accounts for a significant share of the energy consumption in gas spray systems. In the face of rising energy
costs, it is important to increase the efficiency of energy use for gas spray systems on an industrial scale. Therefore,
advanced model analysis of the acceleration behavior of particles in gas spray systems combined with optimization
of energy performance is of high interest for practical applications.

Various models have been developed to estimate particle velocity within cold gas spray systems. One common
approach utilizes simplified quasi-1D Euler equations to calculate an analytical steady-state solution for gas dynamics
based on nozzle geometry. Particle acceleration is then determined using a drag force equation [18]. While this
method accurately estimates average gas velocity, the presence of shock waves in supersonic regimes negatively
impacts particle velocity estimation, often leading to significant overestimation. To address this issue, in [6, 19–21]
an empirical equation for estimating particle velocity based on nozzle expansion ratio, gas temperature, and particle
geometry was proposed. While these empirical models offer a broader applicability across various cold gas spray
systems, they typically focus on predicting mean particle descriptors and do not reflect the distribution of particle
velocities, sizes, and spread from the center of the jet plume which is necessary for a precise process quality prediction.

The present study focuses on optimizing process parameters of the particle-gas flow by introducing a modeling
procedure of particle descriptors within the gas flow. More precisely, we model the multivariate probability distri-
bution of particle velocity, spread, and size (particle diameter) as a function of two adjustable process parameters,
namely the gas temperature and the distance between the substrate and the nozzle. Since there is a direct connection
between the distribution of these particle descriptors and the process quality in terms of precision and fraction of
bonded particles, a link between process parameters and process quality measures is achieved, and thus, a process
parameter optimization is enabled. However, the measurement of particle behavior on impact is a challenging task
as it requires the measurement device to be at the same position as the substrate, which is not feasible. Thus, as
preliminary work, we concentrate on measurements conducted on particles in the free jet to circumvent this ad-
ditional challenge. However, the proposed purely data-driven approaches for modeling particle descriptors can be
easily generalized to a non-free jet setup.

In order to capture the complex dependencies between particle descriptors and process parameters, but also be-
tween the particle descriptors themselves, multivariate probabilistic modeling of particle descriptors is used. More
precisely, two modeling approaches are described and compared. One of these approaches is based on so-called
R-vine copulas, while the second one is based on radial basis functions. Vine copulas have been proven to be a
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useful tool for hierarchical modeling of multivariate probability distributions of descriptor vectors in high dimen-
sion [22–24]. Hereby, parametric univariate and bivariate distributions are combined to construct the multivariate
probability density function of a random vector in arbitrary dimension, leading to an efficient, low-parametric char-
acterization of particle systems. An advantage of this model is that vine copulas inherently describe non-linear
relationships between the influencing factors, i.e., we derive a relationship between adjustable process parameters
and model parameters. The second modeling approach is based on a fast and easy-to-implement radial basis func-
tion network (RBFN) method [25], where RBFNs are artificial neural networks with one hidden layer that use radial
basis functions as activation functions. This class of neural networks is widely used for function approximation [26,
27], classification [27] and probability density estimation [28]. Moreover, RBFNs are straightforward to use without
requiring prior knowledge of the data, making them practical for various further applications. The RBFN modeling
approach is used to directly model the multivariate probability distribution of particle descriptors and their changes
with alternations in process parameters. The resulting multivariate distributions of particle descriptors are employed
to predict process quality for given process parameters. Thereby, process quality is influenced by both process costs,
which is determined by the chosen process parameters, and product quality, which is determined by the distribution
of particle descriptors.

The rest of this paper is organized as follows. Section 2 introduces the cold gas spray process examined in this
study. In paricular, in Section 2.2, the prediction of process quality based on the distribution of particle descriptors,
specifically, velocity, spread and size of particles, is explained. A copula-based model of the multivariate distribution
of these descriptors for given process parameters is then described in Section 2.3.1, followed by a description of
the approach which uses RBFNs in Section 2.3.2. Section 3 provides the results of a comparative analysis of these
two modeling approaches in terms of precision, applicability, and predicted optimal process parameters. Section 4
concludes and gives a short outlook to possible future research.

2. Materials and methods

In this section, we describe the materials and methods used in this work. It includes a detailed explanation of the
additive manufacturing process in Section 2.1, which provides further details on the experimental setup of the cold
gas spray process and how the particle descriptors were obtained. In particular, the measurement of particle velocity
is crucial for the proposed process optimization framework by identifying optimal process parameters, as detailed in
Section 2.2. In addition, the optimization approach requires modeling of the multivariate probability distribution
of particle descriptors, for which two modeling approaches–copula-based and RBFNs—were employed, as stated in
Section 2.3.

2.1. Additive manufacturing process

To begin with, we explain the cold gas spray which is considered in this paper as an additive manufacturing process.
First, the cold gas spraying setup is described in Section 2.1.1. Then, in Section 2.1.2, we state how the particle
velocity is tracked in the free jet.

2.1.1. Cold gas spraying setup. An in-house designed low-pressure cold gas spray system operates with nitrogen
as a carrier gas up to a pressure of 12 bar [29–31]. The main components of the system are the pressurized aerosol
generator, the electric heater and the Laval nozzle flange (Figure 1, center). The aerosol generation is performed by
a dosing ring powder feeder (SAG 409, Topas GmbH) operated under system pressure for precise particle dispersion
in the carrier gas. The Particles are conveyed from the feed hopper to the rotating dosing ring by a screw conveyor.
The subsequent aerosol generation is realized by a Venturi nozzle mounted above the dosing ring, through which
the carrier gas flows and extracts the particles from the dosing ring. The particle load of the carrier gas can be
controlled by adjusting the rotational speed of the dosing ring and the rotation speed of the screw conveyor. Copper
powder produced by gas atomization process (Sigma Aldrich, Copper-powder (spheroidal) 98%) in the size range of
5-30 µm is used as the particle material (Figure 1, left). The aerosol is heated via an externally heated electric tube
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heater directly connected to the nozzle, where the heated aerosol is compressed. An optimized Laval nozzle design
is used to achieve optimal particle exit velocity for particles in the size range of 1-25µm [31]. The nozzle comprises
a cylindrical inlet, as well as divergent and convergent sections, with a height of 30mm and a diameter of 10mm. It
has a throat diameter of 0.8mm and an outlet cross-section of 1.5mm. Due to the low throat diameter and outlet
cross-section, the nozzle belongs to the category of micro nozzles and enables high manufacturing precision.
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Figure 1. Schematic representation of the cold gas spray process (center) with a scanning electron microscopy
(SEM) image of the feed stock powder (left). Representation of the H-PIV measuring sequence with variation of the
measuring window position in the nozzle jet (right).

2.1.2. Particle tracking velocimetry. To characterize the spraying process, a high-speed particle image velocime-
try (H-PIV) instrument (Oseir Hiwatch HR2) is used (Figure 2a) [32]. The focal plane of this device is positioned in
relation to the center of the jet plume. The system allows the quantification of the particle velocity v ≤ 2000m s−1,
the particle diameter d ∈ [5 µm, 200 µm] and spread s ∈ [−4mm, 4mm] as the position deviation from the center
of the jet plume, thus providing a basis for the characterization of the spraying process. The detection of particle
velocity and spread is based on the shadowing of laser pulses (pulse duration of 80 ns and a pulse intervall length
of 800 ns). If aerosol particles are moving within the measurement plane (8mm × 6mm) after leaving the nozzle,
triplets of the particle movement can be recorded by adjusting the laser pulse duration and frequency. Particle veloc-
ity is computed from the distance traveled, knowing the time interval between each triplet recorded with appropriate
signal-to-noise ratio. An example of a pair of non-processed and processed camera outputs is visualized in Figure 2b.
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Figure 2. Illustration of the optical measurement principle of the HiWatch HR2 based on laser pulses and tracking
of shadowing by passing particles (a), where a live image of the measurement area with the characteristic particle
triplets is shown (b, left), as well as a processed image with particle tracking (b, right). The center of the jet plume
is shown as a red line (b,left).
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2.1.3. Data acquisition. In this work, two adjustable process parameters that influence the particle velocity are
taken into account in the control of the cold gas spray process. The temperature t ≥ 25 ◦C of the aerosol before
it enters the Laval nozzle and the distance h ≥ 0mm between the substrate surface and the nozzle outlet can be
adjusted. In order to quantify the relationship between process parameters and particle descriptors, an experimental
parameter variation is carried out. The experiments were conducted at a constant carrier gas pressure of 9 bar at the
nozzle inlet while varying training data acquisition the process gas temperature t = 25 ◦C, 100 ◦C, 200 ◦C and varying
the distance of the nozzle to the velocimetry h = 0mm, 10mm, . . . , 50mm. In the following, we refer to the set of
tuples of process parameters for which measurements are available as M, i.e., M = {25, 100, 200} × {0, 10, . . . , 50}.
Furthermore, an additional experiment with gas temperature of t = 75 ◦C and distance of h = 15mm to the
velocimetry has been performed for model validation.

Note that h = 0mm does not represent a camera positioned directly at the nozzle outlet, but rather the closest
feasible position allowed by the process setup. In fact, centering the measurement device exactly at the nozzle exit
would correspond to approximately h ≈ −5mm. In the current configuration, a minimal distance of 2mm from the
nozzle is maintained due to the presence of a steel cap used to secure the nozzle. Additionally, the HiWatch camera
has a measurement window size of 6mm. The acquired datasets are used to calibrate the proposed process modeling
approaches. To eliminate errors resulting from imperfect centering of the measurement device, for each measurement
the particle spreads are centered by subtracting their arithmetic mean. Additionally, based on the assumption of
symmetric particle spread within the jet, the measurements are mirrored at the cone’s center to expand the dataset.
The numbers of particles observed in the individual experiments are listed in Table 1, see Section 3 below.

2.2. Process optimization

To classify a particle observed in the data as bonding to being bonded to the substrate after collision, the concept of
critical velocity is utilized. A particle is considered bonded if its velocity exceeds a certain threshold, known as the
critical velocity, vcrit > 0m s−1. In the present paper, we use the model of critical velocity proposed in [33], which is
given by

vcrit(t, d) = k1

√
657000− 600 · (t+ 273.15)

d0.18
(1)

for a particle with temperature t in ◦C and diameter d in µm, where the factor 273.15 accounts for the conversion
between Celsius and Kelvin. In [34] it was reported that vcrit depends on the combination of particle material and
substrate. Therefore, the expression for vcrit was derived specifically for copper particles, with the coefficient k1
accounting for the variations in substrate materials and being heuristically set equal to 0.8.

The product quality in cold gas spraying is primarily determined by two factors: a high fraction of particles
successfully bonding to the substrate in order to minimize process time and material waste, and low particle spread
in order to achieve a precise layer formation. Here, we define the product quality of a spraying experiment with
process parameter vector (t, h) as the ratio δpmax

(x(t,h)) of the volume of bonded particles with small deviation from
the center of the jet plume to the total particle volume, which is given by

δpmax
(x(t,h)) =

∑n(t,h)

i=1 d3i1[vcrit(t,d),∞)(vi)1[0,pmax](|si|)∑n(t,h)

i=1 d3i
, (2)

where 1A denotes the indicator of a set A ⊂ R, i.e., 1A(x) = 1 if x ∈ A, otherwise 1A(x) = 0. The set x(t,h) denotes
a sample of n(t,h) particle descriptor vectors observed by image measurements and is given by

x(t,h) =
{
x
(t,h)
i , i = 1, . . . , n(t,h)

}
, (3)

where the vector x
(t,h)
i = (vi, si, di) contains the velocity, spread and diameter of the ith particle. Furthermore, pmax

describes the maximum desired spread of particles. Note that maximizing the value of the ratio δpmax
(x(t,h)) given
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in Eq. (2) accounts for both, particles that do not exceed the critical velocity, and particles that have a larger spread
than pmax.

When considering industrial-scale process optimization, not only the quality of the product, but also the costs of
the process has to be taken into account. The costs of the considered process are dominated by heating costs, which
are assumed to increase quadratically with temperature. This results in the process quality measure ηpmax,α(x

(t,h), t),
which is given by

ηpmax,α(x
(t,h), t) = δpmax

(x(t,h))− (αt)2, (4)

where α is a coefficient that models the heating cost per 1◦C. The function given in Eq. (4) is easily interpretable
and computationally efficient; however, it relies on a limited number of measured particle descriptors instead of
their underlying distribution. Thus, to be more robust and to account for the underlying probability distribution of
particle descriptor vectors, the expression in Eq. (4) is transformed into an objective function R : T × H → R, by
considering the distribution of particle descriptors vectors rather than its realizations, where

R(t, h) =

∫∞
0

∫∞
−∞

∫∞
0

d3f
(t,h)
(V,S,D)(v, s, d)1[vcrit(t,d),∞)(v)1[0,pmax](|s|) dv dsdd∫∞

0

∫∞
−∞

∫∞
0

d3f
(t,h)
(V,S,D)(v, s, d) dv dsdd

− (αt)2, (5)

and f
(t,h)
(V,S,D)(v, s, d) denotes the joint probability density of particle velocity v, spread s, and size d for a given

process parameter vector (t, h). Here, the set T ×H = [25 ◦C, 200 ◦C]× [0mm, 50mm] is the set of admissible process
parameters. The goal is to find an optimal vector of process parameters (t∗, h∗) ∈ T ×H which maximizes the value

of R(t, h). To achieve this goal, the probability density f
(t,h)
(V,S,D)(v, s, d) of particle descriptor vectors will be modeled

in two different way, see Section 2.3 for details.

2.3. Process modeling

The basic idea in order to model the particle descriptor vectors consisting of particle velocity, spread, and diameter
is to view these vectors as realizations of a random vector (V (t,h), S(t,h), D(t,h)) for each vector (t, h) ∈ T × H
of admissible process parameters. A realization (v(t,h), s(t,h), d(t,h)) of (V (t,h), S(t,h), D(t,h)), belonging to the set
X = (0,∞) × R × (0,∞), can be interpreted as descriptor vector of a single particle that is observed via image
measurement during the spraying process, where v(t,h) is measured in m s−1, s(t,h) in mm and d(t,h) in µm. Recall that
in each spraying experiment with temperatures t = 25 ◦C, 100 ◦C, 200 ◦C and distances h = 0mm, 10mm, . . . , 50mm,
a sample of particle descriptor vectors is obtained. Based on these samples we seek for the multivariate probability

density f
(t,h)
(V,S,D) : X → [0,∞) of (V (t,h), D(t,h), S(t,h)), for each vector (t, h) ∈ T ×H.

There are several tools for multivariate density estimation, including kernel density estimators [35], Gaussian
mixture models [36], and neural network-based density estimators [28]. However, these models often struggle with
interpolation between probability densities. Most approaches only allow pointwise interpolation within the probability
density regime, which can lead to undesirable artifacts, such as inconsistency in modality. For instance, interpolating
between two unimodal probability densities can result in an artificial bimodal distribution. To overcome this problem,
a parametric, copula-based modeling approach [22, 37, 38] is presented in Section 2.3.1. Copulas are a suitable tool
to model multivariate probability distributions by first modeling the (univariate) marginal distributions and then,
subsequently, modeling their pairwise dependency structure. Due to the low-parametric nature of this modeling
procedure, an interpolation of model parameters within the set T ×H of admissible process parameter vectors (t, h)

is possible, which allows for computing the density f
(t,h)
(V,S,D) for unobserved process parameter vectors (t, h) ̸∈ M.

On the other hand, note that the parametric, copula-based modeling of the desired multivariate probability

density f
(t,h)
(V,S,D) does come with the costs of model assumptions. For example, the univariate densities f

(t,h)
V f

(t,h)
S ,

and f
(t,h)
D of the single (random) particle descriptors V, S,D, respectively, must belong to the same parametric family
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of probability densities for each (t, h) ∈ T × H. While this assumption holds in the case considered in the present
paper, it could lead to issues in other applications. Thus, we still introduce an alternative modeling approach by
means of radial basis function networks (RBFNs). This non-parametric approach does not require any assumptions
regarding the marginal distributions or the interdependencies of V, S,D, offering greater flexibility at the expense of
precision and the danger of overfitting. Moreover, RBFNs are differentiable functions, enabling efficient optimization
via gradient-based methods. In Section 2.3.2, RBFNs are introduced in greater detail, along with the methodology
used to predict multivariate probability densities.

2.3.1. Copula-based modeling. In this section, a more detailed explanation of parametric methods is presented
for modeling both, the distribution of single particle descriptors by suitably chosen univariate probability densities,
and the distribution of pairs of particle descriptors using a parametric copula-based approach. In the following, the
parametric methods are described with respect to a sample of n particle descriptor vectors x = {xi, i = 1, . . . , n},
where the vector xi = (vi, si, di) contains the velocity, spread and diameter of the ith particle.

Univariate densities. First, marginal distributions are fitted for each single particle descriptor. In particular, the
univariate probability densities fV and fD of particle velocity V and diameter D are estimated. On the other hand,
regarding particle spread S, it is assumed that the deviation of the particles from the center of the spray plume is
symmetrical to the center, since the jet plume is considered a cone. Therefore, we model the distribution of the
absolute value |S| of S. In this way, we obtain the univariate probability density f|S| of the absolute spread. Each
of these three density functions is determined by the frequency of encountering values of the corresponding particle
descriptor across the samples. From these observed frequencies, we obtain a parametric model by fixing a class
of probability distributions per descriptor and subsequently fitting the parameters of the corresponding univariate
probability distributions to the observed frequencies using maximum likelihood estimation [39]. For reduction of
complexity, we assume that the marginal distributions can be modeled by two-parametric probability densities listed
in [40].

Multivariate copula-based densities. The trivariate probability density f(V,S,D) is modeled by a parametric density

function fθ : X → [0,∞), where θ ∈ Θ and Θ ⊆ R9 is some set of admissible model parameters. The nine components
of the model parameter vector θ result from the fact that each marginal distribution has two parameters, and three
further parameters will be considered for modeling the dependency of the particle descriptors using copulas. More
precisely, according to Sklar’s theorem [41], for each (v, s, d) ∈ X we put

fθ(v, s, d) =
1

2
cθc(FV,θV (v), F|S|,θ|S|(|s|), FD,θD (dD))fV,θV (v)fS,θ|S|(|s|)fD,θD (d), (6)

where θ = (θV , θ|S|, θD, θc) ∈ Θ and FV , F|S|, FD denote the cumulative distribution functions of the densities

fV , f|S|, fD with parameter vectors θV , θ|S|, θD ∈ R2, respectively. Furthermore, the function c : [0, 1]3 → [0,∞)

appearing in Eq. (6) is a copula density with parameter vector θc ∈ R3. The factor 1/2 comes from normalization,
as we model the distribution of the absolute spread |S| assuming that the distribution of the (centered) spread S
itself is symmetrical about 0.

Note that the expression on the right-hand side of Eq. (6) is the product of a trivariate copula density and
three univariate densities. However, the copula density c in Eq. (6) can be decomposed further such that the joint
density fθ of the three-dimensional random vector (V, S,D) is represented by a product of univariate and bivariate
density functions only. This procedure for the factorization of multivariate probability densities is called the pair-
copula construction method [42]. It involves applying the chain rule for conditional density functions, recursively
expressing each conditional probability density by some (conditional) bivariate densities and decomposing each
bivariate probability density using a bivariate copula density.

In order to determine all univariate and bivariate densities necessary for the pair-copula construction method,
an appropriate structure for the decomposition mentioned above is needed, which is obtained by means of a graph
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representation with trees. More precisely, so-called regular vine (R-vine) trees are used for the underlying structure.
A particular choice of bivariate copulas for each pair in this decomposition is referred to as an R-vine copula. For
more details regarding the construction of R-vine tree representations, we refer e.g., to [24]. To select a suitable vine
structure and a family of bivariate copula densities, the sequential algorithm stated in [37] is used, where parametric
families of Archimedean copulas (of Frank, Joe, Clayton and Gumbel type), and their rotations by 90, 180 and
270 degrees, are chosen as candidates for pair copulas. The parameters of these copulas are determined through
maximum likelihood estimation [38].

In our application, the probability density f
(t,h)
(V,S,D) for a sample of particle descriptor vectors x(t,h) with process

parameter vector (t, h) ∈ M is modeled by means of Eq. (6), where we denote parameter vector of the copula-based
model by θ(t,h). An overview of this copula-based modeling procedure for multivariate probability densities is given
in Figure 3.
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Figure 3. Graphical overview of the copula-based modeling procedure: Sample of the random particle descriptor
vector (V, S,D) for a given vector (t, h) of process parameters (left). Fitting of univariate probability densities
for absolute spread |S|, velocity V and diameter D, together with an R-vine tree representation of the trivariate

probability density f
(t,h)
(V,S,D) (center). Visualization of the resulting model for the bivariate probability density f

(t,h)
(V,S),

integrated over the particle diameter for visualization purposes (right).

Interpolation within the space of process parameters. The parametric modeling approach described above does not

directly enable the prediction of a probability density f
(t,h)
(V,S,D) for (t, h) ̸∈ M. For this purpose we assume that,

for all process parameter vectors (t, h) ∈ T × H, the densities fθ(t,h) have common types of marginal (univariate)
densities for each particle descriptor as well as a common R-vine tree representation and common bivariate copula
families. This structure of the densities fθ(t,h) given in Eq. (6) will be denoted by Z ∈ Z, where Z is considered
as the cross product of the sets of all admissible families of marginal distributions, R-vine tree representations and
families of bivariate copula distributions as specified above. For more details, we refer to [22].

In the following for a given structure Z ∈ Z, we will denote the densities fθ(t,h) by fZ
θ(t,h) , computing the best-

fitting model parameter vector θ̂
(t,h)
Z of fZ

θ(t,h) for each process parameter vector (t, h) ∈ M by maximum likelihood

estimation [38]. More precisely, the vector θ̂
(t,h)
Z is obtained by maximizing the loglikelihood function L

(t,h)
Z : Θ → R,

which is given by

L
(t,h)
Z (θ) =

∑
(v,s,d)∈x(t,h)

log(fZ
θ (v, s, d)) (7)
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for each θ ∈ Θ, where x(t,h) denotes the sample of particle descriptor vectors (see Eq. (3)) and fZ
θ is the probability

density given by means of Eq. (6) with structure Z ∈ Z. In a second optimization step, given the optimal model

parameter vectors θ̂
(t,h)
Z for each structure Z ∈ Z, an optimal structure Ẑ ∈ Z is computed. This is done by

maximizing a weighted mean of the loglikelihoods L
(t,h)
Z (θ̂

(t,h)
Z ) given in Eq. (7), over all process parameter vectors

(t, h) ∈ M. Note that a weighted mean is considered due to the different numbers n(t,h) of particles observed for

each of the process parameter vectors (t, h) ∈ M (see Table 1), which strongly influence the values of L
(t,h)
Z (θ̂

(t,h)
Z ).

The overall best structure Ẑ ∈ Z is therefore provided by

Ẑ = argmax
Z∈Z

1

#M
∑

(t,h)∈M

1

n(t,h)
L
(t,h)
Z (θ̂

(t,h)
Z ), (8)

where #M denotes the cardinality of the set M.

The restriction to a common structure Ẑ ∈ Z enables the interpolation within the space of process parameters

to model the probability density f
(t,h)
(V,S,D) for each (t, h) ∈ T ×H. More precisely, a function λ : T × H → Θ is used

to predict the model parameter vector for vectors of process parameters for which no measurements are conducted

so far. Thus, for each (t, h) ∈ T × H, the density f
(t,h)
(V,S,D) is modeled by the function f Ẑ

θ : X → [0,∞) introduced

in Eq. (6), where the model parameter vector θ ∈ Θ is given by θ = λ(t, h) and Ẑ ∈ Z is the common structure of

f Ẑ
λ(t,h) for all (t, h) ∈ T ×H. The components of λ are assumed to be polynomials of degree 2, i.e., λ = (λ1, . . . , λ9)

and

λk(t, h) =

2∑
i=0

2∑
j=0

aijk h
itj , (9)

for any k ∈ {1, . . . , 9} and (t, h) ∈ T × H. The coefficients aijk in Eq. (9) are determined by the least squares fit

(see [43]) to the optimal model parameter vectors θ̂
(t,h)

Ẑ
fitted for the process parameter vectors (t, h) ∈ M and the

common structure Ẑ ∈ Z. For an illustration of the interpolation approach stated above, see Figure 4.

temperature t /◦C

d
is
ta
n
ce

h
/m

m

process-parameter space

parameter-wise interpolation using λ : T ×H → Θ

f Ẑ
λ(t,h)(v, s, d)

Figure 4. Illustration of the interpolation approach within the parameter space: Sample of process parameters for
which measurements are available (left). Interpolation within the space of process parameters using the function

λ : T ×H → Θ to obtain the probability density f Ẑ
λ(t,h) for any (t, h) ∈ T ×H, where two components λi, λj of λ are

visualized as surface plots (center).

2.3.2. RBFN-based modeling. Radial basis function networks (RBFNs) are nonlinear regression models, which
inherit a neural network architecture with one hidden layer of N > 0 perceptrons and a radial basis function as
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activation function [25]. In this work, we use a RBFN of the form gθRBF : T ×H×X → [0,∞), where θRBF ∈ Θ̃ and

Θ̃ ⊆ R6N+1 is some set of admissible model parameters, to model the trivariate probability density f
(t,h)
(V,S,D) for each

process parameter vector (t, h) ∈ T ×H. The values of the function gθRBF are given by

gθRBF
(t, h, v, s, d) =

N∑
i=1

wiφσ,µi
(t, h, v, s, d) with φσ,µi

(y) =
1

(
√
2πσ)5

exp−0.5(
∥y−µi∥

σ )2 (10)

for each (t, h, v, s, d) ∈ T ×H×X , where ∥y−µi∥ denotes the Euclidean norm of y−µi ∈ R5 and φσ,µi
: R5 → (0,∞)

is the normalized Gaussian kernel with mean µi ∈ R5 and standard deviation σ > 0. Furthermore, the scaling factors
wi ∈ R for i ∈ {1, . . . , N} determine the contribution of each kernel to gθRBF . Thus, the model parameter vector

θRBF ∈ Θ̃ of gθRBF
is given by θRBF = (w1, . . . , wN , µ1, . . . , µN , σ).

Note that by selecting the weights wi in Eq. (10) to be non-negative and such that
∑N

i=1 wi = 1, the function
gθRBF

given in Eq. (10) is a probability density as a convex combination of probability densities. The probability

density f
(t,h)
(V,S,D) is then modeled by conditioning gθRBF

on (t, h) ∈ T ×H, i.e., we put

f
(t,h)
(V,S,D)(v, s, d) =

gθRBF
(t, h, v, s, d)∫∞

0

∫∞
−∞

∫∞
0

gθRBF
(t, h, v, s, d) dv dsdd

(11)

for any (v, s, d) ∈ X and for each process parameter vector (t, h) ∈ T × H. There may not be a noteworthy
interpretation of the probability distribution of t and h, as these quantities are determined by the choice of process
parameters used in data acquisition. Nevertheless, the RBFN-based modeling approach offers the advantage that

the RBFN is trained to model the probability density f
(t,h)
(V,S,D) not only for a single vector (t, h) ∈ T ×H of process

parameters, but for all vectors from T ×H simultaneously, i.e., no additional interpolation is needed.

The best-fitting model parameter vector θ̂RBF ∈ Θ̃ is obtained by maximum loglikelihood estimation [38]. More

precisely, the vector θ̂RBF minimizes the negative loglikelihood function L̃ : Θ̃ → R, which is given by

L̃(θRBF) = −
∑

(t,h)∈M

∑
(v,s,d)∈x(t,h)

log(gθRBF
(t, h, v, s, d)), (12)

where x(t,h) is the sample of particle descriptor vectors measured for the process parameter vector (t, h) ∈ M, see
Section 2.2. The minimization of the expression given in Eq. (12) is performed by gradient descent using an Adam
optimizer [44] with a learning rate of 0.01. Note that, in order to achieve better results, the data were normalized
before used in training, i.e., the values of all process parameters as well as particle descriptors are first centered
by subtracting their arithmetic mean and then normalized by dividing by their empirical standard deviation. To
determine the optimal number N of perceptrons, we employ leave-one-out cross-validation [45]. In particular, we
set N ∈ {1, . . . , 50} to remain within reasonable computational time. An illustration of the RBFN-based modeling
procedure is given in Figure 5.
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RBFN model

t

h

v

s

d

x =

φσ,µ1
(x)

φσ,µ2(x)

...

φσ,µN
(x)

gθRBF
(x)

w1

w2

wN

hidden layerinput layer output layer

Figure 5. Neural network architecture of the RBFN-based modeling approach: The network input consists of a
vector, containing both, process parameter vector (t, h) ∈ T ×H and particle descriptor vector (v, s, d) ∈ X .

3. Results and discussion

In Section 2.3, two different approaches have been stated to model the trivariate probability density f
(t,h)
(V,S,D) of each

process parameter vector (t, h) ∈ T × H. These models are deployed to implicitly estimate product quality by
means of an objective function and thus enable process parameter optimization, see Section 2.2. However, it is worth
noting that modeling the distribution of particle descriptors has way more advantages. For instance, this enables the
investigation of potential increase of process quality by a change in the particle size distribution, i.e., using another
particle system. Furthermore, our modeling approaches can be used to investigate the causes of low product quality,
such as identifying factors contributing to a low objective function, e.g., whether due to insufficient particle velocity
or excessive particle spread. Additionally, it facilitates estimation of the spatial distribution of particle mass that
bonds to the substrate, providing valuable insight for process enhancement, besides the information aggregated in
the objective function. Before investigating this in Section 3.2 in more detail, the strengths and weaknesses of the
two modeling approaches are discussed in Section 3.1.
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Figure 6. Univariate probability densities of V , S and D for two different process parameter vectors (t, h), obtained
by the copula-based (red) and RBFN-based (black) model. Measured data is represented by normalized histograms
(blue). The top row corresponds to data used for training, while the bottom row displays the validation dataset.
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3.1. Evaluation of modeling approaches

For the copula-based modeling approach explained in Section 2.3.1, we determined the following families of univariate
(marginal) probability densities, R-vine copula structure and corresponding families of bivariate copula densities.
Velocity V and diameter D of particles are modeled by normal and lognormal distributions, respectively, whereas
the absolute particle spread |S| is modeled by a truncated normal distribution on the interval [0,∞). The R-vine
structure is chosen such that the correlation between V and D is modeled by a Clayton copula with 90◦ rotation,
and the correlation between V and S by a Clayton copula with 270◦ rotation, while the conditional bivariate copula

density is given by means of a Joe copula with 90◦ rotation. In this way, we get a model {f Ẑ
λ(t,h), (t, h) ∈ T × H}

for the trivariate probability densities of (V, S,D), which has 81 = 9 · 9 parameters. For the RBFN-based modeling
approach stated in Section 2.3.2, the choice of the number N of radial basis functions, i.e., the number of perceptrons
in the RBFN, heavily influences model complexity and the risk of overfitting, where the value of N was determined
as N = 30, by considering cross validation. This results in 181 = 30 · (5 + 1) + 1 trainable parameters.
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Figure 7. Bivariate density of (V, S) for different process parameter vectors (t, h): for the copula model (left) and
the RBFN model (right). Measured data points, where available, are shown in red.

In Figure 6, the resulting marginal distributions of both modeling approaches, along with the corresponding data
for two process parameter vectors, are displayed. Note that the second row in Figure 6 corresponds to process
parameters not used for model calibration. Additionally, Figure 7 illustrates the bivariate densities of (V, S) for four
process parameter vectors (t, h) ∈ M within the training set (together with visualized training data) and five process
parameter vectors (t, h) ̸∈ M outside the training data. It is clearly visible how the restrictions of the copula-based
model, specifically the choice of marginal distribution families and copula families, result in both unimodal univariate
and bivariate distributions. Conversely, the RBFN-based approach often yields multimodal distributions, as seen,
for instance, in Figure 7 for h = 50mm and t = 100 ◦C. Moreover, the particle spread S, which is assumed to be
symmetrically distributed around zero, is often asymmetrically modeled by the latter approach, see Figure 6 (second

column) and Figure 7. For the copula model, the densities f Ẑ
λ(t,h) for (t, h) ∈ T ×H\M are obtained by parameter-

wise interpolation, resulting in a smooth transition of distribution shapes across variations of process parameter
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vectors while preserving key shape descriptors, such as unimodality and symmetry. Furthermore, note that the
copula-based modeling approach is much more resistant to overfitting if the training datasets include measurements
with errors due to a non-ideal or inconsistent experimental setup. Anyhow, also the RBFN model exhibits quite
good fits to training data and provides reasonable results for validation data which have not been used for model
calibration, see Figure 6 (bottom row). In terms of computational efficiency, the RBFN model shows an advantage.

The time necessary for evaluating the trivariate probability density f
(t,h)
(V,S,D) of the RBFN model is significantly lower

than that of the copula model. More precisely, the evaluation of the RBFN-based probability density f
(t,h)
(V,S,D)(v, s, d)

(see Eq. (11)) at a vector (t, h, v, s, d) ∈ T ×H takes 9 ·10−8s, whereas the evaluation of the copula-based probability
density (see Eq. (6)) takes 5 · 10−7s.

In Table 1, the expected particle velocity ES as well as descriptors of product quality obtained from both (copula
and RBFN) models are compared with corresponding quantities observed for measured training and validation data.
Note that a clear trend to higher accuracies can be observed for the copula model, however, the prediction quality
of the RBFN model is high as well.

Table 1. For given process parameters (t, h), the number of particles (# particles) observed in measured data is
shown, as well as the expected particle velocities obtained for measured data and both (copula and RBFN) models.
In addition, for α = 0 and pmax = 0.5, the values of δpmax(x

(t,h)) (see Eq. (2)) for measured data and R(t, h) (see
Eq. (5)) for both models are shown. Over- and underestimation is marked in red and blue, respectively. The predicted
value that fits best is highlighted in bold.

parameters # particles expected velocity /ms−1 objective functions
t h data data copula model RBFN model data copula model RBFN model

25 ◦C

0mm 1336 274.9 274.7 279.8 0.024 0.071 0.019
10mm 1054 267.1 267.0 273.1 0.033 0.037 0.021
20mm 898 258.3 257.0 263.3 0.006 0.016 0.022
30mm 778 244.2 244.7 243.1 0.0 0.005 0.012
40mm 686 230.1 230.1 232.7 0.0 0.001 0.006
50mm 713 213.7 213.2 229.7 0.0 0.0 0.004

100 ◦C

0mm 1101 314.2 314.2 311.0 0.253 0.322 0.149
10mm 999 305.4 305.4 304.6 0.148 0.225 0.135
20mm 839 296.3 294.2 290.1 0.123 0.148 0.107
30mm 668 279.3 280.5 266.1 0.093 0.084 0.039
40mm 620 264.4 264.5 255.8 0.042 0.036 0.017
50mm 466 246.8 246.1 248.5 0.012 0.009 0.011

200 ◦C

0mm 520 320.3 319.7 323.2 0.478 0.403 0.428
10mm 507 316.7 316.9 319.3 0.325 0.302 0.396
20mm 531 310.7 310.1 311.5 0.283 0.236 0.344
30mm 528 299.4 299.3 293.5 0.271 0.183 0.292
40mm 540 285.1 284.4 279.2 0.162 0.129 0.24
50mm 455 265.5 265.5 275.3 0.182 0.066 0.186

75 ◦C 15mm 453 309.5 290.1 286.0 0.133 0.127 0.077

3.2. Optimization of process parameters

The good fits of both (copula and RBFN) models stated in Section 3.1 suggest that both models are capable of
accurately predicting the values R(t, h) of the objective function given in Eq. (5), even for process parameter vectors
(t, h) that were not used for model training, thus allowing optimization of process parameters. In the following we
discuss this in more detail.
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Table 1 shows (in red and blue) the tendency of both models to slightly over- or underestimate the descriptor
δpmax

(x(t,h)) of product quality in the case of no temperature costs (α = 0), where it can be observed that the copula
model tends to overestimate this descriptor for small temperatures t. However, there is no such clear trend for the
RBFN model, which is likely due to the multimodalities occurring for the latter model. Although the copula model
predicts the expected particle velocities much better than the RBFN model, see Table 1, this can not be observed
when considering the descriptors δpmax

(x(t,h)) and R(t, h) of product quality. Anyhow, for (t, h) = (75 ◦C, 15mm),
i.e., for validation data the copula model predicts the expected velocity as well as the product quality more accurately
than the RBFN model.

In Figure 8, two-dimensional plots of R(t, h) are visualized for t ∈ [25 ◦C, 200 ◦C] and h ∈ [0mm, 60mm], where
two distinct temperature cost scenarios (α = 0 and α = 10−3) are considered. On the left-hand side of Figure 8,
the values R(t, h) of the objective function given in Eq. (5) are plotted in the case of no temperature costs (α = 0).
In this case, both models predict that due to the absence of temperature costs, higher temperatures t yield larger
values R(t, h) of the objective function. Furthermore, both models indicate that h = 0mm is optimal. As already
mentioned in Section 2.1.3, h = 0mm does not refer to the substrate being directly positioned at the nozzle, but
rather at the closest feasible point where the HiWatch measuring device can be positioned due to the experimental
setup. In fact, particles continue accelerating outside the nozzle until their velocity matches the gas speed and thus
a positioning at too close distances would not be feasible even when considering particle descriptors measured in free
jets. However, this acceleration occurs in the region where h < 0mm, and thus is not reflected in the data.

When temperature costs are introduced (α = 10−3), a shift of the optimal solution towards lower temperatures
is observed, see Figure 8 (right). In this case, the copula model predicts a lower optimal temperature of about
t = 110 ◦C, whereas the RBFN model predicts an optimal temperature of about t = 150 ◦C. Note that a more
precise computation of the optimum is omitted due to the limited precision of the adjustable process parameters.
For the optimum (α = 10−3) predicted by the copula model, 43% of the mass of particles is predicted to not bond to
the substrate, while 38% of the mass bond with a spread greater than pmax. In the case of the RBFN model, 42% of
the mass of the particles is predicted to fail to bond, and 39% bond with a too high spread. Although these values
for both models are quite similar, it is noteworthy that the maximum of the objective function is achieved for a lower
temperature in case of the copula model. The resulting optima in relation to the distance of the nozzle outlet to the
measuring range of the HiWatch are, as expected, in the range of h = 0−6mm and thus in the lower range of the
parameter space. The results after the introduction of the temperature cost function show a considerable potential
for the energetic optimization of the overall process through the suitable selection of the process temperature t.
This not only reasonable from an energy point of view, but also enables the optimum processing of temperature and
oxidation-sensitive materials.
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Figure 8. Visualization of the values R(t, h) of the objective function given in Eq. (5) for both modeling approaches
and for α = 0 (left) and α = 10−3 (right). The corresponding best process parameters are highlighted by red dots.
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The trivariate probability density f
(t,h)
(V,S,D) of the particle descriptor vector (V, S,D) enables not only to compute

the value R(t, h) of the objective function given in Eq. (5) and the expected fraction of bonded particles, but also
the prediction of the spatial mass distribution of the particles that bond to the substrate. Figure 9 visualizes these
distributions for both models using the validation dataset, where (t, h) = (75 ◦C, 15mm). The number-weighted
densities shown in Figure 9a are consistent with the observations made in Figure 6. The mass-weighted probability
densities in Figure 9b represent the distribution of mass in the jet plume. In Figure 9c, the critical velocity threshold
is applied, removing all mass corresponding to particles whose velocities do not exceed this threshold. Consequently,
a significant fraction of mass is filtered out, leaving a narrow distribution of particle offsets, which corresponds to
the predicted mass distribution on the substrate.
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Figure 9. Measured and predicted spatial mass distributions of particles that bond to substrate, for the validation
dataset, i.e., for (t, h) = (75 ◦C, 15mm): number-weighted densities of particle spread (a), corresponding mass-
weighted densities (b), and densities of particle spread for particles whose velocity exceeds the critical velocity
threshold (c). The dashed vertical lines indicate a spread of pmax = 0.5.

4. Conclusion and Outlook

In this study, the applicability of data-driven stochastic modeling approaches for the optimization of the cold gas
spray process was investigated. Two different methods were presented, a low-parametric approach based on R-vine
copulas and a fast and easy-to-implement approach based on RBFNs. By means of both modeling approaches, we
were able to predict the particle velocity distribution for data that was not used for model training. In a simplified
setting of a cold gas spraying process, where the critical particle velocity for bonding to the substrate is approximated
by the particle velocity measured in the free jet, the models considered in this study can be used to determine optimal
process parameters. In particular, these models make it possible to capture the complex dependencies between process
parameters and product quality. Furthermore, once calibrated, these models are suitable for autonomous process
control due to their small computation times.

In a future study, we will extend the methods proposed in the present work to include further image measurements
such as X-ray microtomography, which provides 3D image data of the manufactured product in order to close the gap
between free jet measurements and actual particle colliding with the substrate. This allows us to analyze the surface
morphology of the particles bond to the substrate. In this way, we can correlate 3D morphological descriptors of the
product with free jet particle descriptors to further characterize and quantify the quality of the spraying process.
Since the proposed approaches are fully data-driven, the presented methods will be able to capture the influence of
the flow field affecting the particle velocity, especially near the nozzle and the substrate. However, in order to model
these phenomena and to achieve more realistic optima in terms of the distance of the substrate to the nozzle, further
data acquisition is necessary, especially of the experimentally highly complicated case of particle tracking within a
non-free jet.
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