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Abstract

The gas flow through sheet-like porous materials such as paper can show
marked lateral variations due to a heterogeneous, locally varying
microstructure. Hence, reliable predictions of such lateral flux variations
require an appropriate consideration of local variations in the
microstructure. The flow through such sheet-like materials is commonly
described with Darcy’s law in which permeances are formulated in terms of
microstructure properties such as porosities, tortuosities, or hydraulic radii.
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2 Local pore space variations explain air flow variations

This work proposes an extension of existing permeance models that
directly considers the variation and the cross-dependence between local
microstructure properties. The extended model is applied to local air fluxes
through a paper sheet to exemplarily reveal the joint impact of local
porosities and local tortuosities on the air flux. The key extension is to
consider a joint distribution of porosity and tortuosity. The latter is
constructed from the univariate property distributions using a Copula
approach and yields local tortuosities including their variation for any
encountered local porosity. These values jointly enter any permeance model
that qualitatively captures the dependence of the air flux on the porosity.
To assess the merit of the model, variations in the air flux and in the pore
space properties are independently determined from the same measured
microstructure of paper. Air flux variations are provided by computational
fluid dynamics simulations on multiple, nonoverlapping segments taken
from the microstructure. A statistical analysis of the entire microstructure
provides the distribution of local porosity, tortuosity, and thicknesses. Our
model quantitatively explains that porosity-dependent variations in the
tortuosity, in particular the ones associated with high-volume pathways,
decisively determine air flux variations.

Keywords: air permeance, paper, statistical modeling, computational fluid
dynamics

Article highlights

• Computational fluid dynamics simulations determine local variation of air flow

through an actual microstructure of paper

• Construction and use of the copula approach to model joint distribution of local

porosities and tortuosities is explained

• Existing permeance models equipped with variations in porosity and porosity-

dependent tortuosity capture most variations in air flow

1 Introduction

It is highly desirable to quantify how the macroscopic transport through porous

materials is governed by material properties that are either directly related to

pores or rely on the available pore space. With such an understanding the

relative impact of pore space and external conditions on the observed fluxes can

be discriminated and fluxes can be even controlled via tailored pore space

properties. For gas transport through sheet-like materials not only porosity, but

also pathway properties such as tortuosity, hydraulic radii, or sheet thickness

could considerably influence the permeance. Besides sheet-averaged pore
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properties, also the property variations due to marked heterogeneities of the

in-plane composition may decisively affect the through-thickness transport. Such

heterogeneities occur, for example, in non-woven fiber-based sheets such as

paper due to local fiber accumulations. Local variations within the sheet can be

decisive to distinguish paper types and to permit interpretations in terms of the

properties of the fibers between which the pore space is formed (Sampson

(2001b)).

Prevalent attempts to associate permeabilities with pore space properties are

predominantly lumped single pipe models (Bernabé (2018)). These attempts aim

at casting the macroscopic permeability into expressions reminiscent to Poiseuille’s

equation for viscous flow in a cylindrical pipe such that the complexity of the

porous materials enters as “effective pipe” properties. Since early model equations

have been introduced, back then formulated to capture the permeability for liquid

flow through parallel cylinders (Carman (1939); Kozeny (1927)), many different

formulations of such permeability expressions have been introduced to account for

the structure of highly distinct materials. Nevertheless, all proposed expressions

seek to associate the permeability with a product of individual factors, each of

which is governed by a pore space property.

Such lumped expressions capture the macroscopic permeance for averaged

pore space properties, but are not necessarily suitable to quantitatively account

for local variations (Bernabé (2018)). In the present article we seek to determine,

whether local variations in air permeance can be quantitatively explained by local

variations in the porosity and tortuosity as the leading influences. For this

purpose, we provide a reference data set of air fluxes and local pore space

properties that are determined for a given microstructure of a paper sheet. This

microstructure is available from X-ray computed microtomography

measurements (Machado Charry et al (2018)). The through-thickness air flow

and its local variations in this structure are simulated with computational fluid

dynamics (CFD) simulations.

To link the air flux to local variations in porosity, tortuosity, and thickness,

we assume that lumped single pipe models predict the local air flux for locally

given pore space properties correctly. Then, in a central step, we extend lumped

single pipe models to estimate flow variations by accounting for the dependence

of tortuosity on porosities. The key extension is to incorporate this

interdependence with a copula-based parametric model for the joint distribution

of local porosity and local tortuosity as introduced by Neumann et al (2021b).

Note that this approach is, at the first glance, much less complex than other

approaches to account for local variations. Other approaches explicitly consider
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the parallel transport through a distribution of pore sizes (Dodson and Sampson

(2000)), a pore network with variations in connectivity (Bernabé et al (2011)),

and networks with varying pore sizes and connectivities (Bernabé (2018); Gostick

et al (2007)). However, it appears to be reasonable to assume that a (correctly

chosen) lumped single pipe model is locally valid, since we consider variations in

large-area, sheet-like materials such as paper. Most of the flux variations are

expected to originate from different numbers of locally accumulated fibers, such

that we can expect lateral variations in the number of inlet/outlet pores as well

as in the pore size distribution (Dodson and Sampson (2000)). Though such

fiber accumulations may also cause variations in thickness direction, these

variations essentially comprise a few fiber diameters. However, in plane variations

in the pore space may occur on the mm to cm-scale (Neumann et al (2021a)) so

that we can assume the local validity of a permeance model provided that the

considered locations are far enough apart.

This article describes the implementation of the proposed extension in a step-

by-step manner. A first step provides the data set for the analysis. Here we provide

the details associated with the CFD simulations and determination of the local

pore space properties. In second step, we explain the nature of lumped single

pipe-inspired expressions for the permeability and show that such models readily

rationalize the dependence of the simulated fluxes on local porosities. Before using

this formulation for estimates, a third step is required in which the interdependence

between porosity and tortuosity is quantified. In a final step, the contributions to

permeability variations are collected and compared.

2 Material and imaging

The sample material was a paper from industrial production, made from

unbleached softwood Kraft pulp. The paper had a basis weight of 70 g/m2. This

value, which corresponds to the supplier specifications, was confirmed by a test

in accordance to the standard DIN EN ISO 536 (Paper and board:

Determination of grammage).

In order to obtain the 3D microstructure of the volume, an X-ray

microcomputed tomography study was made using an Xradia 500 Versa 3D

X-ray microscope (Zeiss, Germany). The isotropic voxel has an edge length of 1.5

µm and the final binary volume has a size of 2.001 × 2.802 mm × thickness.

Detailed information about the experimental setup as well as the preprocessing

and binarization of the data can be found in Machado Charry et al (2018).
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The air permeance was assessed by determining the air resistance in the

Gurley method (ISO 5636-5). A reference volume 100 mL of air is pressed

through the sample of an area 6.452 cm2 at an excess pressure is p = 1.22 kPa

against ambient pressure of an atmosphere patm = 101.325 kPa. The test is

recording the time necessary to push the reference volume through the paper.

According to standard the result is calculated as the mean of ten measurements

performed on different paper specimen. For easier comparison with simulation

data we are transferring the time measured in the Gurley test into volume fluxes

and, eventually, into mean air velocities.

3 Database for analyzing local variations

The database necessary for an analysis of local variations has been built in two

consecutive steps starting out from the microstructure extracted from a µ-CT

scan of a paper sheet. In a first step, local variations in the air permeance have

been determined using computational fluid dynamics simulations. We will show

below that these simulations readily provide a guide how the mean air velocity, a

direct measure for the permeance, is governed by the local porosity. In a second

step, a statistical analysis of selected, geometry-related pore space properties has

been conducted. This analysis determines local variations of these properties, finds

mutual dependencies, and estimates their impact on volume fluxes of air.

3.1 Computational fluid dynamics simulations

The CFD simulations based on the stationary, compressible Navier-Stokes equation

were conducted in the pore space of the microstructure using the ANSYS code.

The volume data was triangulized to obtain the required surface mesh of the pore

space. The large aspect ratio of the sample poses a challenge for triangulation. To

obtain a good comprise between a high resolution, yet uniform coverage of surface

triangles, we stretched the volume data in thickness direction by a factor of five,

loaded this stretched volume data as images in Fiji (Schindelin et al (2012)) to

perform the triangulation, and stretched the resulting surface mesh by a factor of

0.2 in thickness direction. This surface mesh encloses the pore volume in which the

CFD simulations take place. As ANSYS relies on a finite volume approach, this pore

volume was meshed using Numeca Hexpress Hybride. Filtering was applied. Further

details can be found in Leitl (2020). The surface meshing closes all pores that are

not connected to the exterior, i.e., either to an inlet or outlet. The air permeance

was obtained for conditions that correspond to the standardized method test to

assess the porosity of paper (ISO 5636-5:2013 (2013)).
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The total cross sectional area available for simulations was A = 2.8125 ×
1.666 mm2. However, to also obtain information on local variations, we divided

the total volume into twelve equally-sized segments of Aseg = 700 × 667µm2.

The boundary conditions for the pressure were chosen to match the Gurley

measurements. The pressure at the top surface was p = 1.22 kPa, and p = 0

at the bottom surface. Also the external conditions were chosen to match the

standardized conditions demanded by Gurley measurements. The temperature

was T = 298 K, so that the density of air was ρair = 1.184 g cm−3, the

specific heat capacity was c = 1006.43 kJ kg−1 K−1, and the dynamic viscosity

was η = 1.838 · 10−5 Pas.

Fig. 1 Excerpt of a two-dimensional pressure profile of the CFD simulated volume including

the paper sample. Regions residing at the imposed excess pressure are indicated in red

(inlet volume), regions at ambient pressure are shown in blue (outlet volume). All regions

at pressure between imposed and ambient pressure indicate the volume of connected pores,

white regions refer to fiber volume.

For each segment, the CFD simulations yield the spatially resolved air pressure

and air velocity, and at the outlet side the mean volume flux ∂V/∂t and the mean

air velocity v, which is given by

v =
1

Aseg

∂V

∂t
. (1)

The porosity responsible for the observed air flow is directly extracted from CFD

simulation results using the pressure profile. The apparent extra effort to involve

the pressure distribution (rather than the plain mesh) spares us the ambiguity to

define which portion of the air-filled space contributes to the fraction of pore space

and which portion is to be considered exterior air. The totally simulated volume
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can be viewed to consist of an inlet region, the sheet region, and the outlet region,

cf. Figure 1. These regions can be conveniently distinguished by introducing iso-

pressure volumes. Each iso-pressure volume comprises all portions in the sample in

which the pressure varies only in a small interval with respect to a given pressure

value. After dividing the total range of observed pressures into evenly sized small

intervals, we obtain a series of stacked, irregularly-shaped iso-pressure volumes,

as indicated in Figure 1. While the pressure at the inlet region adopts the value

imposed by the external excess pressure, the outlet region is at ambient pressure.

This choice readily distinguishes between pores inside and outside the paper sheet,

i.e., it defines the surfaces of the paper sheet experienced by the air flux. The

volume associated to the paper sheet is, hence, the total volume less the inlet

and outlet regions. All regions inside the paper volumes that reside on a pressure

level between excess and ambient pressure belong to the volume fraction of paper

pores; volume regions that cannot be associated to a pressure trivially correspond

to solid material. Then, the porosity is obtained straight forward from dividing the

pore volume by the volume of the paper sheet.

3.2 Statistical analysis of the 3D microstructure

We morphologically analyze the pore space of the 3D microstructure to get more

detailed insight into local variations of associated properties. In contrast to the

CFD simulations shown above, such a pure-geometry based analysis allows us

to inspect local properties with different spatial resolutions, i.e., to consider a

large range of segment sizes with segments lengths between 30 and 150 µm. The

intended variation of segment sizes precludes the reuse of CFD-related segments

and its CFD-consistent pore space. Rather, we determine the top and bottom

surfaces, i.e. the boundaries of model paper in z-direction, with the rolling ball

algorithm (Machado Charry et al (2018)). These surfaces are needed to distinguish

air-filled pores inside the paper sheets apart from exterior air surrounding the paper.

To obtain the distributions of local properties, we partition the

microstructure into sets of non-overlapping segments in the xy-plane (Neumann

et al (2021b)). These segments are square-shaped in xy-plane and contain the

complete microstructure in transversal z direction. The centers of the segments

are arranged on a square grid in xy-plane at a distance of 150 µm to the nearest

neighboring segment center. This setting leads to a maximum total number of

204 segments. The side length of the square-shaped segments is varied in the

range from 30 µm to 150 µm in 30 µm steps; the maximum size prevents an

overlap of segments.
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We determined the local porosity ε, the mean geodesic tortuosity τ (0), and

the mean geodesic tortuosity τ (r) for pathways with a minimum diameter of 2r

(r > 0), i.e., of pathways with different minimum local volumes. The local porosity

of a segment is defined as the ratio of the number of pore voxels to that of all

voxels, which are at the same time contained in the segment and are between

the top and bottom surface. The tortuosity is quantified with the mean geodesic

tortuosity, because it can be directly and unambigously obtained from the 3D

microstructure (Neumann et al (2019a)) and describes the connectivity between

the pores, i.e., it incorporates the topology of the underlying pore network (Clennell

(1997)). The mean geodesic tortuosity τ (0) assesses how strongly paths deviate

from a straight connection of top and bottom surface. The more a path meanders

the more the associated τ (0) would exceed the minimum value of one. The mean

geodesic tortuosity describes the length of the shortest connection that can possibly

be formed between two points through a succession of pores. As such connections

are permitted to find any shortcut, geodesic paths are shorter than those considered

by geometric tortuosities even if the same pores are visited, as in the latter case

paths are constructed on the pore skeleton. Tortuosities derived from actual flow

patterns, being obtained from diffusion or hydraulic tortuosities, give even larger

values as the flow does not always follow the geometrically shortest option (Clennell

(1997)).

Within each segment, τ (0) is taken as the average of shortest path lengths

from the bottom surface to the top surface divided by the local thickness of the

paper sheet (Machado Charry et al (2018); Neumann et al (2019a)). For a formal

definition of mean geodesic tortuosity in the framework of random closed sets, we

refer to Neumann et al (2019a). From all pathways present in a segment, we only

consider paths, whose starting points are located in the considered segment. These

paths, however, are allowed to leave the segment, because otherwise boundary

effects would have a stronger impact on τ (0) of smaller segments. The lengths

of the shortest pathways associated with the starting points in a segment are

determined by means of the Dijkstra algorithm (Thulasiraman and Swamy (1992))

on the voxel grid.

Pathways differ not only in length, but also in their volume. To discriminate

between pathways in terms of their volume, we consider the mean geodesic

tortuosity τ (r) of pathways with a minimum radius r, where τ (r) characterizes

the connected pore space that can be filled by spheres of radius r. Hence, radius

r serves as an indicator for the path volume. The larger r, the weaker the

bottlenecks along the path, i.e., the larger the volume of the path. For the

selection of pathways with a minimum radius equal or larger than r, the value of
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τ (r) is determined in the same way as described above for τ (0). We consider the

cases r > 1.5 and r > 3.0 µm, so that particularly the case r > 3.0 µm will

provide insight into the behavior of high volume pathways later on.

4 Impact of pore space properties

4.1 Air velocity depends on porosity

Figure 2 shows that the mean local air velocity, determined for each segment, tends

to increase with local porosity. However, the velocities exhibit a marked scattering

beyond their porosity dependence. This is seen best for the segments that share

a common porosity of ca. 0.32, where air velocities scatter by ±50% (highlighted

region in Figure 2).

Fig. 2 Mean air velocity of the segments obtained from the CFD simulations (crosses) under

Gurley conditions vs. the segment porosity. The curves represent the fit to permeability

models: Gebart model according to Eq. (8) (black, circle) and the Carman-Kozeny model in

the form of Eq. (7) (blue, square). The highlighted region marks a large spread in velocities

regardless of similar segment porosities.

The strong relation between mean local air velocities and local porosities

reproduces a key observation for porous materials. In general, this relation

triggers ongoing efforts to quantify how permeabilities depend on porosities and

other properties of the microstructure. Such quantifications are commonly

performed in the spirit of lumped single pipe models (Kozeny (1927); Carman

(1939); Bernabé (2018)). To get a rapid overview, how the microstructure can

influence the air velocities, we collect the most important steps to represent the

velocities with lumped single pipe models. As an instructive starting point, we
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assume that Darcys law holds, so that the volume flux ∂V
∂t relates to the pressure

gradient, ∇p, and the dynamic viscosity, η, as

∂V

∂t
= −κ

η
∇p, (2)

where κ is the permeability. Darcy flow is appropriate because it holds for laminar

pore flow. Finding a maximum air speed of about 5 ms−1 in the paper pores

during the Gurley test (compare Figure 4 below) and a maximum pore size in the

paper of 10 µm, we arrive at a Reynolds number Re of circa three, which is way

below the critical value for turbulent flow, Re=2300.

We further assume a practically constant pressure gradient ∇p that can be

approximated by the global pressure difference ∆p and the thickness, h, of the

penetrated volume, i.e., we assume that

−∇p = ∆p/h . (3)

Then, a mean velocity v is readily obtained by dividing both sides of Eq. (2) by

the nominal area A, i.e.,

v =
κ

ηhA
∆p. (4)

This mean velocity is not only closely associated with permeability κ, but also

depends on the thickness h of the sheet. Since sheet thicknesses h are much

smaller than the lateral sheet extensions, the actual value of h could decisively

influence the value of v. For example, flows transmitted to a thin sheet experience

much less of variation in through-thickness direction compared to the variations in

lateral directions. For this reason, we prefer to characterize the flow by a segment

resolved mean velocity v rather than by local permeabilities κ.

In a next step it is desirable to refine the permeability κ in terms of porosity

ε and other microstructure-derived properties of the sample. The widely used

Carman-Kozeny equation illustrates such a refinement for a laminar liquid flow

through packed beds:

vCK = CCK
1

ηh

ε3

(1− ε)2
∆p , (5)

where CCK is a material-specific factor that contains information on the structure

of the pore space (Kruczek (2015)). When considering, for example, packed beds

as an assembly of parallel, cylindrically-shaped pores formed between identical

particles, CCK reads as

CCK =
6d2p
A2

sK
, (6)
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where dp is the diameter of the packed particles, As the specific surface area per

unit volume of the particle, and K an empirical parameter whose value depends

on the tortuosity (Kruczek (2015)).

A possible way to explicitly account for path lengths which significantly exceed

the thickness h of a sheet or a membrane is to express the pressure gradient with

the average path length τh, i.e., −∇p = ∆p/(τh) (Kruczek (2015)). This leads to

vCK(ε, τ, h) = CCK
1

ηhτ

ε3

(1− ε)2
∆p . (7)

Even when going beyond packed-beds, expressions for v via Darcy’s law

essentially keep the same structure. The permeability is a product containing a

factor accounting for the characteristic size of the involved solid, a factor

accounting for the porosity, and a factor related to tortuosity. Models for v and

the permeability κ of such a structure were also proposed for the case of fibrous

materials (Jackson and James (1986); Gebart (1992); Koponen et al (2017,

1998); Clague et al (2000); Nabovati et al (2009)). Often the fiber diameter, a,

serves as characteristic size so that typically scaled permeabilities κ/a2 are

formulated. The model of Gebart may serve here as an example:

vG(ε, τ, h) = CGa
2 1

ηhτ

(√
1− εc
1− ε

− 1

) 5
2

∆p , (8)

where CG is a geometric factor, and εc is the critical value of porosity below which

there is no permeation, i.e., εc is a percolation threshold (Nabovati et al (2009)).

Both factors depend on the specific packing of fibers and do not account for

fiber diameter, ε, or τ . Values of an ideal square and hexagonal array of parallelly

oriented fibers (τ = 1) are CG = 16/(9
√
2π), εc = 1−π/4 and CG = 16/(9

√
6π),

εc = 1−π/(2
√
3), respectively (Gebart (1992)). This model has been later refined

by Nabovati et al (2009) and Clague et al (2000) to cover an even larger porosity

range.

Knowing the velocity v, the porosity ε, and the thickness h of each segment,

models of the type given by Eq. (7) or Eq. (8) readily permit to check the

consistency of the simulated vCFD with the predicted v(ε, τ, h) dependence and

to fit associated material-dependent parameters (including the characteristic

size). Regardless whether Eq. (7) or Eq. (8) is used to model the v(ε)

dependence, it is possible to obtain an equal-quality fit in the given range of

local porosities, cf. Figure 2. Even though the trend in ε is well reproduced, our

data set is not suited to verify one or the other model for v(ε). The true value of
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lumped single-pipe models is that their typical structure readily suggests how to

search for other relevant properties of the pore space. This will be explained in

the next section.

4.2 How to assess the roles of thickness and tortuosity

In our case, we are interested in the impact of the thickness h and the tortuousity

τ . The thickness is an obvious candidate to provoke local variations in v, because

its value depends on the number and shape of the locally stacked fibers and, hence,

position in the paper sheet. But also the tortuosity appears to be an intriguing

candidate, as it parameterizes the nature of pathways.

Fig. 3 (a) Location of the streamlines seen in top view on the lateral xy-plane for one

of the simulated segments. The color bar indicates the location of a streamline segment

in transversal direction. (b) Locations of large lateral velocity components in an xy-cross-

section at the center of the segment.

The streamlines of air flow inside a simulated segment, shown in Figure 3,

reveal that the air flux follows extended path segments in lateral direction, rather

than straightly penetrating the paper in thickness direction. In this work, we

chose to represent the pathways by means of mean local geodesic tortuosity (cf.

Section 3.2). This particular definition of tortuosity solely accounts for the

morphology of the connected pore space (Clennell (1997)).

Given that there is a formula for vmodel(ε, τ, h), like in the Carman-Kozeny

model, we seek to estimate the variation that contains all dependencies in addition

to the influence of the porosity ε seen in Figure 2. In particular, our velocity model

suggests to which extent v varies with thickness and tortuosity. Then, provided

that we know the local thickness h, remaining variations in v can only be caused
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by variations in the local tortuosity τ . Hence, we need to provide information how

strongly tortuosities could vary for a given porosity. The required relation between

tortuosity and porosity along with the entailing variation in the tortuosity will be

provided in the next section. Before doing that, however, it is useful to have a

closer look on the pathways involved in transport.
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Fig. 4 (a) Positions at which velocities at least as large as half of the peak velocity are

encountered (highlighted in color) in the cross-section shown in Figure 3b. The gray regions

mark pores, white regions correspond to fibers. (b) Volume flux vs pore cross-section area.

Starting from the pores carrying the largest volume flux, the pore area successively increases

by incorporating the pores carrying lesser volume flux (in descending order). Only a small

fraction of the pore area (ca. 5%) is responsible for 50% of the total flux.(c) Derivative of

the volume flux with respect to pore area. The region highlighted in gray refers to pores

showing backflow, i.e., with a flow against the externally imposed pressure gradient.

The CFD simulations strongly suggest that air flows in heavily preferred

pathways. Figure 4 illustrates this finding with a cross-section through a segment
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that is centered between the sheet surfaces and oriented perpendicular to the

imposed pressure difference, cf. Figure 4a. All gray-shaded regions correspond to

pores, white regions are fibers. For each pore area, the absolute value of the local

velocity, being a measure for the local volume flux V̇ = ∂V/∂t, has been

recorded. In Figure 4a all pores with a volume flux between the maximum flux,

V̇max, and 0.5V̇max are highlighted with a color corresponding to the local

velocity. Clearly, only a small fraction of pores governs the overall flow. To

quantify this fraction, we (i) arranged the pore areas in descending order with

respect to the permitted volume fluxes V̇ and (ii) show in Figure 4b how the

volume flux increases by incorporating more and more of such pore areas. Note

that the flux accumulated this way appears to exceed the total flux (100% in

Figure 4b); this excess originates from the fact that the total net flux also

contains contributions flowing against the external pressure gradient. Figure 4b

suggests a marked disparity between relevant and less relevant pore

cross-sections. Half of the flux is transmitted through only 6% of the total pore

area. In fact, an equivalent of less than 20% of the total pore area is needed to

account for 90% of the flux. A quick and convenient way to account for the

disparity between offered and actually used pathways in our analysis is explore

the role of high-volume pathways using τ (3.0). Hence, it is worthwhile to clarify

both the interrelation between the porosity and all pathways, τ (0)(ε), and the

relation between porosity and high-volume pathways, τ (3.0)(ε).

5 Capturing the relation between porosity and

tortuosity

In our effort to estimate ∆v due to variations ∆τ in the tortuosity, we need to

know the extent to which the tortuosity varies with porosity. Formally speaking,

we require the change of τ with ε, ∂τ/∂ε, and the ε-dependent variation in τ

for each local porosity. In the absence of a known analytical formula for τ(ε), we

inspect our microstructure to obtain such a relationship empirically.

The key idea is to consider a bivariate porosity-tortuosity probability

distribution function K(ε, τ) to model the joint evolution of ε and τ and their

local variations across the material. From this model of K(ε, τ), a conditional

probability density function kτ |ε=ε′(τ) can be derived to encounter a certain

tortuosity for a given porosity ε′. The conditional probability density kτ |ε=ε′(τ)

provides us two important quantities: The first is the (conditional) distribution of

tortuosity values for a given porosity ε′ from which the variation in τ directly
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follows. The second is a relation between an averaged tortuosity, τ̄ , and ε, from

which we can estimate ∂τ/∂ε.

The joint model distribution function K(ε, τ) is directly constructed from

available geometry data using the copula approach as formally described in

Neumann et al (2021b). In a step-by-step manner, we now briefly motivate,

sketch, and illustrate the actions that are necessary to provide the joint model

distribution function K(ε, τ) and to derive kτ |ε=ε′(τ). For a complete description

of all technical details the reader is referred to Neumann et al (2021b).

5.1 Joint distributions and copulas

The possibly best known example for joint distributions are bivariate normal

distributions that relate a pair of normally distributed random variables to each

other. In this case, a variable X with mean µX and standard deviation σX and a

variable Y with mean µY and standard deviation σY possess a joint probability

density function

g(x, y) =
1

2πσXσY

√
1− ρ2

e
1

1−ρ2

(
− (x−µX )2

2σ2
X

− (y−µY )2

2σ2
Y

+ρ
(x−µX )(y−µY )

σXσY

)
(9)

with x, y ∈ R, and ρ ∈ (−1, 1) being the correlation coefficient. Expression (9)

illustrates the two types of necessary ingredients: There are the two individual

(marginal) distributions, each parameterized by its mean µ and its standard

deviation σ. Then, solely one additional parameter ρ is necessary to judge to

which extent variable Y (co-) varies with X. Such bivariate normal distributions

have already been successfully used to distinguish paper sheets in terms of

characteristic relations between thickness and basis weight (Dodson et al

(2001)).

In principle, the bivariate distribution of local porosities and local tortuosities

of our material is readily sampled (i) by collecting the value pairs (ε, τ) in non-

overlapping inspection regions of a given size and (ii) by determining how often

certain value pairs (ε, τ) occur across the sample. This yields a sampling-dependent

point cloud in the ε − τ space. To interpolate to situations located between the

probed ε,τ values, a continuous model function is called for. Thus, we seek for

a bivariate probability density k(ε, τ), alike the bivariate normal density g(x, y)

given in Eq. (9), that reproduces the empirically obtained value pairs (ε, τ) and

contains the relation between ε and τ as a parameter (alike ρ in Eq. (9)). This is

were copulas come into play.
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Copulas combine three aspects in a highly convenient way. First, the use of

copulas yields a parametric model for the bivariate distribution function K(ε, τ).

Second, a copula-based K uses the univariate distributions of the individual

quantities ε and τ (i.e., the marginal distributions) by construction, regardless

whether each of them is normally distributed or not. Third, these univariate

distributions are joined into K using a single additional parameter that informs

on the correlation of the two quantities. Formally, a two-dimensional copula

C : [0, 1]2 → [0, 1] is a particular kind of a bivariate probability distribution

function. It starts out from an arbitrary pair of random variables X (modeling,

e.g., sampled values of ε) and Y (modeling, e.g., sampled values of τ) with their

joint (bivariate) distribution function K(x, y), where

K(x, y) = P(X ≤ x, Y ≤ y), and their univariate distribution functions

F : R → [0, 1], where F (x) = P (X ≤ x), and G : R → [0, 1], where

G(y) = P (Y ≤ y), respectively. Each of these cumulative distribution functions,

F (x) and G(y), is associated to a probability density function, f(x) and g(y),

that describes how often a given value x or y, respectively, is encountered in our

material. Sklar’s theorem (Nelsen (2007)), the main result of copula calculus,

states that there exists a copula C which admits the representation

K(x, y) = C(F (x), G(y)) (10)

of the joint distribution function K : R2 → [0, 1] of X and Y , for all x, y ∈ R.
Therein, the copula C is the joint (bivariate) distribution function a random vector

(U, V ) containing two uniformly distributed variables U and V (becoming F (X)

and G(Y ) in our context) with values in the unit interval [0, 1]. Thus, for all

0 ≤ u, v ≤ 1, it holds that C(u, v) = P(U ≤ u, V ≤ v), where P(U ≤ u) = u

and P(V ≤ v) = v, i.e., both marginals U = F (X) and V = G(Y ) are uniformly

distributed on the unit interval (Schweizer (1991)).

The copula function C to be employed in Eq. (10) can be chosen from different

function families. Within such a family, the functions Cλ are distinguished with

a parameter λ ∈ R whose value measures the degree of correlation in analogy to

the correlation coefficient ρ in the bivariate normal distribution (Eq. (9)). In other

words, the cumulative joint distribution function K(x, y) of the random vector

(X,Y ) is expressed by a copula function Cλ that takes the values of the (random)

cumulative distribution functions F (X) and G(Y ) as arguments and contains a

parameter λ to quantify the correlation between X and Y .
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In our case, X and Y denote the random local porosity and the random local

tortuosity, respectively, i.e.,

K(ε, τ) = C(F (ε), G(τ)) . (11)

If the value pairs (ε, τ) have a joint probability density function k : R2 → [0,∞),

we directly obtain a formula for k from Eq. (11), namely

k(ε, τ) = f(ε)g(τ)

(
∂2

∂ε∂τ
C

)
(F (ε), G(τ)), (12)

where f : R → [0,∞) and g : R → [0,∞) are the univariate probability density

functions corresponding to F and G, respectively.

To arrive at expressions of the form (11) and (12), three steps are required:

(i) determine the univariate probability density functions f(ε), g(τ) and the

corresponding cumulative probability distribution functions F (ε), G(τ), (ii)

select a candidate copula function Cλ, and (iii) fit the bivariate density function

k(ε, τ), by determining the parameter λ of Cλ derived from the “ε − τ point

cloud”.

5.2 Local variations in porosity and tortuosity

We estimate the individual (univariate) distributions of local porosity and local

tortuosity, respectively, directly from the 3D microstructure for each size of the

segments. In Figures 5a and 5b, the resulting probability densities are shown for the

segment size of 150 µm. In a second step, we will cast these univariate distributions

in parametric models. Such parametric models provide a lean and feasible way

to approximate the probability densities estimated from the 3D microstructure by

analytical expressions. The few shape parameters of the analytical model function

suffice to reconstruct the entire distribution, including the mean value and standard

deviation.

The distributions associated to the local porosity, shown for the segment size of

150 µm in Figure 5a, can be well modeled by beta distributions (Figure 5c). Note

that the probability density fs,q : R → [0,∞) of the beta distribution is given by

fs,q(ε) =
Γ(s)Γ(q)

Γ(s+ q)
εs−1(1− x)q−1 1[0,1](ε), (13)

for each ε ∈ R, where s, q > 0 are some shape parameters, 1[0,1] is the indicator

function of the unit interval [0, 1], and Γ denotes the gamma function (Johnson

et al (1995)). Though the beta distribution appears to closely resemble a normal
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(0)

(3.0)

(0)

(3.0)

Fig. 5 Estimation and parameterization of the distributions of local pore space properties

for the segment size of 150 µm. Estimated density of local porosity ε (a) and local mean

geodesic tortuosities τ (0) and τ (3.0) (b). Parametric model distributions fitted to the

densities shown in (a) and (b): beta distribution for the local porosity ε (c) and shifted

gamma distributions for local mean geodesic tortuosities τ (0) and τ (3.0) (d).

distribution (when s = q), the beta distribution is more appropriate to model the

distribution of local porosities, as it requires the sample values to vary within the

interval [0, 1]. The shape parameters s and q are fitted by the maximum

likelihood method. In Figure 5c, the probability density function of the fitted

beta distribution is shown for the segment size of 150 µm. Comparing Figures 5a

and 5c, it becomes clear that the model density approximates the corresponding

empirical density estimated from image data very well. Moreover, the fitted

parametric model densities nicely resemble the estimated densities of local

porosities across all inspected segment sizes (Neumann et al (2021b)).

The distributions of τ (0) and τ (3.0), estimated from image data, are

illustrated in Figure 5b for the segment size of 150 µm. The average high-volume

pathway is considerably longer than the overall average pathway (Neumann et al

(2019b)). Both distributions are markedly skewed. Regardless of the segment

size, we found that the estimated distributions are well modeled by a shifted
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gamma distribution (Neumann et al (2021b)) with probability density function

ga,b : R → [0,∞) defined via

ga,b(τ) =
(τ − 1)a−1

baΓ(a)
e

1−τ
b 1[1,∞)(τ), (14)

for all τ ∈ R, where a, b > 0 are the parameters of the distribution (Johnson et al

(1995)). For the segment size of 150 µm, the probability density function of the

fitted shifted gamma distribution is shown in Figure 5d.

Note that also other morphological attributes of the pore space turn out to

be non-normally distributed. For example, the pore size distribution being another

important pore space property follows a markedly asymmetric gamma distribution

(Johnston (1998); Sampson (2001a); Dodson et al (2003)).

5.3 Correlation between porosity and tortuosity

The segment-wise collected pairs of ε and τ (0) (resp. ε and τ (3.0)) are shown

as scatter plots in Figure 6a (resp. Figure 6b) for the segment size of 150 µm.

Asking how often specific porosity - tortuosity pairs occur transforms the scattered

data points into an empirical joint probability density function associated with our

model paper. Note that for each segment size considered in this study, another

(i.e. different) empirical bivariate probability distribution is obtained. However, for

the segment size of 150 µm, it turns out that the values of the parameter of the

fitted Gumbel copula are almost identical for τ (0) and τ (3.0).

In the following we describe how the empirical bivariate probability

distribution function, estimated from the value pairs (ε, τ), can be approximated

by a parametric bivariate distribution function K : R2 → [0, 1], picking an

appropriately chosen copula function C : [0, 1]2 → [0, 1]. In general, one is free to

choose the copula function that accounts best for the data at hand. As a large

number of possible copulas C exists (Nelsen (2007)), it is by no means

straight-forward to pick the most suitable one. Rather, the identification of

robust criteria to appropriately choose copulas appears to be an active area of

current research. Yet, it is possible to line out aspects that can potentially

narrow possible choices. Copulas differ in the way data in the tail regions of the

univariate distributions is considered. Tail regions comprise data values that are

located most remote from the mean value, i.e., at which the cumulative

distribution function takes values either very close to zero or unity. Compared to

the possibly most employed copula, the Gauss copula related to bivariate normal

distributions, the Gumbel copula emphasizes more arguments close to zero, while

a Clayton copula provides a larger emphasis on arguments close to one. In our
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Fig. 6 Estimation and parameterization of the joint distribution of local porosity and local

mean geodesic tortuosity of (a) all pathways τ (0) and (b) high-volume pathways τ (3.0) for

a segment size of 150 µm. Joint distribution of the two properties as directly obtained from

the segments of the microstructure (scatter plots). Parametric model of the joint probability

density based on the Gumbel copula with parameter λ = 1.73 for τ (0) and λ = 1.74 for τ (3.0)

(heatmaps). The triangles at the porosity axes indicate specific values of local porosity for

which the conditional distribution of local mean geodesic tortuosity is investigated later on

in Section 5.4.

context we had no reason to pay particular attention to this tail behavior. Thus,

we compared the fits obtained with one-parametric families of so-called

Archimedean copulas (Nelsen (2007)), i.e., the fits with the families of Gumbel

and Clayton copulas to fits with copulas of the Frank type. This comparison

revealed that Gumbel copulas achieve a description that is superior to Clayton

and Frank copulas, even though the Frank copula type was already shown to

appropriately model the correlation between local porosity and local mean

geodesic tortuosity in one of our previous papers (Neumann et al (2019b)).

The Gumbel copula Cλ; [0, 1]
2 → [0, 1] with parameter λ ∈ R\{0} is given by

Cλ(u, v) = exp

(
−
[
(−ln(u))

λ
+ (−ln(v))

λ
]1/λ)

(15)

for all 0 ≤ u, v ≤ 1. A detailed account on the properties of the Gumbel copula is

provided e.g. in Genest (1987). Important is the meaning of the parameter λ. In
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the case of a Gumbel copula, the parameter λ is closely related to Kendall’s rank

coefficient τK via the expression

λ =
1

1− τK
, (16)

i.e., the value of λ is closely related with the result of a statistical correlation test.

Namely, if the parameter λ tends to unity, meaning that τK tends to zero, then

Eq. (15) implies that the Gumbel copula Cλ tends to the product copula Cproduct

given by Cproduct(u, v) = uv for all 0 ≤ u, v ≤ 1, which is equivalent with the

independence of the random variables X and Y introduced above in Section 5.1.

On the other hand, the larger the value of λ is the stronger is the correlation

between X and Y .

The parameter λ of the Gumbel copula is usually determined via

pseudo-likelihood estimation (Genest et al (1995)). To assess the goodness-of-fit,

a formal validation can be performed by means of a multivariate two-sample test

(Baringhaus and Franz (2004); Neumann et al (2021b)). The values of λ

obtained in this way are similar to those resulting from Eq. (16) via the

estimation of Kendall’s tau τK (cf. Supporting information).

For the joint distribution of local porosity ε and local mean geodesic tortuosity

τ (0) of all pathways, the value of λ = 1.73 was obtained for the segment size of

150 µm. The corresponding probability density is shown as heatmap in Figure 6a.

Note that for increasing local porosities, the local mean geodesic tortuosities shift

towards smaller values and are more narrowly distributed. For comparison, we

visualize the joint probability density of ε and τ (3.0) in Figure 6b for the same

segment size of 150 µm. As τ (3.0) refers to the tortuosity of only such pathways,

whose minimum radius exceeds the threshold of 3µm, the value of τ (3.0) represents

the particular behavior of pathways that allow to transmit high volumes of air.

Both the empirical and parameterized joint distributions of ε and τ (3.0) were

obtained following the same steps as lined out above for ε and τ (0). Despite a

much larger variability of τ (3.0), the estimated value of λ = 1.74 indicates that

the interdependence between τ (3.0) and ε is very similar to the one between τ (0)

and ε, where we obtained that λ = 1.73.

5.4 Conditional distribution of local tortuosity

With the copula model for the joint probability density k(ε, τ) of local porosity ε

and local mean geodesic tortuosity τ established, we can easily determine the

conditional probability density function kτ |ε=ε′(τ) of local mean geodesic

tortuosity τ for a given value ε = ε′ ∈ (0, 1) of local porosity ε, and visa versa.
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Namely, from the definition of kτ |ε=ε′(τ), which is given by the quotient

kτ |ε=ε′(τ) = k(ε′, τ)/f(ε′) for all τ > 1, using Eq. (12) we obtain that

kτ |ε=ε′(τ) = g(τ)

(
∂2

∂ε∂τ
C

)
(F (ε′), G(τ)). (17)

Fig. 7 (a) Conditional probability densities for the mean geodesic tortuosity τ (0) of all

pathways, for four selected local porosities of 0.5, 0.4, 0.3, and 0.2. (b) Conditional probability

densities for the mean geodesic tortuosity τ (3.0) of high-volume pathways, for four selected

local porosities of 0.45, 0.4, 0.35, and 0.3.

In Figure 7, the conditional probability density functions kτ |ε=ε′(τ) are shown

for the tortuosities τ (0) of all pathways and τ (3,0) of high-volume pathways, and

for the selected porosity values ε′ that were indicated by triangles in Figure 6.

The (conditional) probability densities of the tortuosity τ (0) of all pathways,

shown in Figure 7a for porosity values ε′ between 0.2 and 0.5 markedly differ in

shape. For a porosity of 0.5, the density of τ (0) (red curve) is sharp and possesses

a maximum close to unity. At paper locations with such an elevated porosity, there

are ample opportunities to form paths that straightly connect top and bottom

surfaces. Moreover, the pore space is large enough that very likely pathways form

that are almost as short as the local film thickness. However, at locations with

porosities as small as 0.2 (blue curve) only little pore space is available, be that

due to scarcely available, small, or ill-connected pores. Correspondingly lesser and

longer pathways are formed in comparison to a large porosity. Thus, the actual

local situation decides whether a formed pathway is short or long in comparison

to the film thickness. These associated large local variations are directly reflected

in the wide distribution of τ (0) (blue curve).

The conditional probability densities of the tortuosity τ (3.0) of high-volume

pathways, shown in Figure 7b for porosities ε′ between 0.3 and 0.45, illustrate

the above-discussed ε′-dependence even more extremely. With the constraint of a

minimum path radius of 3 µm, much less pathways are formed. Chances to find
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suitable pores to connect in the thickness direction rapidly decrease with increasing

porosity. Hence, the mean geodesic tortuosity is massively shifted towards higher

values and shows a wide distribution (note the different scales of the horizontal

axes in Figures 7a and 7b). The resulting mean values, τ̄ (0)(ε) and τ̄ (3.0)(ε),
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Fig. 8 Mean values τ̄ (0)(ε) and τ̄ (3.0)(ε) of the conditional distribution of τ (0) and τ (3.0),

respectively, as function of the local porosity ε (curves in the middle of shaded areas). The

vertical extent of the shading at each porosity value indicates twice the size of the standard

deviation of the corresponding distribution of local tortuosity.

and the standard deviations, στ(0) , στ(3.0) , of the shown conditional probability

densities kτ |ε=ε′(τ) are given in Figure 8. Regardless whether τ (0)(ε) or τ (3.0)(ε) is

concerned, the tortuosity and its local variation decreases with increasing porosity.

6 Discussion

The influence of local variations in porosity, tortuosity and thickness on variations

of local air velocity can be determined by means of the relationships stated in

Section 4.1. Here, we use the Gebart model (Eq. (8)) to account for the porosity-

dependence of air velocity in fibrous materials. To compare the range of possible

values of vG(ε, τ, h) suggested by the model with the CFD-simulated values vCFD,

we perform a least-square fit of the function vG(ε, τ, h) given in Eq. (8) to the set

of vCFD-values.

More precisely, after inserting the local porosity ε′ and the local thickness h′

into Eq. (8) for each of the twelve segments described in Section 3.1, the prefactor

CGa
2∆p/η containing the unknown parameters CG and a2 was fitted such that

the velocities v̄ = vG(ε
′, τ̄(ε′), h′) agreed best to the corresponding values of

vCFD. Recall that τ̄(ε
′) is the (conditional) mean value of the random variable τ ,

provided that ε = ε′, with (conditional) probability density function kτ |ε=ε′(τ).
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This density function describes the variations of local mean geodesic tortuosity τ

for a given local porosity ε′, see Section 5.4, where the two specifications τ (0) and

τ (3.0) of τ are considered.

Fig. 9 (a) Simulated air velocities vCFD (crosses) and velocities v̄ (circles) predicted by a

best fit to the Gebart model (Eq. (8)) using the overall tortuosities τ (0). The shaded region

marks the interval in which v-values spread due to variations of τ (0). The upper boundary

is defined as the 0.95 quantile and the lower boundary of the 0.05 quantile of the velocity

distribution. The prefactor is CGa2∆p/η = 5.12×10−4m2 s−1. The black line indicates the

model prediction vG(ε, τ̄(ε), h(ε)) obtained for a given local porosity ε. (b) As in (a), using

the tortuosity τ (3.0) of high-volume pathways, where the prefactor CGa2∆p/η determined

by the least-square fit is equal to 7.86×10−4m2 s−1.

The model velocities and their variation predicted by the fit are shown in

Figure 9. Note that, besides the impact of the local porosity ε, these predictions
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contain the impact of τ and the local thickness h. Local variations in the overall

mean geodesic tortuosity τ (0) readily account for most of the observed

differences between the CFD-simulated values vCFD and the model predictions v̄,

see Figure 9a. As the variation in τ (0) is governed by the local porosity, similar

porosity values posses practically equal tortuosity-caused variations. Additional,

apparently abrupt changes of variations at ε′ = 0.295 and ε′ = 0.32 are caused

by the different local thicknesses. These changes of variations are, however, small

compared to the impact of τ (0).

When turning to high-volume pathways, i.e., considering τ (3.0) rather than

τ (0), the velocities spread even more, as shown Figure 9b. Now, the variations in

τ (3.0) alone are large enough to fully explain the variations in the CFD-simulated

velocities. This enhancement in v-variation, ∆v, can be rationalized with a closer

look at the contributions of the variations ∆τ of τ for a fixed value h′ of the

thickness h, i.e.

|∆v(h = h′)| =
∣∣∣∣∂v∂τ

∣∣∣∣∣∣∣∣∂τ∂ε
∣∣∣∣|∆ε| = v̄

τ

∣∣∣∣∂τ∂ε
∣∣∣∣|∆ε|. (18)

Therein, the relation

|∆τ | =
∣∣∣∣∂τ∂ε

∣∣∣∣|∆ε| (19)

was used. The form of the Gebart model Eq. (8) and, in general, of all

single-pipe models for v (cf. Section 4.1) implies ∂v
∂τ = − v

τ . Furthermore,

v̄ = vG(ε
′, τ̄(ε′), h′) is the model prediction at h′. Albeit we are concerned with

the tortuosity contribution, Eq. (18) readily reflects that ∆v contains the

variation ∆ε, given by the univariate porosity distribution. As a conservative

estimate, we let ∆ε = 2σε, i.e., twice the standard deviation of ε. However, the

key change occurs when going from ∂τ (0)/∂ε to ∂τ (3.0)/∂ε (cf. Figure 8) due to

which ∆v increases by a factor of five. This increase is the most relevant

influence of the local porosity via an entailing stretch in path lengths and a

markedly widened interval in which the path lengths vary. As high-volume

pathways mostly pass through pores of larger sizes, our tortuosity dependence

reproduces the known fact that with larger variations in the pore size distribution

also the variation in the local flux increases (Dodson and Sampson (2000)).

Despite this significantly higher variation in high-volume pathways it is quite

remarkable that the estimated correlations between ε and τ (0) (Gumbel copula

parameter λ = 1.73) and between ε and τ (3.0) (Gumbel copula parameter

λ = 1.74) are practically the same. The factor 1
τ
∂τ
∂ε in Eq. (18) increases overall

by a factor of three, because the increase due to the partial derivatives is

partially compensated by a decrease in 1/τ , as τ̄ (3.0) ⪆ 1.5τ̄ (0).
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The above-shown analysis of the local variations in v needs to be taken with

a grain of salt, because we compared local, CFD- simulated velocities vCFD with

a model acting on markedly smaller segment sizes. These unequally chosen

segment sizes originate from a compromise. In the case of the microstructure, we

focussed on obtaining a broad data base with spatially well-resolved local

properties. The CFD-simulations, on the other hand, were performed on

segments large enough to suppress boundary effects. However, the extent of

variations always depends on the segment size, i.e., the size of the inspection

region. The larger the inspection region, the smaller the variation in pore space

properties (Sampson (2001b); Kanit et al (2003); Rolland du Roscoat et al

(2007); Neumann et al (2021a,b)) and associated fluxes (Dodson and Sampson

(2000)). Considering that, is our model going to predict substantially smaller

variations in v when we assume smaller local variations in ε and τ consistent

with the segment size? For a similar paper type (Neumann et al (2021a)) we

already know that porosity variations become independent of the inspection

region size beyond a segment length of 120 µm (cf. also Rolland du Roscoat

et al (2007)), while tortuosity variations (both in τ (0) and τ (3.0)) continue to

shrink even for segment sizes well above 300 µm. To quantitatively grasp the

consequence of reduced variations in ε and τ , we performed the analysis for

v(ε, τ (0), h) as described in Section 5 for a smaller segment size of 90 µm with

correspondingly wider porosity and a τ (0) distributions. For this segment size,

both univariate distributions, their standard deviations (Neumann et al (2021b)),

and the Gumbel coefficient λ = 1.59 of the joint distribution are available in the

Supporting information, Figure 3. Fitting the correspondingly adjusted model to

vCFD yielded the same Gebart coefficients CGa
2∆p/η as found for segment size

150 µm. Hence, the predicted mean velocities coincide with values shown in

Figure 9 and the velocity spread, ∆v, can be directly compared between the

segment sizes. However, the standard deviation σv of vG, serving as a first,

conservative estimate for ∆v, reduces by one third when going from a segment

size of 90 µm to 150 µm. Taking instead ∆v as the range of predicted velocity

values vG between the 0.95 and 0.05 quantiles, as was done in Figure 9, leads to

a reduction of ∆v by 25% ( cf. Figure 4 in the Supporting information for

details). Regardless which estimate is used for ∆v, the variations in vG found for

the two segment sizes remain in the same order of magnitude. Hence, local

variations of the tortuosity remain a plausible cause for the variations seen

among the CFD-simulated velocities.
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7 Summary

We quantified the impact of variations of two correlated, local microstructure

properties on locally varying mean velocities of transmitted air through a sheet of

paper. As a model system, we considered the simulated air flux of air through

the microstructure of a paper sheet as obtained by µ-CT. The flow simulations

readily corroborate the strong dependence of the air velocity on the porosity, but

show additional variations. To also relate these additional variations to the

microstructure, we analyzed the impact of thickness and the tortuosity

representing pathway-related properties, because the stream lines obtained in the

CFD simulations suggest that fairly long pathways are formed and that most of

the air is transported in high-volume pathways. Our quantification approach

combines lumped single pipe-inspired permeability models (here, the Gebart

model for fibrous materials), which explicitly contain the microstructure

parameters, with an empirical, parametric model to account for the correlation

between porosity and tortuosity. This parametric model represents the joint

porosity-tortuosity distribution that relates the porosity, the tortuosity, and their

local variations obtained from the microstructure. Key to construct such a joint

distribution is the copula approach, where the copula joins the univariate

distributions of porosity and tortuosity, both obtained from the local

microstructure, with a correlation parameter. The resulting parametric model

successfully approximates the distribution of local porosity and tortuosity value

pairs found in our microstructure and permits the extrapolation to continuously

varying property values. While employed here for two property pairs, i.e., the

tortuosities related to two classes of pathways and the porosity, the copula

approach is suitable for any conceivable pair of microstructure properties. With

extending permeability models of the lumped single pipe type with the porosity

dependent local variations in tortuosity, we quantitatively predict local variations

in mean velocities that can plausibly explain the simulated air fluxes.
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