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ASYMPTOTIC PROPERTIES OF COLLECTIVE-REARRANGEMENT

ALGORITHMS ∗

Christian Hirsch, Gerd Gaiselmann and Volker Schmidt

Abstract. We analyze asymptotic properties of collective-rearrangement algorithms being a class
of dense packing algorithms. Traditionally, they transform finite systems of (possibly overlapping)
particles into non-overlapping configurations by collective rearrangement of particles in finitely many
steps. We consider the convergence of such algorithms for not necessarily finite input data, which means
that the configuration of particles in any bounded sampling window remains unchanged after finitely
many rearrangement steps. More precisely, we derive sufficient conditions implying the convergence
of such algorithms when a stationary process of particles is used as input. We also provide numerical
results and present an application in computational materials science.
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1. Introduction

Dense sphere packings have fascinated mathematicians, physicists and engineers at least since the 1930s,
see [3, 6, 7, 9, 12, 18, 20]. In addition to proving theoretical bounds on optimal packing densities, also a variety
of algorithms has been proposed that may be used for practical simulation of dense sphere-packing systems.
Well-known examples include the force-biased algorithm, random sequential adsorption, ballistic deposition
and sedimentation. We refer the reader to [21] for a survey of packing algorithms. Apart from its inherent
mathematical appeal, the problem of creating dense packings of particles is crucial for many applications in
chemistry [10,12] and materials science [1, 13,14].

Since simulation of dense sphere packings usually starts from suitable random seeds, it is important to
understand the behavior of dense packing algorithms under random input. A detailed mathematical analysis
of random sequential adsorption algorithms can be found in [18]; results on ballistic deposition are derived
in [15,17]. However, for other packing algorithms, rigorous results seem to be rare. Input data given by stationary
particle processes are of particular importance for applications in materials science, since the microstructure of
(locally) heterogeneous materials can often be appropriately described within this framework.

In the present article, we consider a suitable class of collective-rearrangement algorithms that can be seen
as modifications of the force-biased algorithm (introduced in [14], see also [4]), one of the most famous and
frequently used examples of this class of algorithms. The popularity of this algorithm in materials science serves
as a motivation for the mathematical analysis provided in the present paper. We derive sufficient conditions for
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stationary (possibly overlapping) particle processes implying the convergence to a stationary particle process
which consists of non-overlapping particles. Since our conditions are rather conservative, it is reasonable to
expect that convergence also holds under weaker conditions on the intensity of the underlying (initial) stationary
particle process and this intuition is corroborated by numerical results. In order to illustrate the applicability
of collective-rearrangement algorithms in the field of materials science, we describe how they can be used in a
stochastic model for molecular charge transport in organic semiconductors.

The paper is organized as follows. In Section 2, we state our main result concerning the convergence of a
class of packing algorithms under suitable conditions on the point process representing the centers of an initial
particle process, see Theorem 3. Section 3 discusses a specific example in this class of algorithms and we show
that Theorem 3 applies to a large family of Coxian and m-dependent point processes. In Section 4, we provide
a proof of Theorem 3. In Section 5, we present numerical results concerning the convergence and further related
properties of the packing algorithms. Finally, Section 6 provides an outlook to further variants of the algorithm
discussed in Section 3 and their potential application in computational materials science.

2. Main result

We consider a class of dense packing algorithms, known as collective-rearrangement algorithms in litera-
ture [14]. These algorithms start from an initial set of possibly overlapping particles (e.g. spheres) and attempt
to create a hard-core configuration by iteratively moving particles apart from one another. Algorithms of this
type are loosely characterized by the property that one iteration step consists of moving all particles simulta-
neously. We derive suitable conditions for such algorithms implying their convergence if the input consists of a
collection of particles whose centers form a stationary point process.

We begin by introducing some important definitions and notation that will be used throughout the paper.
If A denotes an arbitrary set, we write #A for the cardinality of A. For d ≥ 2 and i ∈ {1, . . . , d} we denote by
πi : Rd → R the projection to the ith coordinate. For (M,M) an arbitrary measurable space we write NM for
the family of (M-marked) sets ϕ ⊂ Rd ×M which are locally finite in the first component. In other words, we
consider locally finite sets in Rd with marks in M. Although the idea of collective rearrangement of points would
also be reasonable for unmarked sets, the flexibility of using marked sets will be helpful in the construction of
specific examples of algorithms in Section 3. Moreover, using marks also allows to apply collective-rearrangement
algorithms to fiber processes or other particle processes. We are particularly interested in random elements of
NM, i.e., M-marked point processes. In order to avoid the difficulties of having to deal with non-simple point
processes (i.e., point processes, where multiple points could appear at the same location), it is important to
ensure that any two points are mapped to distinct points after one iteration. To achieve this goal, for any
fixed ε > 0 we let NεM ⊂ NM denote the subset consisting of all ϕ ∈ NM such that ε−1

(
πi(ξ1)− πi(ξ2)

)
6∈ Z for

all i ∈ {1, . . . , d} and (ξ1,m1), (ξ2,m2) ∈ ϕ with ξ1 6= ξ2, where Z denotes the set of all integers. Since our
algorithms will only move particles according to displacement vectors in εZd this implies the desired property
of not leaving the framework of simple point processes. For ϕ ∈ NM and B ⊂ Rd bounded it is convenient to
denote by ϕ ∩ B the set {(ξ,m) ∈ ϕ : ξ ∈ B} Similarly, we write x = (ξ,m) ∈ B if ξ ∈ B and ϕ ⊂ B if x ∈ B
for all x ∈ ϕ. Furthermore, let Wz,w = wz+ [−w/2, w/2]d denote the cube of side length w > 0 centered at wz,
where z ∈ Zd.

Next, we introduce the notion of collective-rearrangement rules F that are of fundamental importance for our
paper. A collective-rearrangement rule can be seen as an algorithm describing the displacement of a particular
particle given the locations of all other particles. As a single iteration is not enough to create a hard-core system
of particles, it is necessary to perform the rearrangements iteratively and the k-fold iteration is denoted by F k.

Definition 1. Let ε > 0 be arbitrary. A measurable function F = (Fs, Fm) :
(
Rd ×M

)
× NM → Rd ×M is

called ε-discretized collective-rearrangement rule if Fs((ξ,m), ϕ) − ξ ∈ εZd for all ϕ ∈ NM and (ξ,m) ∈ ϕ. For
ϕ,ψ ∈ NM with ψ ⊂ ϕ we also write F (ψ,ϕ) for the set {F (x, ϕ) : x ∈ ψ} and Fi(ψ,ϕ) for {Fi(x, ϕ) : x ∈ ψ},
where i ∈ {s,m}. Moreover, for k ≥ 0, ϕ ∈ NM and x = (ξ,m) ∈ ϕ we define the kth iteration F k(x, ϕ) of
F (x, ϕ) recursively by F k(x, ϕ) = x if k = 0, and by F k(x, ϕ) = F k−1(F (x, ϕ), F (ϕ,ϕ)) if k > 0. Similarly, for
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x = (ξ,m) ∈ ϕ put F 0
s (x, ϕ) = ξ and F ks (x, ϕ) = F k−1

s (F (x, ϕ), F (ϕ,ϕ)). Finally, if the collective-rearrangement
rule F is understood, we also write ϕ(k) instead of F k(ϕ,ϕ).

Hence, applying F (·, ϕ) to x = (ξ,m) may or may not change the mark m. Next, we consider three important
properties of collective-rearrangement rules that are used in the following. First, we assume that there exists an
upper bound for the distance any point can be moved in one iteration step. Second, the movement of any point
in one iteration step should only depend on the configuration of the locally finite set in a suitable neighborhood
of that point. Finally, the collective-rearrangement rule should be compatible with shifting the given locally
finite set by suitable lattice vectors.

Definition 2. Let ε > 0 and F :
(
Rd ×M

)
× NεM → Rd ×M be an ε-discretized collective-rearrangement rule.

For w > 0 we say that F has range at most w if |Fs(x, ϕ)− ξ|∞ < w for all ϕ ∈ NM and x =
(
ξ,m

)
∈ ϕ,

where | · |∞ : Rd → [0,∞) denotes the supremum norm. We also say that F is w-local if F (x, ϕ) = F (x, ϕ ∩
(
⋃
{z′∈Zd:|z−z′|∞≤1}Wz′,w)) for all ϕ ∈ NM, z ∈ Zd and x ∈ ϕ∩Wz,w. In other words, for any x ∈ ϕ∩Wz,w the

value F (x, ϕ) only depends on the configuration of ϕ in Wz,w and cubes adjacent to Wz,w. Finally, we say that
F is w-equivariant if Fs((ξ+wz,m), ϕ+wz) = Fs((ξ,m), ϕ)+wz and Fm((ξ+wz,m), ϕ+wz) = Fm((ξ,m), ϕ)
for all z ∈ Zd, ϕ ∈ NM and (ξ,m) ∈ ϕ, where ϕ+ wz = {(ξ + wz,m) : (ξ,m) ∈ ϕ}.

Let X be a stationary M-marked point process and U be a random vector which is uniformly distributed in
Wo and independent of X. Our goal is to derive suitable criteria for the convergence of X(k) = F k(X,X)+U as
k →∞ to some stationary M-marked point process X(∞). Apart from the notions introduced in Definition 2 we
need to discuss two further conditions on our collective-rearrangement rules. The first formalizes the heuristic
idea that collective-rearrangement algorithms should fill up the pore space.

(F1) Let ε > 0 and let F :
(
Rd ×M

)
× NM → Rd ×M be an ε-discretized collective-rearrangement rule. We

assume that there exists w > 0 such that ϕ(1)∩Wz,w 6= ∅ for any z ∈ Zd and ϕ ∈ NM with ϕ∩Wz,w 6= ∅.
In the following, if the value of w is clear, we write Wz instead of Wz,w and for A ⊂ Zd we put WA =

⋃
z∈AWz.

Iterative application of condition (F1) implies that ϕ(k) ∩Wz 6= ∅ for all k ≥ 0 if ϕ ∩Wz 6= ∅. Finally, we also
suppose the convergence of the iterated collective-rearrangement algorithms for finite initial configurations.

(F2) Let ε > 0 and let F :
(
Rd ×M

)
× NM → Rd ×M be an ε-discretized collective-rearrangement rule. We

assume that for each finite ϕ ∈ NεM there exists k0 ≥ 0 such that ϕ(k) = ϕ(k0) for all k ≥ k0.

After having introduced our conditions on the collective-rearrangement rules, we next specify suitable con-
ditions on the initial point process X. Since the point process of sphere centers in hard-core packings (with
fixed radii) cannot attain arbitrarily high intensities, it is natural to expect that convergence of collective-
rearrangement algorithms requires a sufficiently sparse initial configuration.

(X1) We assume that when considering the initial marked point process X there exists n0 ≥ 0 such that

logE exp
(
3d+2#(X ∩WA)

)
≤ 3d+1 #A

for all finite ∗-connected subsets A ⊂ Zd with #A ≥ n0.
(X2) We assume that X ∈ NεM a.s.

Using conditions (F1), (F2), (X1) and (X2) we now state the main theorem of this paper that concerns the
convergence of the point processesX (k), k ≥ 0 obtained by first iteratively applying the collective-rearrangement
rule and then shifting with a uniformly distributed vector in Wo, to a point process X(∞).

Theorem 3. Let ε, w > 0, and F : (Rd × M) × NM → Rd × M be a w-equivariant, w-local ε-discretized
collective-rearrangement rule satisfying (F2). Furthermore, assume that F satisfies (F1) with parameter w and
has range at most w. Finally, let X be a stationary M-marked point process in Rd satisfying (X1) and (X2).
Then, as n→∞ the point processes X (n) converge to a stationary point process X (∞) in the sense that there
exists a family of integer-valued random variables (Nz)z∈Zd such that X (n) ∩Wz = X (Nz) ∩Wz for all z ∈ Zd
and n ≥ Nz. In particular, X(∞) can be represented as X(∞) =

⋃
z∈Zd(X(Nz) ∩Wz) and the point processes

{X (n)}n≥1 converge to X (∞) in distribution.
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Theorem 3 is shown in Section 4. We note that the notion of convergence described in Theorem 3 is stronger
than convergence in distribution, where the point processes X (n) of the converging family would not necessarily
need to locally coincide with the limiting process X(∞) for sufficiently large n ≥ 1.

3. Examples

In the present section we provide admissible point processes and specific examples for collective-rearrangement
rules fitting into the framework described in Section 2. We note that conditions (X1) and (X2) do not involve
marks.

3.1. Examples of admissible point processes

Proposition 4. Let X be a Cox process in Rd with stationary random intensity measure Λ. Furthermore,
suppose that

logE exp((exp(3d+2)− 1)Λ(WA)) ≤ 3d+1#A,

for all sufficiently large A ⊂ Zd. Then X satisfies condition (X1).

Proof. Indeed, if X is a Cox process with random intensity measure Λ, then

E exp(3d+2#(X ∩WA)) = E exp

∫
(exp(3d+21WA

(x))− 1)Λ(dx) = E exp((exp(3d+2)− 1)Λ(WA)). �

In the Poisson case Proposition 4 reduces to a simple intensity condition.

Corollary 5. Let X be a stationary Poisson point process in Rd with intensity λ ≤ 3d+1
(

exp
(
3d+2

)
−1
)−1

w−d.
Then X satisfies (X1).

Another interesting class of examples is given by m-dependent point processes.

Proposition 6. Let m ≥ 1, w > 0 and let X be a stationary point process in Rd such that X ∩ WA1 and
X ∩WA2 are independent for all A1, A2 ⊂ Zd with infz1∈A1,z2∈A2 |z1 − z2|∞ ≥ m. Moreover, assume that

logE exp
(
3d+2md#(X ∩Wo)

)
≤ 3d.

Then

logE exp
(
3d+2#(X ∩WA)

)
≤ 3d+1#A

for all A ⊂ Zd with #A ≥ m.

Proof. Put k = md and observe that there exists a partition A = A1 ∪ · · · ∪Ak such that |z1 − z2|∞ ≥ m for all
z1, z2 ∈ Ai with z1 6= z2 and all i ∈ {1, . . . , k}. Hence,

E exp
(
3d+2#(X ∩WA)

)
≤

k∑
i=1

E exp
(
3d+2k#(X ∩WAi

)
)
≤

k∑
i=1

(
E exp

(
3d+2k#(X ∩Wo)

))#Ai
.

As the last expression is at most exp(log k + 3d#A), this completes the proof. �

The following result deals with condition (X2).

Proposition 7. Let X be a stationary point process in Rd with absolutely continuous second factorial moment
measure. Then X satisfies (X2).
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Proof. Let ε > 0 and i ∈ {1, . . . , d} be arbitrary. Let α denote the second factorial moment measure of X. We
write A for the set of all (ξ1, ξ2) ∈ R2d with πi(ξ1)−πi(ξ2) ∈ εZ\{0}. Then α(A) = 0, since the 2d-dimensional
Lebesgue measure of A vanishes. Therefore, the expected number of ξ1, ξ2 ∈ X with (ξ1, ξ2) ∈ A is given by

E#{(ξ1, ξ2) ∈ X ×X : πi(ξ1)− πi(ξ2) ∈ εZ \ {0}} = α(A) = 0,

which proves the claim. �

3.2. Avoidance algorithm for sphere systems

The force-biased algorithm introduced in [4, 14] has both an appealingly simple definition and at the same
time performs very well in simulations. However, the verification of condition (F1) or some variant of it for
the original force-biased algorithm would be a rather challenging problem, as it seems non-trivial to exclude
that under very pathological circumstances the algorithm could create large regions of void space. Therefore,
we consider a minor modification of this algorithm, and call the modified version avoidance algorithm in the
following. This algorithm is used to transform systems of spheres with some fixed radius r > 0. The property
required by condition (F1) is rigorously enforced by construction. However, the changes of the algorithm
only become apparent when considering huge sampling windows, so that on practical data sets the ensuing
configurations should be very close to the ones obtained by applying the original algorithm.

In the following, we first provide a formal definition of the avoidance algorithm and then verify that it satisfies
the conditions required in Theorem 3. Let ε, r, w, Fmax > 0 be such that ε < min{r, Fmax} and max{Fmax, 4r} <
w − 2r, where we put M = Z+. In our algorithm the mark is used to keep track of the number of steps in
the algorithm, since the considered particle was moved by another particle for the last time. We will see in
Proposition 12 below that this additional information is useful for verifying condition (F2), i.e., the convergence
of the algorithm for finite input. Recall that for any ϕ ∈ NεM we have ε−1(πi(ξ1)−πi(ξ2)) 6∈ Z for all i ∈ {1, . . . , d}
and (ξ1, k1), (ξ2, k2) ∈ ϕ with ξ1 6= ξ2.

Let Br(ξ) = {η ∈ Rd : |η−ξ| ≤ r} the closed ball of radius r > 0 centered at ξ ∈ Rd, where |η−ξ| denotes the
usual Euclidean distance. The algorithm reduces the overlapping of balls of the initial configuration iteratively by
pushing pairs of overlapping spheres away from each other. More precisely, for all x = (ξ, k), y = (η, `) ∈ Rd×M
with ξ 6= η and Br(ξ) ∩Br(η) 6= ∅ we compute the displacement vector

v(x, y) =
2r − |ξ − η|

2

ξ − η
|ξ − η|

.

From these displacement vectors we compute the total displacement vector

vtotal,1(x, ϕ) =
∑

y∈B2r(ξ)∩ϕ\{x}

v(x, y)

for each x = (ξ, k) ∈ ϕ. Then, put

vtotal,2(x, ϕ) =

d∑
i=1

f(πi(vtotal,1(x, ϕ)))ei,

where ei the ith unit vector in Rd and f(a) = sgn(a) min{d|a|ε−1e, bFmaxε
−1c}ε denotes a discretized variant of

vtotal,1(x, ϕ). Defining Fs(x, ϕ) = ξ+ vtotal,1(x, ϕ) corresponds to the ordinary force-biased algorithm. Although
the simplicity of this definition is conceptually appealing, it appears to violate (F1). Therefore, we propose the
following modification. For x = (ξ, k) ∈ ϕ and z ∈ Zd with ξ ∈ Wz define F (x, ϕ) = (ξ′, k′), where (ξ′, k′)
is given in the following way. We partition ϕ into three subsets ϕ = R1(ϕ) ∪ R2(ϕ) ∪ R3(ϕ) and define the
collective-rearrangement rule on each of these subsets separately.
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(1) We write that x ∈ R1(ϕ) if there exists (η, `) ∈ ϕ ∩Wz such that
(a) η + vtotal,2(y, ϕ) ∈Wz or
(b) ` < k or
(c) ` = k and η is lexicographically smaller than ξ.

In this case, we put ξ′ = ξ + vtotal,2(x, ϕ) and

k′ =


0 if B2r(ξ) ∩ ϕ 6= {x},
k if B2r(ξ) ∩ ϕ = {x} and W+

z ∩B2r(ξ
′′) ∩ ϕ = {x′′} for all x′′ = (ξ′′, k′′) ∈W+

z ∩ ϕ,
k + 1 otherwise,

where W+
z =

⋃
{z′∈Zd:|z−z′|∞≤1}Wz′ .

(2) We write that x ∈ R2(ϕ) if x 6∈ R1(ϕ), but ϕ ∩Wz 6= {x}. Then, we put k′ = k + 1 and ξ′ = ξ.
(3) Finally, we write that x ∈ R3(ϕ) if x 6∈ R1(ϕ) and ϕ ∩Wz = {x}. Then, we put k′ = k + 1 and

ξ′ = ξ +

d∑
i=1

sgn
( ∑

z′∈Zd

B2r(ξ)∩Wz′∩ϕ 6=∅

πi(z − z′)
)
dε−12reεei.

In the following, we briefly discuss the difference between the force-biased algorithm and the avoidance algorithm,
see also Figure 1. We think of R1 as the default case, in which the avoidance algorithm agrees with the classical
force-biased algorithm (Figure 1a), whereas cases R2 and R3 are needed to enforce condition (F1). Indeed,
if the force-biased algorithm leads to a transition, where all points in ϕ ∩Wz will leave Wz, then one of the
points is chosen by a deterministic rule and the transition of this point is redefined, so that it remains inside
Wz (Figures 1b, 1c). The definition of F is illustrated in Figure 1.

x

(a) x ∈ R1(ϕ)

x

(b) x ∈ R2(ϕ)

x

(c) x ∈ R3(ϕ)

Figure 1. Black arrows indicate movement according to vtotal,2(x, ϕ); red arrows indicate
movement according to the avoidance algorithm

As already indicated at the beginning of this section we have included these technical changes to the classical
force-biased algorithm in order to prevent the occurrence of large regions of void space.

Proposition 8. The collective-rearrangement rule F defined above satisfies condition (F1).

Proof. Indeed, let z ∈ Zd be such that ϕ∩Wz 6= ∅ and choose x = (ξ, k) ∈ ϕ∩Wz with a minimal value of k. If
this minimum is not unique, then define (ξ, k) to be the lexicographically smallest such element. If there exists
y = (η, `) ∈ ϕ ∩Wz with η + vtotal,2(y, ϕ) ∈ Wz, then x ∈ R1(ϕ) and we conclude Fs(y, ϕ) ∈ Wz. Otherwise
x ∈ R2(ϕ) ∪R3(ϕ). If x ∈ R2(ϕ), then we conclude from the definition of F that ξ′ = ξ. Finally, if x ∈ R3(ϕ),
then we see that x is shifted only in directions towards the center of Wz, so that Fs(x, ϕ) ∈Wz. �
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It is slightly more involved to prove the convergence of the avoidance algorithm for finite sets of points. We
start by discussing some preliminary results.

Lemma 9. Let i ∈ {1, . . . , d}, a ∈ R and denote by A ⊂ Rd the hyperplane {ξ ∈ Rd : πi(ξ) = a}. Furthermore,
for j ∈ {1, 2} put Uj = {ξ ∈ Rd : (−1)jπi(ξ) > (−1)ja} and let ϕ ∈ NεM be such that x ∈ U1 ∪ A for all
x = (ξ, k) ∈ ϕ with B2r(ξ) ∩ ϕ 6= {x}. Then F (x, ϕ) ∈ A ∪ U2 for all x ∈ ϕ ∩A.

Proof. We only have to deal with the cases x ∈ R1(ϕ) and x ∈ R3(ϕ). If x ∈ R1(ϕ), then the condition x′ ∈
U1 ∪A for all x′ = (ξ′, k′) ∈ ϕ with B2r(ξ

′)∩ϕ 6= {x′} implies πi(vtotal,2(x, ϕ)) ≥ 0, so that πi(Fs(x, ϕ)− ξ) ≥ 0.
But for the same reason, πi(Fs(x, ϕ)− ξ) ≥ 0 if x ∈ R3(ϕ), which completes the proof of Lemma 9. �

Lemma 10. Let ϕ ∈ NεM and x ∈ ϕ be such that ϕ is finite and there exist infinitely many n ≥ 0 with

Fn(x, ϕ) ∈ R2(ϕ(n)). Then there exists n ≥ 0 with Fn(x, ϕ) ∈ R1(ϕ(n)) and B2r(F
n
s (x, ϕ))∩ϕ(n) 6= {Fn(x, ϕ)}.

Proof. Assume the contrary for the sake of deriving a contradiction and let z ∈ Zd be such that x ∈ Wz.
Observe that each time Fn(x, ϕ) ∈ R3(ϕ(n)) or B2r(F

n
s (x, ϕ))∩ϕ(n) = {Fn(x, ϕ)} the total number of elements

in ϕ(n) ∩Wz whose mark is at least as large as the mark of Fn(x, ϕ) decreases or stays constant. Moreover,
each time Fn(x, ϕ) ∈ R2(ϕ(n)) the total number of elements in ϕ(n) ∩Wz whose mark is at least as large the
mark of Fn(x, ϕ) decreases by at least 1. As ϕ is finite, the latter event can only occur a finite number of times.
This contradicts our condition that Fn(x, ϕ) ∈ R2(ϕ(n)) occurs for infinitely many n ≥ 1. �

Lemma 11. Let ϕ ∈ NεM and x ∈ ϕ be such that for every n ≥ 0 it holds that either Fn(x, ϕ) ∈ R3(ϕ(n)) or

Fn(x, ϕ) ∈ R1(ϕ(n)) and B2r(F
n
s (x, ϕ))∩ϕ(n) = {Fn(x, ϕ)}. Then there exists n1 ≥ 0 such that B2r(F

n
s (x, ϕ))∩

ϕ(n) = {Fn
(
x, ϕ

)
} for all n ≥ n1.

Proof. Let z ∈ Zd be such that x ∈ Wz. For every n ≥ 0 and i ∈ {1, . . . , d} define ai,n = mina>0{(Fns (x, ϕ) +
[−a, a]ei) ∩ ∂Wz 6= ∅} as the distance Fns (x, ϕ) to the boundary of Wz measured along the ith direction.
Then, it follows from the construction of F in the case R3(ϕ(n)) that for any i ∈ {1, . . . , d} the sequence
{ai,n}n≥1 is increasing. Moreover, limn→∞ ai,n > 2r if there exist n ≥ 0 and z′ ∈ Zd with πi(z − z′) 6= 0 and

B2r(F
n
s (x, ϕ)) ∩ ϕ(n) ∩Wz′ 6= ∅. In particular, it is not possible that there exist z′ ∈ Zd \ {z}, 0 ≤ n2 < n3,

with B2r(F
ni
s (x, ϕ)) ∩ ϕ(ni) ∩Wz′ 6= ∅ for all i ∈ {2, 3}, which proves Lemma 11. �

Using these auxiliary results we show that condition (F2) is satisfied.

Proposition 12. The collective-rearrangement rule F defined above satisfies condition (F2).

Proof. We show by induction that for every ` ∈ {0, . . . ,#ϕ} there exists an integer k ≥ 1 and a decomposition
ϕ = ϕ1 ∪ ϕ2 with #ϕ2 = ` and such that B2r(F

n
s (x, ϕ)) ∩ ϕ(n) = {Fn(x, ϕ)} for all x ∈ ϕ2 and n ≥ k.

This is clear for ` = 0. Now suppose that ` ≥ 0, k′ ≥ 1 and ϕ = ϕ′1 ∪ ϕ′2 are such that #ϕ′2 = ` and
B2r(F

n
s (x, ϕ)) ∩ ϕ(n) = {Fn(x, ϕ)} for all x ∈ ϕ′2 and n ≥ k′. Observe that there exists a bounded set

B ⊂ Rd with ϕ(n) ⊂ B for all n ≥ 1. Indeed, writing Vn = {z ∈ Zd : Fn(ϕ,ϕ) ∩ Wz 6= ∅}, we conclude
from Lemma 8 that the sequence {Vn}n≥1 is increasing and satisfies #Vn ≤ #ϕ for all n ≥ 1. For n ≥ k′ let
bn = maxξ∈Fn

s (ϕ′
1,ϕ) |ξ|∞ denote the maximal d∞-distance from the origin o to one of the points in Fns (ϕ′1, ϕ).

Then, it follows from Lemma 9 that {bn}n≥1 forms an increasing sequence and that bn+1 ≥ bn + ε for all
n ≥ k′ with bn 6= bn+1. Hence, there exists k1 ≥ k′ with bk1 = bn for all n ≥ k1. Let x ∈ ϕ′1 be such that∣∣F k1s (x, ϕ)

∣∣
∞ = bk1 . We claim that there exists k2 ≥ k1 such that B2r(F

n
s (x, ϕ)) ∩ ϕ(n) = {Fn(x, ϕ)} for all

n ≥ k2. From Lemma 9 and the definition of k1 we see that there does not exist n ≥ k1 with Fn(x, ϕ) ∈ R1(ϕ(n))
and B2r

(
Fn(x, ϕ)

)
∩ ϕ(n) 6= {Fn(x, ϕ)}. Hence, Lemma 10 implies that there exists k3 ≥ k2 such that for each

n ≥ k3 either Fn(x, ϕ) ∈ R3(ϕ(n)) or Fn(x, ϕ) ∈ R1(ϕ(n)) and B2r(F
n
s (x, ϕ)) ∩ ϕ(n) = {Fn(x, ϕ)}. An

application of Lemma 11 completes the proof. �
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4. Proof of Theorem 3

In the present section, we fix a collective-rearrangement rule F as in Theorem 3. As already explained in
Section 1 we should expect that collective-rearrangement algorithms only converge for sufficiently sparse locally
finite input sets. It is convenient to formalize this requirement as follows, where for ϕ ∈ NM and B ⊂ Rd we put
ϕ(B) = #(ϕ ∩ B) for the number of elements of ϕ ∩ B. Additionally, a subset A of Zd is called ∗-connected if
the induced subgraph of A inside the graph (Zd, E) with E = {{z, z′} : |z− z′|∞ = 1} forms a connected graph.

Definition 13. Let w > 0 and ϕ ∈ NM be arbitrary. We say that ϕ satisfies the non-percolation condition if
for every k ≥ 0 there exists n0(k) ≥ 1 such that #(ϕ ∩WA) ≤ #A − k for any finite, ∗-connected set A ⊂ Zd
with o ∈ A and #A ≥ n0(k).

Note that under the conditions of Theorem 3 the non-percolation condition is satisfied with probability 1.

Lemma 14. Let X denote a stationary point process in Rd satisfying (X1). Then X satisfies the non-percolation
condition with probability 1.

Proof. Let k ≥ 1 be arbitrary. For n ≥ 1 let En denote the event that there exists a finite, ∗-connected subset
A ⊂ Zd with o ∈ A, #A ≥ n and #(X ∩WA) > #A− k. Note that by the lemma of Borel-Cantelli it suffices to
show that P(En) ≤ 2 exp(3d+2k) exp(−3d+1n) for all sufficiently large n ≥ 1. For i ≥ 1 we define Γi to be the
family of all ∗-connected subsets of Zd containing o and consisting of precisely i sites. Recall from [16, Lemma

9.3] that #Γi ≤ 23di. In particular, (X1) implies that

P(En) ≤ P(#(X ∩WA) > i− k for some i ≥ n and A ∈ Γi)

≤
∞∑
i=n

∑
A∈Γi

P(#(X ∩WA) > i− k)

≤
∞∑
i=n

∑
A∈Γi

exp(3d+2k) exp(−3d+2i)E exp(3d+2#(X ∩WA))

≤
∞∑
i=n

23di exp(3d+2k) exp(−(3d+2 − 3d+1)i)

≤ 2 exp(3d+2k) exp(−3d+1n),

where the third inequality is obtained by means of the Markov inequality. �

Our first goal is to show that the non-percolation condition is preserved when performing one step in our
collective-rearrangement algorithm.

Lemma 15. Let ϕ ∈ NM satisfy the non-percolation condition. If A ⊂ Zd and ψ ∈ NM are such that A,ψ are
finite, A is ∗-connected and Fs(ψ,ϕ) ⊂WA, then there exist finite A′ ⊂ Zd and ψ′ ∈ NM such that

(1) A′ is ∗-connected,
(2) A ⊂ A′ and ψ ⊂ ψ′ ⊂WA′ ,
(3) #ψ′ −#A′ ≥ #ψ −#A.

Proof. We show that if the conclusion of Lemma 15 does not hold, then there exist a sequence of sites {zi}i≥1 ⊂
Zd and a sequence of points {xi}i≥1 ⊂ ϕ such that for all i ≥ 1

(1) zi 6∈ A ∪ {z1, . . . , zi−1},
(2) A ∪ {z1, . . . , zi} is ∗-connected,
(3) Fs(xi, ϕ) ∈Wzi ,
(4) ϕ ∩Wzi 6= ∅.
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See Figure 2 for an illustration of the construction of the sequences {zi}i≥1 and {xi}i≥1. In particular, A ∪
{z1, . . . , zi} forms a ∗-connected set with #(ϕ ∩WA∪{z1,...,zi}) − (#A + i) ≥ #(ϕ ∩WA) − #A ≥ −#A, so

that we obtain a contradiction to the non-percolation condition when considering i = n0

(
#A + 1

)
. Suppose

that {z1, . . . , zi} and {x1, . . . , xi} have already been constructed and choose y ∈ ψ ∪ {x1, . . . , xi} such that
y 6∈WA∪{z1,...,zi} (if such y did not exist, we could simply choose A′ = A∪{z1, . . . , zi} and ψ′ = ψ∪{x1, . . . , xi}).
Furthermore, choose zi+1 ∈ Zd such that y ∈Wzi+1

. By (F1) there exists y′ ∈ ϕ with Fs(y
′, ϕ) ∈Wzi+1

and we
put xi+1 = y′. �

z1

z3

z2

x1

x2

x3

Figure 2. Set A (gray), points ψ ∪ {x1, x2, x3} and their displacement in one iteration step

As a corollary to Lemma 15 we obtain that the non-percolation condition is preserved by the collective-
rearrangement algorithm.

Corollary 16. Let ϕ ∈ NM satisfy the non-percolation condition. Then ϕ(1) satisfies the non-percolation
condition with the same constants n0(k), k ≥ 0.

Proof. Let k ≥ 1 be arbitrary and A ⊂ Zd be a finite, ∗-connected set with o ∈ A, #A ≥ n0(k) and #ψ > #A−k,
where ψ = {x ∈ ϕ : F (x, ϕ) ∈ WA}. Then, Lemma 15 implies the existence of finite A′ ⊂ Zd and ψ′ ⊂ ϕ
such that o ∈ A′, A′ is ∗-connected, ψ′ ⊂ WA′ and #ψ′ − #A′ ≥ #ψ − #A > −k. This contradicts the
non-percolation condition on ϕ. �

Using Corollary 16 we can detect a finite region containing the origin and with the property that the dis-
placement of particles inside this region is not influenced by particles outside of the region.

Lemma 17. Let ε > 0 and ϕ ∈ NεM be such that ϕ satisfies the non-percolation condition. For n ≥ 0 let An
denote the largest ∗-connected subset A ⊂ Zd such that o ∈ A and ϕ(n) ∩Wz 6= ∅ for all z ∈ A. Furthermore,
put A∞ =

⋃
n≥0An, ψn = ϕ ∩WAn and ψ∞ = ϕ ∩WA∞ . Then

(1) {An}n≥0 forms an increasing family of finite subsets of Zd,
(2) if n ≥ 0 and x ∈ ϕ are such that F k(x, ϕ) ∈WAn

for some k ∈ {0, . . . , n}, then F k(x, ϕ) ∈WAn
for all

k ∈ {0, . . . , n},
(3) A∞ is finite,
(4) if z ∈ Zd \A∞ and z′ ∈ A∞ are such that |z − z′|∞ = 1, then Wz ∩ ϕ(n) = ∅ for all n ≥ 0,
(5) if x ∈ ψ∞, then Fn(x, ψ∞) = Fn(x, ϕ) for all n ≥ 0,

(6) ψ
(n)
∞ = ϕ(n) ∩WA∞ for all n ≥ 0.

See Figure 3 for an illustration of the statement of Lemma 17.

Proof. The first claim follows immediately from Corollary 16 and (F1) while the second claim is a consequence
of (F1) and our condition on the range of F . Therefore, #(ϕ ∩WAn) − #An = #(ϕ(n) ∩WAn) − #An ≥ 0
and the non-percolation condition implies the finiteness of A∞. Next, assume that n1, n2 ≥ 1 and z, z′ ∈ Zd
are such that z 6∈ A∞, z′ ∈ WAn1

, |z − z′|∞ = 1 and Wz ∩ ϕ(n2) 6= ∅. Putting n3 = max{n1, n2}, we note that



10 TITLE WILL BE SET BY THE PUBLISHER

condition (F1) implies that Wz ∩ ϕ(n3) 6= ∅ and Wz′ ∩ ϕ(n3) 6= ∅ which yields a contradiction to z 6∈ An3 and
the maximality property used to define An3

. The last two assertions are proven jointly by induction on n, the
case n = 0 being trivial. For n ≥ 1 and x ∈ ψ∞ the induction hypothesis yields Fn−1(x, ψ∞) = Fn−1(x, ϕ).

Additionally, by w-locality Fn(x, ψ∞) = Fn(x, ϕ) follows once we verify Wz′ ∩ ϕ(n−1) = Wz′ ∩ ψ(n−1)
∞ for all

z′ ∈ Zd with |z − z′|∞ ≤ 1 for some z ∈ A∞. From induction hypothesis, we conclude that it suffices to show
Wz′ ∩ ϕ(n−1) ⊂ WA∞ and the latter inclusion is trivial for z′ ∈ A∞ and follows from item (iv) if z′ 6∈ A∞. By

what we have achieved so far, the proof of Lemma 17 is completed once we show ϕ(n) ∩WA∞ ⊂ ψ
(n)
∞ . If x ∈ ϕ

is such that Fn(x, ϕ) ∈WA∞ , then item (2) gives x ∈ ψ∞, so that Fn(x, ϕ) = Fn(x, ψ∞) ∈ ψ(n)
∞ . �

Figure 3. The sets WA0
(left), WA1

(middle) and WA2
(right) in gray; WA∞ = WA2

bounded
by thick line; densely dotted squares do not contain any points of X

Using Lemma 17 we can now complete the proof of Theorem 3.

Proof of Theorem 3: By wZd-equivariance of F , it suffices to show the existence of an integer-valued random
variable N1 ≥ 0 such that Fn(X,X) ∩ Wo = FN1(X,X) ∩ Wo for all n ≥ N1. The specific description of
the metric on point processes given in [8] then also implies that the point processes

(
X(n)

)
n≥0

converge to

X(∞) in probability and therefore also in distribution. Let E denote the event that X ∈ NεM and X satisfies
the non-percolation condition, where by condition (X2) and Lemma 14 this event occurs with probability 1.
Now let ϕ ∈ E be arbitrary. From Lemma 17 we deduce the existence of a finite subset ψ of ϕ such that
ψ(n) ∩Wo = ϕ(n) ∩Wo for all n ≥ 0 (apply Lemma 17 with A = {o}, and choose ψ = ψ∞). Furthermore, by
condition (F2) we can choose n1 ≥ 0 such that ψ(n) = ψ(n1) for all n ≥ n1. Hence, ϕ(n) ∩Wo = ψ(n) ∩Wo =
ψ(n1) ∩Wo = ϕ(n1) ∩Wo, thereby completing the proof. �

5. Numerical investigations of avoidance algorithm

In the present section, we discuss the numerical behavior of the avoidance algorithm for a Boolean model in
R3. More precisely, we choose as initial random sphere system a collection of unit balls whose centers form a
homogeneous Poisson process in R3 with some intensity λ > 0. Applying the avoidance algorithm introduced in
Section 3.2 to the Boolean model with varying intensities λ1, . . . , λn, we check for which intensities the avoidance
algorithm converges. Since the condition on the intensity derived in Corollary 5 is rather conservative, it is
natural to expect that the algorithm also converges for higher intensities.

After that, we numerically compare the differences in the resulting point patterns when applying the avoidance
algorithm and the force-biased algorithm to the same initial point pattern. Before discussing the results of our
simulation study we first state some details about the implementation of the avoidance algorithm.
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5.1. Implementation of avoidance algorithm

In order to reduce the edge effects occurring when performing simulations in a bounded sampling window,
we implement the avoidance algorithm with periodic boundary conditions. In other words, we do not use the
Euclidean metric |·| but a periodic distance function ρ′ which is defined for x = (x1, x2, x3)> and y = (y1, y2, y3)>

and a window W = [0, w]3 by ρ′(x, y) =
√∑3

i=1(min{|xi − yi|, w − |xi − yi|})2.

5.2. Numerical results on the critical intensity

In this section, the convergence behavior of the avoidance algorithm applied to the Boolean model is in-
vestigated for varying intensities λ of the underlying Poisson point process. The framework of the present
simulation study is as follows. As sampling window W we consider the cube W = [0, 18]3. The intensity λ
is varied from 0 to 0.2 in equidistant steps of 0.005. For each value of the intensity λ, m = 50 realizations of
the Boolean model are transformed by the avoidance algorithm as explained in Section 5.1. Then, we consider
the frequency of convergence of the avoidance algorithm with intensity λ. In the simulation study, we say that
the algorithm has not converged if after k = 10, 000 iteration steps of the algorithm there exists at least one
pair of overlapping balls. Otherwise, we say that the algorithm has converged. In other words, we check how
many of the realizations converge per intensity λ, i.e., rλ = number of convergence/50. In Figure 4a, we plot
λ against rλ. We can see clearly that a phase transition occurs and that the transition point of intensity λ is
located in the interval [0.14, 0.17]. For intensities smaller than 0.14 the avoidance algorithm converged for all
m = 50 realizations of the initial Boolean model, whereas the algorithm did not converge for any realization if
the intensity is larger than 0.17. That means using the avoidance algorithm, we achieve dense sphere packings
with maximal volume fractions of approximately 63%.

(a) Intensity vs. relative frequency of convergence (b) Intensity vs. distance deviation; sub-cubes of side length
w = 6 (black) and w = 9 (blue).

Figure 4. Dependence of model characteristics on the intensity of the point process

5.3. Comparison of force-biased and avoidance algorithm

In a first step, we compare the output of the avoidance algorithm introduced in Section 3.2 with that of
the force-biased algorithm. As noted before, the avoidance algorithm can be seen as a modification of the
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force-biased algorithm for which condition (F1) is rigorously enforced by definition. We analyze the two point
patterns obtained by applying the force-biased and the avoidance algorithm to an initial Boolean model, which
is constructed by attaching a unit ball to each of the points of a homogeneous Poisson point process X =
{Xi}i∈{1,...,N} in W . These two point patterns are compared by considering the mean distance of corresponding
sphere midpoints. More precisely, we first run both algorithms until convergence. Then, for each sphere we
compute the distance of its final position in the avoidance algorithm to the final position in the force-biased
algorithm. Finally, these distances are averaged over all spheres. We investigate the behavior of these distance
deviations depending on both the side length w − 2 ≥ max{Fmax, 4} of the grid and the intensity λ of the
underlying Poisson point process of sphere centers.

Therefore, we first simulate the Boolean model in the sampling window W = [0, 18]3 with intensity λ varying
from 0.005 to 0.135 in equidistant steps of 0.01 and for each intensity m = 50 replications are sampled from
the model. Then, to each realization of the Boolean model we apply both the force-biased algorithm and the
avoidance algorithm for side lengths of the grid w ∈ {6, 9}. We put Fmax = 0.5 and ε = 0.01 and note that
w = 6 is the minimal side length for which Propositions 8 and 12 imply conditions (F1) and (F2).

Next, the mean distance of corresponding sphere midpoints for the two resulting point patterns is computed
when applying the two algorithms to the same realization of the Boolean model. In more detail, let X(∞)a =
{X(∞)a,i}i∈{1,...,N} and X(∞)fb = {X(∞)fb,i}i∈{1,...,N} denote the final position of the sphere centers after
convergence has occurred in the avoidance and force-biased algorithm, respectively. The mean distance deviation

ρ̄ of X(∞)a and X(∞)fb is then defined as ρ̄ = 1
N

∑N
i=1

∣∣X(∞)a,i −X(∞)fb,i
∣∣.

In Figure 4b, the intensity is plotted against the mean distance deviation for side length of sub-cubes w = 6
(blue) and w = 9 (black) where we average over m = 50 replications. It can be seen that the mean distance
deviation is constant 0 for w = 9 (i.e., the force-biased and the avoidance algorithm lead to the same result
no matter which intensity we consider) and for w = 6 only very small deviations occur. In summary, we can
conclude that even for relatively small grid sizes the avoidance algorithm and the force-biased algorithm generate
very similar final configurations.

6. Further examples of collective-rearrangement algorithms

In Section 3.2 we have presented an explicit example for a collective-rearrangement algorithm satisfying the
conditions of Theorem 3. Moreover, the numerical results obtained in Section 5 show that it generates similar
configurations as the classical forced-biased algorithm. Of course, the general family of collective-rearrangement
algorithms is by no means restricted to these possibilities and for specific applications more refined variants
are needed. We discuss two possible extensions, which are particularly relevant for potential applications in
materials science. The first one yields hard-core systems of balls with varying radii, while the second is used to
generated hard-core fiber systems.

6.1. Collective-rearrangement algorithms for sphere systems with varying radii

In the present section, we provide an example that shows how collective-rearrangement algorithms can be
used to model extremely regular point patterns. Typically, regular point patterns are described by Matérn
hard-core or dominance-competition processes [13], which are based on thinnings of Poisson point processes.
To be more precise, an initial Poisson point process is independently marked by random radii, so that this
marked Poisson point process can be interpreted as a random sphere system. Subsequently, this process is
thinned (i.e. spheres are deleted) to create a hard-sphere system (i.e. a sphere system consisting of pairwise
non-overlapping spheres), cf. [13]. Clearly, the attainable intensity of these Matérn hard-core and dominance-
competition processes is quite limited and collective-rearrangement algorithms provide a suitable alternative for
modelling hard-sphere systems with a higher intensity.

Very regular point patterns occur for instance in microscopic simulations [19], where the spatial configuration
of a system of semiconducting molecules is simulated by evolving an initial system of molecules according to
precise physical interactions. It is important to provide a good model for this spatial configuration, since it
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substantially influences physical properties such as charge transport. Since these microscopic simulations are
typically extremely time-consuming, in [2] a point process model has been developed to realistically describe
the point patterns formed by molecule centers. The locations of molecule centers are described by an iterative
dominance-competition model that provides good control over the pairwise distances of points. However, the
intensity of the point process is not a separate model parameter, but its approximate value has to be determined
by simulations.

In this section we show how collective-rearrangement algorithms for sphere systems with varying radii can
be used to generate hard-sphere systems with predefined intensities. To illustrate the potential of collective-
rearrangement algorithms for real world applications, we show that they can be used to adequately describe the
point pattern of molecule centers extracted from microscopic simulations. In the following, this point pattern
is denoted by {V1, . . . , Vn}, where the vertices are located in the cube W = [0, 13.5]3.

6.1.1. Model description

As initial marked point process model for the avoidance algorithm, we consider a homogeneous Poisson point
process with intensity λ. In our application, it is useful to consider a sphere system where the radii are not
constant, but given by a Gamma distribution Γ(a, b, s, t) which is shifted by s > 0 to the right and truncated
at t > 0. In our case, a and b denote the shape and scale parameter of the Gamma distribution, respectively.
The parameters of the avoidance algorithm are given by ε = 10−5, Fmax = 0.5, w = 6.75.

6.1.2. Model fitting and validation

After having specified the sphere model, the next step is to estimate the model parameters λ, a, b, s, t from

the data. The parameter λ can easily be estimated by λ̂ = #{i ∈ {1, . . . , n} : Vi ∈W}/|W |, where |W | denotes
the volume of W . Furthermore, the estimate ŝ of the shifting parameter s is given as the minimum distance
between two points of {V1, . . . , Vn} divided by 2. Moreover, the estimated truncation threshold t̂ is chosen
as the difference of the maximum nearest-neighbor distance observed within {V1, . . . , Vn} and ŝ. Using these

methods, we obtain λ̂ = 1.64, ŝ = 0.27 and t̂ = 1.1.

Figure 5. Characteristics computed for vertices from the microscopic simulation (black) and
simulated point pattern (green): Pair-correlation function (left), spherical contact distribution
function (right)

The remaining two parameters a and b are estimated using the so-called minimum contrast method with
cost function given by L(a, b) =

∫ r2
r1
|g(r) − ga,b(r)|dr. Here, g and ga,b denote the pair-correlation functions

computed for the set of vertices {Vi} and for point patterns generated by the avoidance algorithm, respectively.

The constants r1, r2 are appropriately chosen integration limits and a parameter vector (â, b̂) satisfying L(â, b̂) ≤
L(a, b) for all admissible values of (a, b) is called a minimum contrast estimator for (a, b). We refer the reader
to [5,13] for a definition and detailed explanation of pair-correlation functions and further details on minimum
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contrast estimation. The numerical values of the fitted parameters are given by â = 3.75 and b̂ = 25. See
Figure 5, left) for an illustration of g and gâ,b̂.

In order to validate the fitted sphere model introduced in Section 6.1.1, we compare a further characteristic
of point patterns computed for realizations of the fitted sphere model to that of the point pattern {Vi} obtained
from microscopic simulation. For this purpose, we consider the distribution function of spherical contact dis-
tances H : [0,∞) → [0, 1] (Figure 5, right), where for r > 0 the function value H(r) denotes the probability
that the distance from a randomly chosen point in W to the nearest point of the point pattern is smaller than
r > 0. One can observe an excellent agreement between the characteristics of point patterns generated by the
microscopic simulation and by the sphere model, respectively.

6.2. Collective-rearrangement algorithms for fiber systems

Besides applications concerning the modeling of point patterns, collective-rearrangement algorithms can also
be used to transform a system of overlapping fibers into a system of non-overlapping fibers. In [1] certain
refinements of the force-biased algorithm are discussed, which take into account the particular problems of
creating systems of non-overlapping fibers. The basic idea is to first represent each fiber by a chain of balls
of some fixed radius r and centers located equidistantly on the central line of the fiber. Then two different
kinds of translations are applied to those balls: The first translation separates overlapping balls of different
ball chains and the second translation keeps the structure between the balls from the same chain of balls (and
thus the curvature of the fibers). For further details, the reader is referred to [1]. As Theorem 3 is stated
in a rather general framework, it can also be applied to collective-rearrangement rules involving fiber systems
provided that the conditions required in the theorem are satisfied. We believe that similar to the approach
considered in Section 3.2 it should be possible to modify the fiber-adapted force-biased algorithm so that the
desired properties are enforced by definition, but the resulting modified algorithm is still close to the original
one for practical examples.

Applications in computational materials science are discussed in [1] and [11] where collective-rearrangement
algorithms are used to describe systems of non-overlapping fibers representing the microstructure of glass-
reinforced materials or non-woven gas-diffusion layers in proton exchange membrane fuel cells, see Figure.
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