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Abstract

The analysis of big data is changing industries, businesses and re-

search since large amounts of data are available nowadays. In the area

of microstructures, acquisition of (3D tomographic image) data is diffi-

cult and time-consuming. It is shown that large amounts of data repre-

senting the geometry of virtual, but realistic 3D microstructures can be

generated using stochastic microstructure modeling. Combining the

model output with physical simulations and data mining techniques,

microstructure-property relationships can be quantitatively character-

ized. Exemplarily, we aim to predict effective conductivities given the
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microstructure characteristics volume fraction, mean geodesic tortu-

osity and constrictivity. Therefore, we analyze 8119 microstructures

generated by two different stochastic 3D microstructure models. This

is - to the best of our knowledge - by far the largest set of microstruc-

tures that has ever been analyzed. Fitting artificial neural networks,

random forests and classical equations, the prediction of effective con-

ductivities based on geometric microstructure characteristics is possi-

ble.

Keywords: Big data, effective conductivity, geodesic tortuosity,

microstructure characteristics, predictive simulation, stochastic

microstructure modeling.

1 Introduction

Data is the new oil. The analysis of big data is changing industries, businesses

and research. Big data is also used in order to advance materials research [1]

aiming an accelerated systematic design of functional materials [2] like (or-

ganic) solar cells, fuel cells and batteries. This includes the identification of5

new molecules with desired properties as well as the optimization of micro- or

nanostructures, i.e. the spatial arrangement of materials components, which

have a large influence on the functional properties of these materials, see [3]

and the references therein.

In order to optimize microstructures in functional materials, the relation-10
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ship between structural characteristics and functional properties has to be

understood quantitatively, which is often not the case or just for some special

types of simple structures [3]. The progress of 3D imaging during the last

decades enables the computation of well-defined microstructure characteris-

tics from real data, which can be compared to effective properties that are ei-

ther measured experimentally or simulated with numerical models [4, 5, 6, 7].5

Although this approach allows a direct investigation of the relationship be-

tween microstructure and effective properties, it is limited due to the high

costs of 3D imaging.

Thus, virtual materials testing (VMT), i.e. the combination of stochastic

microstructure models (SMM) with numerical simulations of physical pro-10

cesses, was used in [8] and [9] to investigate the quantitative relationship

between microstructure characteristics and effective conductivity in porous

materials. The use of SMM allows us to generate virtual microstructures in

short time, where certain microstructure characteristics can be varied system-

atically. The virtual microstructures are used as an input for finite element15

modeling (FEM) where the corresponding effective conductivities are simu-

lated. The generation of virtual microstructures leads to big data and thus,

the microstructure-property relationships can be considered as a statistical

learning problem.

In [9] it was shown that effective conductivity σeff of porous microstruc-20

tures can be approximately predicted by three microstructure characteristics,

which are volume fraction ε of the solid phase, its mean geodesic tortuosity
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τgeod and a certain constriction factor β, using the equation

σeff = σ0
ε1.15 β0.37

τ 4.39
geod

, (1)

where σ0 denotes the intrinsic conductivity of the bulk material without

microstructure limitation. This empirical relationship has been established

on the basis of 43 virtual microstructures, where the corresponding effec-

tive conductivities have been computed with the software GeoDict [10]. In5

the present paper, we consider 8119 virtual microstructures and use neural

networks and random forests to predict the effective conductivity given the

structural properties. Although it is more difficult to interpret these new

prediction formulas in comparison with Equation (1), they increase accuracy

of the prediction. The effective conductivity can now be predicted with a pre-10

diction error of less than 9% instead of 13.6%, which is the prediction error

when applying Equation (1) to the 8119 virtual microstructures. This shows

that combining stochastic microstructure modeling, physical computations

and data mining is a powerful and helpful approach to establish quantitative

microstructure-property relationships. This concept, outlined in Figure 1, is15

not restricted to conductive transport processes, but can - in principle - be

applied to establish all kinds of microstructure-property relationships.

The concept, however, has the disadvantage that the effective conductiv-

ities of the virtual microstructures can not be compared with experimental

measurements. For a proper validation, one needs to prepare real samples,20
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Figure 1: Combination of VMT with statistical learning to analyze
microstructure-property relationships with big data.

measure the effective conductivities experimentally, do 3D imaging of the

samples and then compare experimentally measured with predicted conduc-

tivities. Such a comparison is expensive in costs and time and can only be

performed for a small number of samples. This was done in [8] to validate

the VMT approach, where a reasonably good agreement between predicted5

and measured conductivities was found. Validation of simulating effective

conductivity by GeoDict can be found in [11].

Moreover, it has to be emphasized that we do not want to replace exper-

imental 3D imaging by the in-silico approach of VMT. It can be understood

as an additional tool which makes 3D imaging more powerful in tailoring new10

microstructures with specific properties. In order to create virtual, but realis-

tic microstructures, a certain SMM is fitted to experimental microstructures

such that the model creates statistically equivalent microstructures. Then,

model parameters of the SMM can be correlated to production parameters of

the microstructures, in order to suggest production parameters that lead to15

a certain type of microstructure, see e.g. [12]. In many materials, e.g. in fuel

cells, various different transport processes take place simultaneously which
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makes microstructure optimization difficult: each type of transport process

may prefer a different microstructure. Thus, for a successful microstruc-

ture optimization, quantitative microstructure-property relationships must

be established not only for conductive transport but also for other kinds of

transport processes, e.g. for effective permeability or mechanical stress-strain5

curves.

This paper is organized as follows. In Section 2, we present the SMM

(Section 2.1) used for the generation of virtual microstructures, their geo-

metric characteristics (volume fraction, constrictivity, mean geodesic tortu-

osity, Section 2.2), the considered transport processes (Section 2.3) as well10

as the predictive models from statistical learning (Section 2.4). The results

are presented and discussed in Section 3, where the proposed microstructure-

property relationships are validated by experimental data (Section 3.3), too.

Conclusions are presented in Section 4.

2 Data & Methods15

2.1 Stochastic microstructure modeling

With increasing availability of highly-resolved image data stochastic mi-

crostructure modeling becomes a frequently used tool in materials science

[3]. During the last years a number of stochastic micro- and nanostructure

models has been created for specific types of microstructures in organic solar20

cells, Li-ion batteries and fuel cells, see e.g. [13] and the references therein.
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In general, an SMM uses tools from stochastic geometry [14] to gener-

ate virtual, random microstructures whose properties can be adjusted by the

model parameters. To develop an SMM, a purposive combination of random

variables is used to model spatial data, like point configurations, spatial net-

works or random sets. The generation of a virtual microstructure typically5

requires little computational effort and therefore many different microstruc-

tures can be simulated in short time.

A simple example for an SMM is the Boolean model with spherical grains,

see e.g. [15], where possibly overlapping spheres are distributed completely

at random in space (2D or 3D) with a predefined distribution of radii. The10

influence of model parameters on transport properties has been recently in-

vestigated in [16] for Boolean models with more general grains.

For our case study, we consider two SMM that generate different types of

microstructures: the stochastic spatial graph model (SSGM) introduced in [8]

and a simplified version of the multiscale sphere model (MSM) introduced in15

[17]. By means of the SSGM microstructures within a wide range of different

values for volume fraction, mean geodesic tortuosity and constrictivity can be

generated. We additionally incorporate the MSM into our investigation since

it was fitted to image data of real microstructures. Moreover, considering two

models instead of one reduces the errors introduced by the model type.20
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2.1.1 Stochastic spatial graph model

The stochastic spatial graph model (SSGM) is based on a random spatial

graph that is randomly dilated [8], see Figure 2. The model has a large

flexibility to generate microstructures with different volume fractions, mean

geodesic tortuosities and constrictivities. All microstructures realized by the5

SSGM are completely connected by definition. Using the SSGM, 3900 mi-

crostructures with different structural characteristics have been generated for

the present study.

Figure 2: Virtual microstructures generated by the SSGM.

2.1.2 Multi-scale sphere model

The second SMM is the multi-scale sphere model (MSM) from [12, 17]. It10

follows a completely different approach in comparison to the SSGM described

in Section 2.1.1. It is based on a random, anisotropic arrangement of spheres.

The midpoints of the spheres follow a Markov-chain of 2D point processes.

The model has two components: a macro-scale component and a micro-scale

component that adds structural complexity. In the present paper, we only use15
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the macro-scale model of the MSM. Examples of realizations are displayed in

Figure 3. In total, we consider 2131 microstructures where the sphere system

is the transport phase and 2088 microstructures where transport takes place

in the complement of the sphere system. Since only the connected (non-

isolated) part of the considered material phase contributes to transport, a5

post-processing is applied where all material is removed that is not connected

with both, in-let and out-let plane.

Figure 3: Virtual microstructures generated by a simplified version of the
MSM. Top row: microstructures generated by a sphere system. Bottom row:
microstructures generated as complementary phase of a sphere system.
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2.2 Geometric characteristics

In [8] and [9] VMT has shown that three microstructure characteristics of the

conducting phase carry significant information with respect to σeff . These mi-

crostructure characteristics are volume fraction ε, mean geodesic tortuosity

τgeod and constrictivity β. Note that these micostructure characteristics can5

be defined by means of expectations with respect to the underlying stochastic

model, see e.g. [14], or they can be estimated from a given microstructure. In

the present paper we use the latter way, because given a certain microstruc-

ture we are interested in the influence of ε, τgeod and β on σeff .

The volume fraction ε is estimated by the ratio of the volume of the trans-10

porting phase divided by the total volume of the 3D image. The influence

of winded transport paths of the conducting phase is described by the mean

geodesic tortuosity τgeod, which is defined as the ratio of the expected shortest

path lengths from inlet- to outlet-plane over the material thickness. Thereby,

the shortest path lengths (in terms of geodesic distance [18]) in transport di-15

rection from inlet- to outlet-planes are computed within the voxel space that

represents the transporting phase (see the left-hand side of Figure 4). To

determine τgeod we consider an average of geodesic tortuosities computed for

all voxels of the transporting phase in the inlet-plane. Obviously, it holds

that τgeod ≥ 1 and higher values of τgeod indicate more winded pathways.20

Besides the windedness of transport paths through the material, narrow

constrictions of the conducting phase, quantified by the so-called constrictiv-
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Figure 4: Concept of geodesic tortuosity τgeod (left) and concept of constric-
tivity β = (rmin/rmax)2 (right).

ity β, have a strong influence on σeff . Constrictivity is defined as

β =

(
rmin

rmax

)2

, (2)

where, heuristically speaking, rmin indicates the radius of the characteristic

bottleneck and rmax indicates the radius of the characteristic bulge, see the

right-hand side of Figure 4. More precisely, rmax is the 50% quantile of the

continuous pore size distribution (c-PSD) and rmin is the 50% quantile of5

the MIP pore size distribution, which is based on a geometrical simulation

of mercury intrusion porosimetry (MIP), introduced in [19]. Constrictivity

takes values between 0 and 1, where values close to 0 indicate strong bottle-

neck effects while values close to 1 indicate that there are no bottlenecks at

all.10

For details regarding these structural characteristics and their estimation

from 3D image data, the reader is referred to [9]. The 8119 microstructures

generated by the aid of SSGM and MSM cover a wide range of values for the

11



characteristics ε, τgeod and β, see Section 3.

2.3 Conductive transport

As in [8] and [9], we consider conductive transport processes within composite

materials, where only one phase is conducting. The electric charge transport

is described by Ohm’s law5

J = −σdU

dx
(3)

and

dU

dt
= σ

d2U

dx2
, (4)

where J is the current density, σ is the conductivity, U is the electric poten-

tial, and t is time. Assuming constant boundary conditions, such systems

converge to an equilibrium which is described by the Laplace equation

d2U

dx2
+

d2U

dy2
+

d2U

dz2
= 0, (5)

where x, y and z denote the coordinates in the 3D Euclidean space.10

Since transport only takes place in one phase, the geometry of the mi-

crostructure reduces the intrinsic conductivity σ0 of the material to the ef-

fective conductivity σeff , i.e.

σeff = σ0M (6)
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for some 0 ≤ M ≤ 1. The influence of the microstructure on the effective

conductivity is described by the factor M . Our goal is to validate the pre-

diction of the M -factor based on the geometric characteristics ε, τgeod and β,

which has been derived in [9]. Moreover, we improve the prediction formula

using methods from statistical learning, i.e. by neural networks and random5

forests. For each of the 8119 synthetic microstructures, the effective conduc-

tivity and the associated M -factor are determined by numerical simulation

using the software GeoDict [10].

2.4 Statistical learning

Neural networks and random forests are two methods from statistical learn-10

ing that can be used for non-linear regression [20]. Both methods are used

to predict the M -factor of virtual 3D microstructures by the corresponding

values of ε, τgeod and β. Basically leaned on [20], we give a short description

of neural networks and random forests. In both cases, an output variable

Y ∈ R is predicted by an input vector X ∈ Rp consisting of p features, where15

p ∈ N. In our case we have X = (ε, τgeod, β) and Y = log2(M). Since the

computed M -factors vary over several orders of magnitude, a better fit is

obtained by putting the M -factors on a log2-scale.

Neural networks are two-stage regression models. Here we use a single

hidden layer network. For prediction of Y , the vector X is mapped to the20

hidden layer, which is a vector Z ∈ RL, L ∈ N, where for each l ∈ {1, . . . , L}

we have Zl = σ (α0,l +
∑p

i=1 αi,lXi) for a parameter matrix α = (αi,j) ∈
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R(p+1)×L and some function σ : R −→ R. Here we choose σ as the sigmoid

function, i.e. σ(t) = (1 + e−t)−1 for each t ∈ R. The predictor Ŷ of Y is

finally constructed by a linear combination of the entries of Z, to be more

precise Ŷ = min{max{Ŷ ∗, 0}, 1} with

Ŷ ∗ = θ0 +
L∑
i=1

θiZi (7)

for some parameter vector θ ∈ RL+1. In order to fit the parameters α and5

θ, we minimize the mean squared error (MSE) between Ŷ ∗ and Y by the

Matlab implementation [21] of the Levenberg-Marquardt backpropagation

algorithm [22], where the initial values are determined by the Nguyen-Widrow

algorithm [23]. During the fitting procedure, data is divided completely at

random into training data (70%), validation data (15%) and test data (15 %).10

Training data is directly used to fit α and θ, whereas validation data is used

to define a stopping criterium for the Levenberg-Marquardt algorithm [20].

The dimension L of the hidden layer is chosen such that the mean absolute

percentage error (MAPE) of test data is minimized. For this purpose, we

average over 200 random subdivisions, where data is divided into training15

data, validation data and test data. Altogether, the described division of

data avoids overfitting by the neural network.

Random forests [24] are further regression models from statistical learn-

ing, which are based on so-called regression trees. The predictor Ŷ of Y

obtained by a single regression tree is a linear combination of indicators, i.e.20
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Ŷ =
M∑

m=1

cm1Ix∈Rm , (8)

for an appropriate partition R = {R1, . . . , RM} of Rp, where 1Ix∈R = 1 if

x ∈ R and 1Ix∈R = 0 otherwise for each R ⊂ Rp. Beginning with R = {Rp}

the partition R is refined iteratively. In each iteration, all regions are split

into two half-spaces such that by an optimal choice of coefficients cm the5

MSE can be minimized. The refinement is stopped when each region con-

tains a predefined minimum number of observations of X. For our purpose

this minimum number is set to 5 as recommended in [20]. In random forests

averaging over randomized regression trees improves the prediction. Ran-

domization takes place in two different ways. To fit the individual regression10

trees, different random subsets of the input vector are chosen. Moreover,

k < p features of X, denoted by i1, . . . , ik, are chosen at random for each

splitting of a region. Then, splitting is only possible along one of the axes

i1, . . . , ik. Usually k =
√
p is used. This procedure allows a variance re-

duction of the predictor Ŷ , caused by averaging of single regression trees as15

well as by the described randomization. For prediction of the M -factor, we

choose k = 2. Similar to neural networks we divide data into training data

(70%) and test data (30 %) completely at random. The number of trees used

for averaging is chosen such that the MSE of test data does not decrease

significantly for a larger number of trees. As in the case of neural networks,20

we consider 200 random subdivisions to determine the number of trees. In

15



order to fit and simulate random forests, we use the randomForest-package

[25] of the statistical software R [26].

3 Results & Discussion

Simulations, which are based on the stochastic models presented in Sec-

tion 2.1, provide 8119 virtual 3D microstructures. For each of these virtual5

3D microstructures, we compute the geometric microstructure characteristics

ε, τgeod and β, described in Section 2.2, as well as the corresponding M -factor,

see Section 2.3.

3.1 Characteristics of simulated virtual 3D microstruc-

tures10

Figure 5 shows that the generated virtual 3D microstructures cover a wide

range of constellations for ε, τgeod and β. For small values of ε, many mi-

crostructures are generated, the transport paths of which are more than 1.5

longer than the materials thickness, that is τgeod ≥ 1.5. The unflexibility of

the models regarding τgeod for large values of ε is not surprising, since - ex-15

cluding pathological counterexamples - the mean length of transport paths

through the material decreases strongly with increasing volume fractions.

Most values of β are in the interval [0, 0.8] and for virtual microstructures

with ε ∈ [0.4, 0.7] the corresponding constrictivities take nearly all values

between 0.05 and 0.7. While higher values of constrictivity are observed in20
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virtual microstructures generated by the MSM (blue and red dots in Figure

5), the correlation between ε and β is less strong in the SSGM (black dots

in Figure 5). The SSGM was especially developed for varying the considered

microstructure characteristics as independently as possible [8].

The right-hand side of Figure 5 shows that the simulated M -factors of5

the virtual 3D microstructures cover the whole range between 0 and 1. All

M -factors are below the upper bound M ≤ ε1.15 (green dashed line) resulting

from the empirically derived prediction formula, see Equation (1). Note that

a rigorous upper bound for M is given by M ≤ ε [3].

Figure 5: Characteristics of the 8119 virtual 3D microstructures generated by
the SSGM (blue), the MSM (red) and the complement of the MSM (black).
The plots show mean geodesic tortuosity τgeod (left), constrictivity β (center)
and M -factor vs. volume fraction ε.

3.2 Prediction of M-factor by geometric microstruc-10

ture characteristics

On the basis of the simulated microstructures we validate the prediction for-

mula derived in [9]. Furthermore, we present the predictions obtained by

neural networks and random forests, which are fitted to simulated data as it
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is described in Section 2.4. Figure 6 shows scatter plots of computed and pre-

dicted M -factors, while the MAPE as well as the coefficient of determination

R2 are listed in Table 1.

Figure 6: Scatter plots of computed and predictedM -factors using the predic-
tion formula from Equation (1) (left), neural networks (center) and random
forests (right), where the identity function is added in each plot (red lines).

For the prediction formula given in Equation (1), the MAPE correspond-

ing to the 8119 virtual microstructures is 13.6%, while the MAPE was 19.6%5

for the virtual microstructures considered in [9]. The reason for this smaller

value of MAPE is that the microstructures analyzed in the present paper

are less extreme, i.e. they have a larger average M -factor than those in [9].

Altogether, the formula given in Equation (1) offers a good prediction of the

M -factor, see Figure 6 (left), which is also indicated by a high coefficient of10

determination R2. However, the formula seems to systematically underesti-

mate the M -factor for values above 0.7, i.e. for materials with a high volume

fraction.

Using neural networks and random forests the prediction of the M -factor

can be improved. Fitting a single hidden layer neural network leads to a15

hidden layer of size L = 20. The MAPE for the test data is 8.94%, while
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Table 1: MAPE and coefficient of determination R2 of the different prediction
models. Note that the prediction formula from Equation (1) was not fitted
to the data simulated in the present study. Thus, the complete data can be
considered as test data in this case.

Model MAPE (training data) MAPE (test data) R2

Prediction formula - 13.6% 0.984
Neural network 8.20% 8.94% 0.997
Random forest 3.99% 8.47% 0.999

R2 = 0.997. For prediction by a random forest we average over 500 trees

and obtain a MAPE of 8.47%, which is slightly better than prediction by

neural networks. Also R2 = 0.999 shows a better prediction by random

forests. Note that random forests, in contrast to neural networks, have a

much smaller MAPE for training data than test data, see Table 1.5

Random forests and neural networks offer a much lower prediction error

than the formula given by Equation (1), see Table 1. Thus, for prediction

purposes, random forests or neural networks should be used from our point

of view. Both methods are equivalent in terms of their prediction accuracy.

However, random forests and neural networks are extremely difficult if not10

impossible to interpret. Thus, it is difficult to explain why a microstructure

has a certain M -factor. The big advantage of the prediction formula from

Equation (1) is that it allows us to explain how ε, τgeod and β influence the

M -factor. In short, we propose to use neural networks and random forests

for prediction and Equation (1) for explanation.15

Using neural networks or random forests, the MAPE of test data is smaller
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than 9%. This means that the considered volume-averaged characteristics

ε, τgeod and β carry significant information about effective conductivity, but

certainly not all information. One possibility to further improve the pre-

diction accuracy would be to consider the active volume fraction instead of

the connected volume fraction. Imagine a microstructure that is completely5

connected yet has many dead-ends which are not used for transport. Then

considering active volume (connected volume minus ‘dead-end’-volume) in-

stead of connected volume should further increase prediction accuracy. The

precise mathematical definition and computation of active volume, however,

is challenging and subject of current research.10

Figure 7: Computed M -factors on a log10-scale vs. relative prediction errors.
Predictions are obtained by the prediction formula from Equation (1) (left),
neural networks (center) and random forests (right).

Considering Figure 6, it seems that all three prediction models work well

for all microstructures without any exceptions. However, for all three meth-

ods, the prediction error increases for decreasing M -factors and extreme er-

rors occur for very small M -factors (below 10−2), see Figure 7. Note that the

errors are less extreme when random forests are used for prediction of the15

M -factor.
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Interestingly, all extreme errors overestimate the M -factor, i.e. the cor-

responding microstructures have a smaller M -factor than predicted. These

extreme deviations are caused by microstructures, which are close to their

percolation threshold, i.e. eroding the microstructure a little bit would elim-

inate connectivity. The microstructures have a low connectivity and much of5

the volume is not used for transport (‘dead-end’ volume). Measuring active

volume instead of connected volume could lead to a better prediction of the

M -factor.

3.3 Validation with experimental microstructures

In order to validate our method, we compare M -factors predicted by the10

three different methods with computed M -factors (using GeoDict) for differ-

ent 3D image data obtained by FIB-SEM tomography. For this purpose, the

same data sets are considered, which have also been used in [9] for validation

of Equation (1). In total we have 10 images, where six of them represent-

ing anodes in solid oxide fuel cells (SOFC) consisting of pores, nickel (Ni)15

and yttrium-stabilized zirconia (YSZ) [27] and four of them represent porous

membranes used as liquid junctions in pH-Sensors [28]. In the SOFC an-

odes electric conduction takes place in the Ni phase and ionic conduction

in the YSZ phase, while liquid electrolyte diffusion occurs in the pores of

the membranes of pH-Sensors. Note that mathematically the concept of ef-20

fective diffusivity is the same as the concept of effective conductivity and

the M -factor can be analogously defined for diffusion processes. For more

21



information about the experimental data, see [9] and the references therein.

Figure 8: Computed M -factors and the corresponding predictions M̂ for
experimental image data. Predictions have been performed by Equation (1)
(blue circles), by neural networks (green crosses) and random forests (black
plus signs).

In Figure 8 the M -factors computed by numerical simulation on the image

data sets are compared to the predictions by Equation (1), neural networks

and random forests. In general, the prediction fits the simulated M -factors

nicely, where the results obtained from statistical learning are slightly worse5

than those obtained by the prediction formula. The MAPE is 28.0% for the

prediction formula, 33.8% for the neural network and 30.3% for the random

forest. However, note that only 16 values of the M -factors are considered.

Thus, there is no need to withdraw the conclusion from Section 3.2 based on

more than 8000 virtual microstructures, which is that methods from statis-10

tical learning improve the prediction of the M -factor by ε, τgeod and β.

Figure 8 shows two outliers which can be explained as follows: The two

data points represent electric conductivity in the Ni phase of SOFC anodes
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that were exposed to harsh conditions, which led to strong microstructure

alteration (i.e. Ni-agglomeration). It was shown in [9] and [27] that due

to the strong alteration, the representative volume is much larger than the

observation window that can be obtained by FIB-tomography. Therefore the

analyses based on these two 3D-data sets suffer from a high uncertainty. For5

all other data points the predictions are reasonably well. From the validation

with experimental microstructures we can conclude that the stochastic mod-

els are realistic enough to use them in order to derive predictors for effective

conductivity.

4 Conclusion10

In the present paper, we investigate microstructure-property relationships

for conductive transport processes using 8119 virtual microstructures gener-

ated by SMM. Effective conductivity is predicted by the three microstructure

characteristics volume fraction, mean geodesic tortuosity and constrictivity.

The interpretable prediction formula proposed in [9] yields a prediction error15

of 13.6%, which can be considered as a further validation of this prediction

formula since only 43 virtual microstructures have been used to derive it.

Random forests and neural networks which are difficult to interpret yield

smaller prediction errors of less than 9%, where in all cases the prediction

becomes unstable for microstructures at their percolation threshold.20

Validation with experimental microstructures shows that the generated
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virtual microstructures are sufficiently realistic to derive prediction models

for effective conductivity. Overall, the present paper points out that the

combination of stochastic microstructure modeling with physical computa-

tions and data mining techniques is a powerful tool to establish quantitative

microstructure-property relationships. These relationships enable the iden-5

tification of improved microstructures with respect to effective conductivity.

The method itself is not restricted to conduction processes and can also be

used to investigate relationships between microstructure characteristics and

other functional properties, like e.g. effective permeability or mechanical

stress-strain curves.10

Supplementary material

The fitted neural network as well as the fitted random forest are provided as

supplementary material. The code can be used to predict the M -factor for

given volume fraction, mean geodesic tortuosity and constrictivity.
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