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Chapter 1 

DEM analysis of breakage behavior of bicomponent agglomerates 
 

Maksym Dosta, Matthias Weber, Volker Schmidt, and Sergiy Antonyuk 

 

Abstract The discrete element method (DEM) is an effective approach for the numerical 

investigation of micromechanical behavior of granules and agglomerates. In this chapter, we 

apply an extension of the DEM, the so-called bonded particle model (BPM), for modeling the 

breakage behavior of cylindrical and spherical multicomponent agglomerates during quasi-static 

compression. The considered agglomerates consist of ideally spherical primary particles 

connected by cylindrical solid bonds. 

In several previous case studies, we investigated the behavior of agglomerates consisting of two 

different types of particles and solid bonds, where the simulations were performed on virtual 

microstructures generated by a stochastic agglomerate model. For this, we varied the volumetric 

ratio of both types of particles as well as their material properties. The results obtained show 

complex non-linear dependencies of the mechanical characteristics of agglomerates on their 

microstructure and composition. 

Introduction 

In this chapter, we investigate the breakage behavior of bicomponent agglomerates under uni-

axial compressive load. Knowledge about breakage mechanisms is important for different fields 

of application. For example, production processes such as granulation and grinding depend on 

breakage characteristics of the used agglomerates.  In recent years, increasing computational 

resources permit the investigation of mechanical properties based on simulation experiments. 

Various research has already been conducted to examine the relationship of agglomerate 

properties and their breakage behavior. For instance, in the case of impact breakage, the effect 

of agglomerate’s shape and impact angle on breakage behavior has been investigated [Liu10]. 

The aim of this chapter is to quantify the relationship between the microstructure of agglomerates 

and their macroscopic breakage behavior. We consider agglomerates made up of a relatively 

dense packing of spherical primary particles connected by cylindrical bonds. We study the effect 

of different material properties of primary particles and bonds on breakage characteristics of these 

agglomerates. On the one hand, we consider agglomerates made up from equally-sized spheres 

and compare them to agglomerates made from two types of particles with different diameters. On 

the other hand, we take cylindrical agglomerates composed of a single type of spherical primary 

particles and vary the Young’s modulus of the bonds. Again, we compare breakage characteristics 
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of agglomerates made up from bonds with the same Young’s modulus to those of agglomerates 

made up from two types of bonds with different Young’s moduli.  

For the simulation, we apply the MUSEN framework [Dos13] which uses the discrete element 

method (DEM) and the bonded particle model (BPM) to simulate the time-resolved behavior of an 

agglomerate under compressive load. A general description of DEM and a detailed summary of 

literature dealing with the application of BPM for microscale modeling of agglomerates can be 

found in Chapter 4. The considered agglomerates are created using a stochastic model [Spe15] 

which is able to generate densely packed agglomerates of spherical primary particles with varying 

sizes. Furthermore, it incorporates the placement of cylindrical bonds between primary particles. 

The simulation experiments considered in this chapter show a clear dependency of breakage 

properties such as breakage force and deformation on the composition of bicomponent spherical 

agglomerates. Homogeneous mixtures of both types of primary particles tend to exhibit a lower 

breakage force, but a higher deformation, indicating higher elasticity. For cylindrical agglomerates, 

we show that the Young’s modulus of bonds plays an important role in the breakage behavior. 

1. Methods 

1.1 Agglomerate structure generation algorithm 

The agglomerates under study consist of spherical primary particles and cylindrical solid bounds. 

This resembles typical structures obtained by industrial wet agglomeration processes such as 

pelletizing discs and tablet presses. For usage in DEM simulations, agglomerate structures are 

created in two stages [Spe15]. In the first stage, a packing of primary particles is generated; in the 

second stage, a set of solid bonds connecting the primary particles is added. To generate a 

packing of primary particles, the force-biased algorithm [Mos89] has been applied. In the first step 

of this algorithm, primary particles are randomly placed into a specified volume. In further iterations 

contacts between particles are detected and virtual forces in normal directions are calculated. 

Afterwards, the particles are moved according to the forces acting on them. Thereby, the inner 

stresses are reduced. Using this procedure, the overlaps between primary particles are reduced. 

The stiffness which is used to calculate the inter-particle forces is not directly related to material 

properties. It is calculated automatically in the algorithm and varies depending on the maximal 

particle velocity in the system. In order to avoid size or material dependent segregation of particles, 

their masses during generation are scaled. Additional conditions ensure that all particles are totally 

contained in the specified volume. For this purpose, a virtual wall representing the generation 

domain is considered. Interactions between particles and wall are taken into account when 

calculating the virtual forces acting on the particles. The rearrangement algorithm is stopped when 

the maximal overlap between particles and between particles and walls is smaller than some 

threshold value. In Fig. 1.a, an initial particle placement and the corresponding final packing are 

shown schematically. 



 

 

 

 

a) Arrangement of spheres before and after collective 
rearrangement by force-biased algorithm. 

b) Pattern formation for high packing 
densities 

Fig. 1. Generation of particle packing using the force-biased algorithm. 

The proposed generation approach allows us to model homogeneous and isotropic structures for 

packings with high packing densities. This means that there is no preferred direction for e.g. 

contacts between particles and there is no spatial gradient in the packing density. These are 

reasonable assumptions for spherical agglomerates produced by e.g. spray granulation and we 

restricted ourselves to this case. However, non-homogeneous agglomerates occur in reality, too, 

e.g., agglomerates with spatially varying packing density or agglomerates having a core-shell 

structure. These could be modeled by extending the present approach, see Weber et al. (2017). 

Application of the developed algorithm for low packing densities will lead to the formation of 

spatially distributed particle clusters. In the case of very high packing densities the algorithm will 

result in ordered structures (see Fig. 1.b) and can lead to formation of fcc, bcc or hcp-like 

structures. 

In the second stage, bonds are generated between primary particles. For this purpose, two 

different algorithms are used for the creation of cylindrical and spherical agglomerates. For the 

creation of cylindrical agglomerates, a simple algorithm based on a distance threshold is used. A 

bond between two primary particles is generated if the distance between those is smaller than a 

specific threshold. For case studies with spherical agglomerates, an advanced approach based 

on the volume fraction of binder material is applied. The aim is to connect the primary particles by 

bonds such that the union of all bonds has a given total volume. This volume is obtained as a 

volume fraction with respect to the total volume of primary particles. The idea is to construct an 

agglomerate where all particles being sufficiently close to each other are connected and further 

bonds are only inserted where necessary to obtain connectivity. Then, the volume of bonds can 

be controlled by the thresholding value used to connect particles. If this threshold is zero, only 

bonds necessary to obtain connectivity are generated. For larger thresholds, the number of bonds 

(and their total volume) is increased. 

This can be implemented as an algorithm using ideas from graph theory [Jun08]. For a given 

distance threshold 𝑙 ≥ 0, we will construct a graph 𝐺(𝑙) = (𝑉, 𝐸(𝑙)) that connects the set of vertices 

(particles) 𝑉 by the set of edges (bonds) 𝐸(𝑙). A bond between two particles is only put if the 

smallest distance between their surfaces is less than or equal to 𝑙 or if the bond is required for 



 

 

complete connectivity, i.e., every primary particle has be connected directly or indirectly to all 

others via the bond system. Such a graph 𝐺(𝑙) can be obtained by the following algorithm, which 

is illustrated in Fig. 2. 

 

1. Compute the relative-neighborhood graph (RNG) [Tou80] 𝐺𝑅𝑁𝐺
(𝑙)

 of the primary particles, 

using a suitable distance function 𝑑: 𝑉 × 𝑉 → [0, ∞) (see below). In the RNG, an edge is 

put between two vertices when there is no third vertex closer to both vertices (with respect 

to 𝑑). Using this technique, the vertices (primary particles) are always completely 

connected by the edges in the RNG [Tou80]. A suitable distance function 𝑑 is given by 

𝑑((𝑥, 𝑟), (𝑥′, 𝑟′)) = max{0, ||𝑥 − 𝑥′|| − 𝑟 − 𝑟′ − 𝑙} , (1) 

where 𝑥 and 𝑥′ are the centroids of the considered particles and 𝑟 and 𝑟′ are their 

respective radii. As 𝑑 is zero if the distance of the surfaces of two particles is at most 𝑙, the 

RNG contains all edges that connect two particles within a given distance 𝑙 and further 

edges ensuring complete connectivity. Therefore, 𝐺𝑅𝑁𝐺
(𝑙)

 fulfills most properties desired for 

𝐺(𝑙), but it may contain more edges than necessary for connectivity. More precisely, it is a 

superset of the graph we are interested in, whose construction is explained in the next 

step. 

2. Compute the minimum spanning tree (MST) [Jun08] 𝐺𝑀𝑆𝑇
(𝑙)

 of 𝐺𝑅𝑁𝐺
(𝑙)

, again using the same 

distance function 𝑑 given in (1), now applied to the existing edges. In the MST, as many 

edges as possible are deleted while minimizing the sum of distances and preserving 

connectivity. 

3. The result 𝐺(𝑙) is given by the edges of the graph 𝐺𝑀𝑆𝑇
(𝑙)

 combined with all edges in 𝐺𝑅𝑁𝐺
(𝑙)

 

having ”length” zero, i.e., the surfaces of the corresponding primary particles have at most 

a distance of 𝑙 from each other. 

 
 

Fig. 2. Illustration of RNG for 𝑙 = 0 and MST for the same graph [Spe15]. Direct contacts are shown in 

solid black, further connectivity bonds are gray.  

Recall that for a given threshold value 𝑙 ≥ 0, 𝐺(𝑙) is the graph connecting all particles that are 

within distance 𝑙 to each other, plus further bonds that are required for connectivity. For a given 

set of primary particles, the binder volume fraction (which is given as a model parameter) can be 

converted into the absolute binder volume. The aim is to find the ‘optimal’ threshold value 𝑙∗ such 



 

 

that the absolute binder volume obtained from the connectivity graph 𝐺(𝑙) is closest to the target 

value. This leads to a minimization problem 

𝑙∗ = arg min𝑙≥0 | ∑ 𝑣𝑜𝑙𝐵(𝑒) − 𝑏𝑎𝑏𝑠

𝑒∈𝐸(𝑙)

| , 
(2) 

where 𝑏𝑎𝑏𝑠 is the absolute binder volume targeted and 𝑣𝑜𝑙𝐵(𝑒) denotes the volume of the bond 

specified by edge 𝑒. 

 

1.2 Contact models  

For modeling of quasi-static compression of agglomerates, a bonded particle model (BPM) has 

been used [Dos16, Pot04]. Here three rheological contact models have been employed. The soft-

sphere visco-elastic Hertz-Tsuju [Tsu92] model for normal force and the Mindlin model for 

tangential force [Min53] were used to describe particle-particle and particle-wall interactions 

[Dos18]. For modeling of the solid bonds, a rheological model of the ideally elastic material was 

applied. The forces and moments caused by bonds have been added to the interparticle 

interactions. One of the main limitations when applying BPM is a lack of detection and calculation 

of physical contacts between primary particles and solids bonds. This leads to the reduction of 

accuracy when the distance between surfaces of bonded particles is relatively large. 

The relative motion of connected particles leads to a deformation of bonds and causes 

corresponding forces and moments. The force in the normal direction 𝐹𝑛 is calculated directly from 

the current positions of primary particles. The force depends on the bond deformation ∆𝐿 and is 

calculated as 

𝐹𝑛(𝑡) =
∆𝐿(𝑡)

𝐿𝑖𝑛𝑖𝑡
∙ 𝐴𝑏 ∙ 𝐸 , 

(3) 

where 𝐴𝑏 is the bond cross-cut surface,  𝐿𝑖𝑛𝑖𝑡 the initial bond length, and 𝐸 the Young’s modulus. 

The distance between particle centers is taken as bond length. For the calculations of force in 

tangential direction 𝐹𝑡 as well as for torsional and bending moments 𝑀𝑛 and 𝑀𝑡, respectively, an 

iterative approach is used. In each DEM simulation time step, the increment of force is calculated 

and added to the transformed previous value. For example, the tangential force in the global 

coordinate system for the new time step is computed as 

𝐹𝑡(𝑡 + ∆𝑡) =  𝑇 ∙ 𝐹𝑡(𝑡) +
∆𝑡 ∙ 𝑣𝑟𝑒𝑙,𝑡

𝐿𝑖𝑛𝑖𝑡
∙ 𝐴𝑏 ∙

𝐸

2(1 + 𝜈)
 , 

(4) 

where 𝜈 is the Poisson ratio, 𝑣𝑟𝑒𝑙,𝑡 the relative velocity in tangential direction and 𝑇 the rotation 

matrix to consider motion of contact partners in three-dimensional space.  

In order to simulate agglomerate breakage the stresses acting in each individual bond are 

analyzed and compared with material properties for tension strength 𝜎𝑚𝑎𝑥 and shear strength 

𝜏𝑚𝑎𝑥. If one of the conditions given in Eq. 5 and 6 is fulfilled, the bond breaks and is removed from 

the simulation domain. Moreover, it is assumed that there is no compressive breakage of single 



 

 

bonds. Therefore, the condition in Eq. 5 is only taken into account when the bond is elongated.  

Then, a bond breaks if either of the following conditions holds 

𝐹𝑛(𝑡)

𝐴𝑏
+ 𝑀𝑡 ∙

𝑅𝑏

𝐼
> 𝜎𝑚𝑎𝑥 or (5) 

𝐹𝑡(𝑡)

𝐴𝑏
+ 𝑀𝑛 ∙

𝑅𝑏

𝐽
> 𝜎𝑚𝑎𝑥 , 

(6) 

where 𝑅𝑏 is the bond radius, 𝐼 and 𝐽 the area and polar moments of inertia, respectively.  

For DEM calculations, the MUSEN simulation framework has been used [Dos13]. The calculations 

in this system are parallelized for computation on a graphic processor unit (GPU) using the CUDA 

library. This reduces computation time significantly, thus allowing to perform a large number of 

simulation studies. For parallelization of computations, atomic functions like atomicAdd() are used. 

Due to the formation of the internal queue of operands and the limited number of digits in floating 

point operands, the application of such functions leads to non-determenistic results. This means 

that two runs of the program on the same initial data will lead to varying results. However, the 

overall variations caused due to the usage of atomic operations are negligible in the investigated 

case studies.  

 

2. Spherical agglomerate  

2.1 Material parameters and agglomerate geometry 

To begin with, we briefly recall the stochastic microstructure model introduced in [Spe15]. We 

denote the radius of a spherical agglomerate by 𝑟. The primary particles are also spheres and 

their radii are drawn from (independent copies of) a random particle radius 𝑅𝑝 which takes values 

𝑟1 and 𝑟2 with probabilities 𝑝 and 1 − 𝑝, respectively. Thus, the agglomerate consists of particles 

of two different sizes. The volume fraction 𝑎 (mixing ratio) of particles of radius 𝑟1 is given by 

𝑎 =
𝑝 ∙ 𝑟1

3

𝑝 ∙ 𝑟1
3 + (1 − 𝑝) ∙ 𝑟2

3 . 
   (7) 

The targeted volume fraction of primary particles simulated inside the agglomerate is given by the 

packing density 𝜂 ∈ (0; 𝜂𝑚𝑎𝑥], where the maximal possible packing density 𝜂𝑚𝑎𝑥 depends on the 

radius distribution of the primary particles (e. g., 𝜂𝑚𝑎𝑥 = 0.74 for identical spheres).  

The total volume of bonds is given as a ratio b > 0 with respect to the total volume of the primary 

particles. The bonds are cylindrical objects connecting two primary particles. The bond radius 

depends on the radius of the smaller adjacent particle: For a bond connecting two particles with 

radii 𝑟 and 𝑟′, the bond radius rb is given by rb = 𝑘𝑏 ∙ min {𝑟, 𝑟′} for some factor 𝑘𝑏 ∈ (0; 1].  

All parameters except the mixing ratio were fixed. The mixing ratio 𝑎 was randomly chosen from 

the interval [0; 1]. The agglomerate radius was equal to 4 mm, radii of primary particles 𝑟1 and 𝑟2 

were equal to 0.5 mm and 0.25 mm accordingly. The binder volume fraction was equal to 0.1 and 

bond radius factor 𝑘𝑏 equal to 0.4. 

Before investigating the breakage behavior of the agglomerates generated by the proposed 

stochastic model, it is interesting to look at some characteristics of the simulated microstructures. 

The agglomerate diameter as well as the porosity are always the same, but it is useful to analyze 



 

 

the primary particle radii, coordination numbers and bond radii in dependence of the mixing ratio. 

For an optical impression, three agglomerates with different mixing ratios are shown in Fig. 3. The 

larger primary particles are visualized in blue, the smaller primary particles in yellow. For all three 

agglomerates one eighth has been cut out for visualization of the interior microstructure. For all 

evaluations, 300 agglomerates have been generated according to the stochastic microstructure 

model. 

 

   

 
Fig 3. Three realizations of agglomerates for mixing ratios 𝑎 =  0 (left), 𝑎 =  0.45 (middle),  

and 𝑎 =  0.99 (right) [Spe15]. 

 

The mean radius of primary particles (unweighted, i.e., not weighted by their volume or mass) 

clearly depends on the mixing ratio 𝑎. The average radius of particles in the agglomerate is 

calculated as 

�̅� =
𝑁1𝑟1 + 𝑁2𝑟2

𝑁1 + 𝑁2
 , 

(8) 

where 𝑁1 and 𝑁2 is the number of large and small particles respectively. 

From the definition of volume fraction and considering the fact that 𝑟1 = 2𝑟2 it can be derived that 

𝑎 =
𝑁1𝑟1

3

𝑁1𝑟1
3 + 𝑁2𝑟2

3 =
8𝑁1

8𝑁1 + 𝑁2
 . 

(9) 

After substitution of Eq. 9 into Eq. 8, it follows that  

�̅� =
8 − 6𝑎

8 − 7𝑎
𝑟2 . 

(10) 

In Fig. 4, the dependency of average diameter on volume fraction of larger particles is shown. The 

data obtained from the stochastically generated structure is visualized with circles and the 

theoretical approximation with a solid line. It can be observed that, due to the relatively large 

number of primary particles in agglomerate, the mean radius in probability-based generated 

structure is in good agreement with theoretical calculations.  



 

 

 
Fig. 4. Effect of mixing ratio on the average radius of primary particles in agglomerate. 

 

However, the behavior of the coordination numbers, i.e., the number of bonds per primary particle, 

is more interesting. A larger value of the mean coordination number implies that the system of 

particles is better connected.  

Fig. 5 shows that the mean coordination number is a bit smaller for very small and very large 

mixing ratios 𝑎 than for intermediate `mixing' scenarios. On the other hand, the standard deviation 

(SD) is obviously largest in the range of 𝑎 ∈ [0.6; 0.8], where it achieves a value of almost 4 in 

comparison to about 2 for very low/high mixing ratios. This can be interpreted as a higher variability 

of the microstructure. 

 

 

 

Fig. 5. Effect of mixing ratio on the coordination numbers of primary particles: mean coordination number 
(left), standard deviation of coordination numbers (right) [Spe15]. 

 
In combination with DEM simulations, the presented microstructure model can be used to 

investigate the relationship of structural and mechanical properties of agglomerates. The first step 

in order to achieve this goal is the description of real agglomerates using the given model, which 

has been done in [Spe16]. In this way, we obtain model parameters representing real 

agglomerates. Further research leads to the exploration and statistical analysis of breakage 

properties [Spe17]. However, one limitation of the presented model is the restriction to 

homogeneous and isotropic structures. While there are many types of particles for which these 

are reasonable assumptions, our model can easily be extended to overcome these shortcomings. 
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An extension to agglomerates which can be spatially separated into core and shell can be found 

in [Web17]. 

Agglomerate strength can be described partly by two important characteristics, see Fig. 6 (top). 

The maximum force applied before breakage is smaller for mixing scenarios (scenarios where 

both fractions of particle sizes are relevant) than in the uniform cases. A possible reason is the 

higher variability in agglomerates with both small and large particles. This leads to more weak 

points in the microstructure, where forces are not evenly spread and individual bonds are heavily 

loaded. Therefore, local fracturing occurs before a high (global) force is applied. This implicates 

that even for almost only small primary particles the force is considerably higher.  

On the other hand, the (mass-related) primary breakage energy does not show this behavior. It 

seems to increase almost linearly with the mixing ratio, i.e., agglomerates consisting of larger 

primary particles and thicker bonds are more stable. This means that even though the maximum 

force is smaller for mixing scenarios, this does not influence the energy required for breakage. 

Therefore, the average force before breakage has to be similar or the related deformation has to 

be larger. Fig. 6 (bottom) shows the deformation of the agglomerates relative to their original 

diameter. It can be seen that the deformation at the breakage point really tends to be larger for 

mixing scenarios, but the fluctuations are in a wide range for all mixing ratios. 

 

  

  

  

 
 
 

Fig. 6. Effect of mixing ratio on breakage behavior, i.e., on breakage force (top left), breakage 

energy (top right) and relative deformation (bottom) [Spe15]. 
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3. Cylindrical agglomerate 

3.1 Agglomerate geometry and material properties 

The radius and height of the investigated cylindrical agglomerates are equal to 10 mm and 20 mm, 

respectively. Each agglomerate consists of 7200 primary particles with radius 0.5 mm connected 

by almost 29000 solid bonds with radius 0.25 mm. In Fig. 7, an agglomerate and its internal 

structure are shown. The previously described force-biased packing algorithm (see Section 1.1) 

has been used to create the agglomerates. In order to minimize the error which is caused due to 

the stochastic particle placement, ten different agglomerates have been generated and analyzed. 

 

 

Fig. 7. Cylindrical agglomerate under uniaxial compression test. 

The initial packing density of primary particles was equal to 0.63 which is almost equal to the 

density of a random close packing. The friction coefficient between primary particles and particles 

as well as between walls was set to 0.3. To analyze the influence of the distribution of particles 

and solid bonds on mechanical behavior, four model materials have been defined: two materials 

MA and MB for primary particles and two materials MC and MD for solid bonds. Most relevant 

material parameters are listed in Table 1. The parameters of materials MA and MC were kept 

constant whereas the parameters of materials MB and MD have been varied. For these, the range 

of variation is given in Table 1. 

Table 1. Basic material parameters of materials MA and MB for particles, MC and MD for bonds. 

 Particles Bonds 

 MA  MB MC  MD 

Young’s modulus [GPa] 2.5 [0.25-2] 0.02 [0.002-0.08] 

Poisson ratio  0.2 0.2 0.2 0.2 

Normal and shear strength [MPa] - - 0.5 0.5 

Density [kg/m3] 2500 2500 - - 

First, we studied the influence of the Young’s modulus of bond materials on the deformation and 

breakage behavior for  agglomerates containing only one type of binder MD and one type of 



 

 

particles MA. In Fig. 8, typical force-displacement characteristics obtained for two different Young’s 

moduli of solid bonds (𝐸 = 40 𝑀𝑃𝑎 and 𝐸 = 10 𝑀𝑃𝑎) are illustrated. One can observe a linear 

elastic deformation behavior of the agglomerate almost until the breakage point. However, the 

force does not decrease suddenly after the primary breakage, indicating a viscous failure. From 

the obtained results it can be observed that the increase of the Young’s modulus of the bonds 

decreases the agglomerate stiffness by factor four and the breakage displacement by about factor 

three. This non-linear dependency between the stiffness of binder material and final stiffness of 

agglomerate is caused by the agglomerate’s internal structure. A more detailed analysis is given 

in Section 3.3 below. 

The difference in failure strain is caused by the fact that the strength values of the bonds were 

kept constant. Thus for the case of the higher Young’s modulus of bonds 𝐸 = 40 𝑀𝑃𝑎, the same 

axial strain of the agglomerate leads to larger stresses in the bonds and as a consequence to 

earlier breakage. Because of the materials’ strength being equal, the breakage force in both cases 

had an almost identical value of about 215 N.  

 

Fig. 8. Force displacement characteristics for agglomerates with varying bond stiffness. 

The obtained results show that variations due to the stochastic generation of the microstructure of 

agglomerates are relatively small. The large number of primary particles, their high connectivity 

and high packing density result in a similar microstructure for all agglomerates. 

3.2. Multicomponent bonds  

In order to investigate agglomerates with multicomponent binder, heterogeneous bond networks 

consisting of two bond materials MC and MD have been generated. The fraction of bonds of 

material MD in the total agglomerate is given by 



 

 

𝐾𝐷𝐶,𝑁 =
𝑁𝐷

(𝑁𝐶 + 𝑁𝐷)
 , 

(11) 

where 𝑁𝐷 and 𝑁𝐶  are the total numbers of bonds of component MC and MD respectively.  

Recall that in this case study it is supposed that all material parameters of bonds except for the 

Young’s moduli are equal. The ratio of Young’s moduli of materials MD (𝐸𝐷) and MC (𝐸𝐶) is 

described 

𝐾𝐷𝐶,𝐸 =
𝐸𝐷

𝐸𝐶
 . 

(12) 

According to the parameter 𝐾𝐷𝐶,𝑁, bonds of materials MD and MC have been created between 

primary particles. Both components have been distributed at random within all 10 initial 

agglomerates. For reduction of the statistical error caused by the random spatial positioning of 

bonds, five random agglomerates have been created for each initial agglomerate and value of 

𝐾𝐷𝐶,𝑁. Therefore, the total number of investigated agglomerates for each specified set of 

parameters 𝐾𝐷𝐶,𝐸 was equal to 50. 

The internal structure of agglomerates with different numbers of bonds of different types is 

illustrated in Fig. 9. Here, the cross sections of cylindrical agglomerates are shown and all particles 

are hidden.  

 

Fig. 9. Cross sections of internal structures of agglomerates with varied mixture of bond components. For 

better perceptibility of the bond network, primary particles are hidden. 

In Fig. 10, the main mechanical characteristics obtained from the simulations of cylindrical 

agglomerates with varied content of bonds of type MD (i.e., with different ratios 𝐾𝐷𝐶,𝑁) and varied 

Young’s moduli (i.e., with different ratios 𝐾𝐷𝐶,𝐸) are shown. The values are averaged over force-

displacement data of about 1500 simulated compression tests. 



 

 

 

 

 

 

Fig. 10. Mechanical properties of multicomponent agglomerates with varied binder content and Young’s 

modulus. 

The upper left graph in Fig. 10 shows the dependency of breakage force on bond composition and 

Young’s modulus. By the fact that the breakage strength of materials MC and MD was equal, it can 

be seen that the breakage force is almost independent on the stiffness of bonds. In the cases 

when all bonds consist of material MC (𝐾𝐷𝐶,𝑁 = 0) with Young’s modulus equal to 20 MPa or when 

all bonds consisting of material MD (𝐾𝐷𝐶,𝑁 = 1) with Young’s moduli 10 MPa, 40 MPa or 80 MPa, 

the breakage force is almost equal to about 215 N. A significant decrease of the breakage force 

is observed when both types of bonds are mixed together. This happens due to the non-

homogeneous stress distribution in the agglomerates. The largest part of total mechanical stress 

in the agglomerates is distributed over the bonds with higher stiffness, which are subject to higher 

loads in comparison to bonds in agglomerates consisting of only one material. Agglomerates with 

the largest ratio of Young’s moduli 𝐾𝐷𝐶,𝐸 = 4 consisting of the same amount of bonds of both types 

MC and MD (𝐾𝐷𝐶,𝑁 ≈ 0.5) exhibit the minimal breakage force of about 183 N. 

The stiffness of agglomerates with multicomponent bonds depends almost linearly on the amount 

of bonds 𝐾𝐷𝐶,𝑁 (lower left graph of Fig. 10). A larger amount of bonds with higher stiffness results 

in increased overall stiffness of the total agglomerate. As a consequence, the breakage strain as 

well as the breakage energy decreases (right column of Fig. 10).  

3.3 Stiffness ratio of bond to particle  

In this section, the mechanical properties of cylindrical agglomerates consisting of particles of type 

MA and bonds of material MD are investigated. We analyzed the influence of the ratio between 

Young’s moduli of bonds (ED) and particles (EA) on the mechanical properties. This ratio is denoted 
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as 𝐾𝐷𝐴,𝐸 = 𝐸𝐷/𝐸𝐴. For the simulations, the Young’s modulus of particles was kept constant at 25 

GPa and the modulus of bonds was varied between 0.2 and 80 MPa. The average coordination 

number (i.e., the number of bonds per particle) was equal to 4.02. In Fig. 11, the main mechanical 

characteristics obtained from simulation of quasi-static uni-axial compression of cylindrical 

agglomerates are shown. On the left-hand side, the influence of the Young’s modulus of bonds 

on agglomerate stiffness and breakage strain is shown. On the right-hand side, the typical force-

displacement characteristics for two specific values of 𝐾𝐷𝐴,𝐸 are illustrated. 

 

 

a) Averaged mechanical characteristics b) Typical force-displacement curves 

Fig. 11. Simulation results for case studies with varied Young’s modulus of bonds. 

The increase of the Young’s modulus of bonds leads to a non-linear increase of the stiffness of 

the whole agglomerate. When the bonds become stiffer, fewer contacts between primary particles 

are formed under compression, resulting in a reduced effect of particle contacts on the total 

agglomerate stiffness. In the investigated parameter domain, the stiffness of the agglomerate Kagg 

can be effectively described using the potential function 

𝐾𝑎𝑔𝑔 = 15.721[𝑚] ∙ 𝐸𝐷
0.729 , (13) 

Moreover, from Fig. 11 it can be observed that an increase of the Young’s modulus of solid bonds 

𝐸𝐷 leads to a significant decrease of the breakage strain 𝜀. Using the potential function, this 

dependency can be approximated by 

𝜀 = 2078.5 [
1

𝑃𝑎
] ∙ 𝐸𝐷

0.789 . 
(14) 

Higher stiffness of solid bonds results in a more brittle breakage pattern. In Fig. 12 (left) force 

displacement characteristics for two typical agglomerates with parameters 𝐾𝐷𝐴,𝐸 = 1.6 ∙ 10−4 and 

𝐾𝐷𝐴,𝐸 = 8 ∙ 10−4 are shown. The loading and unloading phases are shown using solid lines and 

dashed lines, respectively. 

In the case of agglomerates with higher Young’s modulus of bonds, a primary breakage point at 

a deformation of about 450 µm can be observed. Further increase of the load on the sample leads 

to the destruction of a large amount of solid bonds and consequently to a rapid decrease of the 

force. Only a small elastic recovery during unloading phase of the broken agglomerate (Fig. 12, 

left) can be observed. On the right-hand side of Fig. 12, an agglomerate structure colored 

according to the size of fragments is shown. The deformation behavior during failure indicates 

shear dominated fracture pattern.  
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In contrast, the simulated force-displacement curve of the agglomerate with softer bonds did not 

show a clear primary breakage point with a rapid drop of the force after the point of maximum 

force. Only a relatively small amount of bonds is destroyed. The sample exhibits a large elastic 

unloading. Therefore, even after a large deformation of about 2 mm (strain of 0.1), the general 

structure of the agglomerate remains stable and the sample recovers to its initial height. 

 

Fig. 12. Left: Influence of the bond stiffness on the force-displacement characteristics of agglomerates. 

Right: Bond network of sample agglomerate with Young’s modulus 20 MPa after breakage. The largest 

and second largest fragments are shown in green and red, respectively; other fragments (debris) are 

shown in gray. 

 

 

3.4 Bicomponent particle distribution 

In this section, the mechanical characteristics of agglomerates which consist of two types of 

primary particles are analyzed. The primary particles have a constant diameter of 2 mm and differ 

only in their stiffness. The number fraction of particles of material MB in the agglomerate is 

described by 

𝐾𝐵𝐴,𝑁 =
𝑁𝐵

(𝑁𝐵 + 𝑁𝐴)
 , 

(15) 

where 𝑁𝐴 and 𝑁𝐵 are the total numbers of particles of materials MA and MB, respectively. Since 

the sizes of primary particles are equal, the parameter 𝐾𝐵𝐴,𝑁 also describes the volume fraction of 

particles of material MB.  

It was supposed that all material parameters of particles apart from Young’s moduli were equal. 

The ratio of Young’s moduli of material MB (𝐸𝐵) and MA (𝐸𝐴) was described by 

𝐾𝐵𝐴,𝐸 =
𝐸𝐵

𝐸𝐴
 , 

(16) 

In our simulations, the Young’s modulus of material MA was kept constant while material MB was 

chosen softer than material MA, resulting in 𝐾𝐵𝐴,𝐸 < 1. The (number) fraction of particles of material 



 

 

B was varied between 0 and 1 for five different  values of 𝐾𝐵𝐴,𝐸. In Fig. 13, the approximated 

overall stiffness of the agglomerate is shown. As expected, the volume fraction and stiffness of 

the softer component directly influence the agglomerate stiffness. Higher volume fraction and 

decreased stiffness of the softer primary particles, both result in a reduced overall stiffness of the 

agglomerate. When the difference between Young’s moduli of both components is relative small, 

the dependency between stiffness of the agglomerate and volume fraction of the second 

component can be roughly approximated by a linear function. However, a further decrease of 𝐸𝐵 

leads to non-linear dependency. 

  

Fig. 13. Influence of the volume fraction 𝐾𝐵𝐴,𝑁 and stiffness 𝐾𝐵𝐴,𝐸 of softer primary particles on the 

agglomerate’s total stiffness. 

Conclusion 

In this chapter, the discrete element method and the bonded-particle model have been applied to 

investigate the mechanical properties of cylindrical and spherical bicomponent agglomerates 

under quasi-static compression. Four cases have been analyzed:  

 large and small particles of the same material (spherical agglomerates);  

 solid bonds of two different materials (cylindrical agglomerates);  

 varied stiffness ratio of bonds to particles (cylindrical agglomerates);  

 primary particles of two different materials (cylindrical agglomerates).  

The obtained results show that the microstructure and composition of bicomponent aggregates 

have a significant influence on their mechanical properties such as stiffness or strength. For 

example, the breakage force of cylindrical agglomerates with two different bond materials reveals 

a distinctive minimum for specific mixtures. This occurs due to the large heterogeneity of the 

stresses inside the bond network. Furthermore, a complex non-linear behavior can be also 

observed in the case when agglomerates consist of primary particles of different sizes. Here, the 

breakage force strongly depends on the mixing ratio and reaches its minimum for ratios of about 

50%.  
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It should be mentioned that correlations and conclusions given in this chapter are valid only for a 

strictly limited parameter domain. It is expected that significant changes of material properties can 

result in a different material behavior.  
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