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EKATERINA BAIKOVA,2,3 ANDRÉ HILGER,4 ULRICH HIRN,3,5

ROBERT SCHENNACH,2,3 INGO MANKE,4 VOLKER SCHMIDT,1 AND
KARIN ZOJER2,3

1Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069 Ulm, Germany

2Institute of Solid State Physics, NAWI Graz, Graz University of Technology,
Petersgasse 16/III, 8010 Graz, Austria

3Christian Doppler Laboratory for mass transport through paper, Graz University of
Technology, Petersgasse 16/III, 8010 Graz, Austria

4Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie,
Hahn-Meitner-Platz 1, 14109 Berlin

5Institute of Bioproducts and Paper Technology, Graz University of Technology,
Inffeldgasse 23, 8010 Graz, Austria

Abstract. A two-step framework to analyze local microstructure variations of paper sheets
based on 3D image data is presented. First, a multi-stage workflow efficiently acquires a large
set of highly-resolved tomographic image data, which enables–in combination with statistical
image analysis–the quantification of local variations and pairwise correlations of morphological
microstructure characteristics on length scales ranging from micrometers to centimeters. Sec-
ondly, the microstructure is analyzed in terms of the local behavior of porosity, thickness, and
further descriptors related to transportation paths. The power of the presented framework is
demonstrated showing that it allows one (i) to quantitatively reveal the difference in terms of
local structural variations between a model paper before and after unidirectional compression
via hard-nip calendering, and that (ii) the field of view which is required to reliably compute
the probability distributions of the considered local microstructure characteristics is at least
20 mm2. The results elucidate structural differences related to local densification. In particu-
lar, it is shown how calendering transforms local variations in sheet thickness into marked local
mass density variations. The obtained results are in line with experimental measurements of
macroscopic properties (basis weight, Bekk smoothness parameters, thickness, Gurley retention
times).

1. Introduction

X-ray microcomputed tomography (µ-CT) is an established and indispensable tool to unveil
the structure and composition of disordered and inhomogeneous materials (Kinney et al., 1988;
Banhart, 2008; Stock, 2019). Despite the successful application of µ-CT, there is a class of
materials for which it is highly challenging to capture the degree of disorder and to determine
the extent of microstructural heterogeneity in general. This class comprises thin sheet materi-
als with enormous aspect ratios. Such materials occur, for example, in batteries or fuel cells,
where µ-CT was successfully used to investigate their local microstructure variations (Harris
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& Chiu, 2015; Banerjee et al., 2016). Furthermore, thin sheet materials appear in filtering
applications and even as consumer products in daily use. Paper sheets also fall in this class
and illustrate well large aspect ratios, as paper features areas in square centimeters or even
square meters while it is only several micrometers thin or even less. Correspondingly, possi-
ble microstructure variations manifest themselves on length scales that may span seven orders
of magnitude (Chinga-Carrasco, 2009). Thus paper can be considered as a multi-scale mate-
rial (Kent, 1991; Vernhes et al., 2008; Simon, 2020), particularly when variations in transversal
and lateral directions are compared. The quantification of microstructure variations in both
directions, i.e., variations on two different length scales, is crucial to predict the macroscopic
behavior of paper sheets and of thin sheet materials in general. Using µ-CT allows for resolving
features on the sub-micrometer scale. Still, it practically limits the field of view captured with
a single µ-CT scan, which is several orders of magnitude smaller than the required lateral ex-
tension. Hence it is highly desirable to explore how µ-CT can be utilized in combination with
statistical image analysis to characterize microstructures of such high aspect ratio materials, in-
cluding their local variations. In the present study, we consider paper-based materials and their
pore space as an elegant test bed for designing and performing a µ-CT-based microstructure
acquisition that is capable of revealing variations that laterally occur within a sheet. In general,
paper materials consist of a complex network of fibers. When paper sheets form, the fibers tend
to arrange into mats being one fiber thick that stack on top of each other. This forming process
induces strong local variations in the microstructure of paper, which are typical for fiber-based
microstructures in general (Dirrenberger et al., 2014). The microstructure, in turn, strongly
influences the effective macroscopic properties of paper. Thus, a quantitative understanding of
relationships between the microstructure and effective macroscopic properties, as, e.g., the air
permeance (Gurnagul et al., 2009), must account for these local variations.

For paper sheets, lateral mapping of locally varying properties such as thickness, basis weight,
and transversally averaged mass density was already demonstrated (Dodson et al., 2001a,b; Sung
et al., 2005; Sung & Keller, 2008; Keller et al., 2012). Such studies readily combine a lateral
resolution as low as 100 µm with mapped areas of 25 to 100 mm2(Keller et al., 2012). To
achieve mass density maps, β-radiography for basis weight determination is combined with the
laser profilometry for thickness mapping. Though already correlations between local thickness
and basis weight can be elegantly extracted from these maps (Dodson et al., 2001a; Keller
et al., 2012), it is highly desirable to also incorporate details of the pore space; for example, to
establish relations between basis weight, thickness, and porosity (Dodson & Sampson., 1999).

For properties associated with the pore space of paper, the impact of local variations on
the so-called floc scale is not well established so far. Flocs are regions in which the fibers
tend to aggregate more strongly than in adjacent regions and are non-regularly distributed
across the paper sheets. Size and separation of such flocs can continuously vary between several
micrometers and centimeters. Previous studies employing µ-CT scans intriguingly indicate
that selected properties associated with the porous nature of the microstructure can be reliably
captured with representative elementary volumes (REV), see Rolland du Roscoat et al. (2007,
2012), Defrenne et al. (2017) and Aslannejad & Hassanizadeh (2017). Note that besides 3D
imaging, synthetic microstructures modeling paper sheets are used to quantify REV sizes (Li
et al., 2018). Such an REV, as defined in Kanit et al. (2003), is the smallest volume cutout from
which certain (global) microstructure descriptors can be computed with a pre-defined accuracy.
This pre-defined accuracy influences the REV size, see the detailed discussion in Section 5.2
of Rolland du Roscoat et al. (2007). This means, in turn, that for a given REV size, the
variability of microstructure descriptors does not completely vanish. Note that, instead of one
large volume, a sufficiently large number of small volumes can be considered as representative
for a given microstructure (Kanit et al., 2003). Further investigations of REV sizes in the
spirit of Kanit et al. (2003) can be found, e.g., in Fritzen & Boehlke (2011) for metal ceramic
composites, in Stroeven et al. (2004) for granular materials, or in Wimmer et al. (2016) for
asphalt concrete.
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In the present study, we go beyond the investigation of REV sizes and quantify local variations
of microstructure descriptors in regions, which are smaller than the REV size. Moreover, we
propose a µ-CT based workflow to acquire sufficiently large and highly resolved image data of
the microstructure to incorporate the floc scale, i.e., to reach out to variations that laterally
occur within the sheet. For that purpose, we use model paper sheets with marked variations
in the local basis weight. These variations are present not only at length scales accessible with
submicrometer-resolved µ-CT scans, but also beyond a centimeter, i.e., at the floc scale. To
check whether the resulting data set is large enough to capture the local variations on the
floc scale, we applied our workflow to a model paper before and after hard-nip calendering.
The calendering technique is abundant in paper making and compresses the paper to smooth
its surfaces. In our case, we use hard-nip calendering to modify the microstructure of paper
sheets and its variation in a controlled way. As the model paper contains virgin fibers without
additional fillers or coating, the calendering transforms local variations of the sheet thickness
into local variations of the corresponding mass density (Sung et al., 2005). Along with a local
densification, the surface roughness is also reduced. This is an effect, which has been elucidated
in Sampson & Wang (2020) based on theoretical considerations and supported by a data-based
validation. Regions notably rich in fibers (flocs) are densified, while regions with fewer fibers
(i.e., regions with a small local thickness) remain practically unchanged. Hence, calendering
is expected to cause changes regarding local variations of pore-space related properties. If
the image data obtained by µ-CT and related to the uncompressed and compressed paper is
sufficiently comprehensive, we should be able to reveal and explain the impact of the transition
on the local porosity, thickness, and pathways through the pore space. Thus, based on our
previously published approach for the statistical analysis of local variations in the microstructure
of paper materials (Neumann et al., 2021), we will quantify the local variations of porosity and
path length related descriptors as well as the correlation between these quantities. Moreover,
in the present study, we will also take into account an additional structural descriptor, namely
the local thickness of the considered paper sheets.

The remaining part of the present article is structured as follows: First, we give a method-
ological overview, which includes descriptions of the materials and experimental measurements,
the workflow to efficiently perform µ-CT scans for providing a comprehensive set of image data
representing the microstructure, and a description of the methods used for statistical image
analysis. Second, we quantify the influence on the paper materials induced by compression.
We present results regarding experimentally determined macroscopic characteristics and results
regarding changes in the microstructure obtained by statistical image analysis. In particular,
methods of statistical image analysis are used to reveal whether the changes in the microstruc-
ture due to local compressions can be unambiguously identified and explained. This is done on
the basis of analyzing the (univariate) distribution of local structural descriptors of the pore
space and of pairwise correlations between them. Moreover, we scrutinize the representativity
of our data sets, i.e., we analyze the dependence of our results on the size of image data.

2. Materials and Methods

2.1. Material and experimental characterization. As a model system for our investiga-
tions, we consider the same paper material before and after compression. As an uncompressed
reference material, we use a commercial, unbleached paper with a specific basis weight of
100 g/m2. This value, which corresponds to the supplier specifications, was confirmed by a
test in accordance to the corresponding ISO standard (ISO 536:2019, 2019). The paper con-
sists of virgin fibers, does not contain intentional fillers, and has not passed any mechanical
post-treatment. During the forming of such a paper, any local accumulation of fibers (flocs)
leads to thickness variations in the sheet. Though these thickness variations are induced by
local variations in the basis weight, the local mass density ought to show small deviations only.
For obtaining compressed samples, several sheets of the reference paper were subjected to a
hard-nip, steel-steel calendering with a line load of 90 N/m.
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Each paper type underwent a basis characterization in terms of basis weight, caliper-based
thickness, smoothness and air retention times. The local basis weight was determined using
β-radiography as described in (Kritzinger et al., 2008). Note that smoothness and retension
times have been determined with the Bekk method (ISO 5627:1995, 1995) and the Gurley
method (ISO 5636-5:2013, 2013), respectively.

2.2. Workflow to acquire large µ-CT data sets. 3D imaging via µ-CT is an established
method to explore the pore space of paper (Rolland du Roscoat et al., 2007, 2012; Defrenne
et al., 2017; Aslannejad & Hassanizadeh, 2017). When focussing on the pore space, the large
spread of pore sizes requires a particular balanced trade-off between resolution and field of
view, i.e., the sample size. A high resolution aids to reveal smaller pores with diameters in the
range of 1 µm. Such an appropriate voxel resolution of 0.7 µm permits to scan a volume of ca.
2 mm2 � thickness.

In such small volumes, it is challenging to capture a representative amount of larger pores
with diameters in the order of 50 µm and beyond. The above mentioned sample volume of ca.
2 mm2 � thickness is particularly small in comparison to fields of view in the 1-10 cm2 range
that are considered to capture local variations including the floc scale (Sampson, 2001). To
explore the microstructure of paper materials beyond these small volumes without sacrificing
resolution, multiple sample volumes stemming from different positions of the paper sheet have to
be measured (Rolland du Roscoat et al., 2012; Defrenne et al., 2017; Aslannejad & Hassanizadeh,
2017).

A large number of scans implies an enormous effort when the currently prevalent µ-CT setup
for paper is employed (Rolland du Roscoat et al., 2007, 2012; Defrenne et al., 2017; Aslannejad
& Hassanizadeh, 2017; Machado Charry et al., 2018). Moreover, the latter scanning setups can
be considered as inherently inefficient. The effort and lack of efficiency are readily spotted when
inspecting prevalent setups more closely. During scanning by µ-CT, samples are attached to
the sample holder to prevent any motion during scans or rotations. The measurement aims
at collecting projections of the sample at different rotation angles. These rotations occur with
respect to the vertical axis. If the paper would move during the scan, features which become
involuntarily displaced in the projections would lead to a loss in resolution of the reconstructed
3D image. Paper samples are usually attached to the sample holder in an upright standing
position. The upright position orients the paper perpendicular to the X-ray beam such that
the beam hits the largest possible cross-sectional area for each rotational angle. However,
regardless of the orientation to the beam, the sample volume fills only a small fraction of the
actually scanned volume due to its particularly high area-to-thickness aspect ratio.

In the following, we propose a workflow related to sample preparation and scanning, that holds
the promise to reduce the effort associated to scan multiple volumes, enhances the efficiency of
each scan, and suppresses possible motion of paper samples. The key idea is to prepare samples
in a multilayer configuration inspired by Schröder et al. (2016), shown in Figure 1. Several
paper strips of 10 cm � 1.7 mm were cut from a paper sheet with the laser cutter. The latter
technique allows not only for a precise control of the strips extension and uniformity, it also
keeps the regions affected by cutting at a minimum. Two long strips of paper were stacked and
folded in the center. Kapton strips were inserted between the layers and the resulting stack was
put into a Kapton tube. Kapton is a polyimide thin film that is transparent for X-rays, i.e., it
does not contribute to absorption contrast. The diameter of the tube is chosen to exactly fit
the diameter of the X-ray beam, such that the cross-section of the beam is optimally exploited
regardless of the rotation angle of the sample. The intercalated Kapton layers prevent the paper
strips to touch each other. Furthermore, these layers and the tube wall immobilize the paper
strips by preventing slipping or bending. The final configuration, see Figure 1(a), poses several
benefits:

 A single scan results in several virtual volumes at once, which enables us to overcome
the inefficiency of scanning stand-alone paper samples.
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 The paper stack is sufficiently immobilized in the tube, thus avoiding the use of an
non-intrusive yet X-ray-stable adhesive.

 By moving the content of the tube along the main vertical axis, additional scans can be
readily obtained without the need of time-consuming sample changes.

 It is possible to overlap consecutive scans, which allows us to create larger virtual vol-
umes.

It is worth pointing out that this sample preparation also enables us to keep the registration of
the scanned volume with respect to the paper sheet (Figure 1e). This, in turn, allows us to (i)
relate the orientation of the reconstructed 3D images to the machine and cross-direction and
(ii) to deliberately pick and compare regions from the paper sheet.

We successfully employed this sample setup at two synchrotron radiation µ-CT facilities.
The uncompressed paper samples were imaged in absorption mode with an energy of 20 keV,
at the TOMCAT beamline (Stampanoni et al., 2007) of the Swiss Light Source at the Paul
Scherrer Institute. For this purpose, a CMOS camera (pco.edge, 2560 � 2160 pixel) with a
magnification of 10 was used. This leads to a field of view of 1.7 � 1.4 mm2 and a final voxel
size of 0.65 µm, where 1501 projections were recorded over an angular range of 180� with an
exposure time of 250 ms. The tomographic reconstructions were performed by means of the
Gridrec algorithm (Marone & Stampanoni, 2012). In total, 150 volumes were obtained in 27
scans that covered a totally scanned area of ca. 2.9 cm2 (Figure 1). Note that for those 27 scans,
the measurements were performed with a different number of samples per scan. More precisely,
22 scans were obtained with 6 samples per scan, 4 scans with 4 samples, and 2 scans with one
sample. The compressed samples were imaged in inline phase contrast mode at P05 beamline of
the PETRA III storage-ring at DESY in Hamburg (Wilde et al., 2016; Haibel et al., 2010). The
synchrotron beam was generated with an undulator and monochromatized with a double crystal
monochromator to an energy of 20 keV. After transmitting the sample, the monochromatic X-
rays were transformed into visible light using a CdWO4 scintillator. The optical lens system in
combination with a CMOS camera (KIT CMOS, 5120 � 3840 pixel) covered a field of view of
3.29 � 2.46 mm2. The resulting pixel size of the system was 0.64 µm, where 2400 projections
were recorded over an angular range of 180� with an exposure time of 60 ms. Furthermore, four
samples were measured in each scan with a distance of 40 mm between sample and scintillator.
For the tomographic reconstruction of the sample, the MabATLAB based (The MathWorks,
USA) library Astra Toolbox (Van Aarle et al., 2015, 2016) was used. In total, we obtained 52
volumes in 13 scans. For these volumes, a two times binning was used to give a resulting voxel
size of 1.3 µm.

Figure 2 shows 2D slices of the greyscale images representing the microstructure of the consid-
ered uncompressed and compressed paper materials. Here one can observe that the differently
performed measurements lead to different types of contrast, which, in turn, require different
methods for segmentation, i.e., for the classification of individual voxels as cellulose material
or its complementary void space. While the contrast in the images showing the uncompressed
paper sheets allows for a segmentation based on absorption contrast by means of indicator
kriging (Oh & Lindquist, 1999) as in Machado Charry et al. (2018), this is not possible for the
image data representing the compressed paper sheets. In the latter case, the absorption contrast
between cellulose and void space is low. However, a clear phase contrast at the boundary of the
cellulose allows for a segmentation using a random forest classifier within the FIJI Weka Seg-
mentation plugin (Schindelin et al., 2012; Arganda-Carreras et al., 2017). For resolving the pore
structure and the thickness, we determined top and bottom surfaces of the binarized volumes
with the rolling ball approach (Sternberg, 1983) that has already been used for 3D image data of
paper materials (Svensson & Aronsson, 2003; Sintorn et al., 2005; Chinga-Carrasco et al., 2008;
Machado Charry et al., 2018) and battery electrodes (Kuchler et al., 2018). For the present
study, we re-binned the image data of the uncompressed sample such that the voxel sizes of
both samples coincide. Doing so, we ensure that the results from statistical image analysis are
comparable to each other.
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2.3. Statistical image analysis. Using methods of spatial statistics (Ohser and Schladitz,
2013; Chiu et al., 2013), we quantify local variations in the uncompressed and compressed
paper sheets. For this purpose, we determine spatially resolved microstructure descriptors by
partitioning all binarized data sets into non-overlapping cutouts. These cutouts, which serve as
local inspection regions, are square-shaped in lateral direction and contain the entire thickness
of the paper sheet as described in Neumann et al. (2021). The side length of the squares is
varied between 30 µm and 330 µm. In total, for statistical image analysis, we take 306 and 352
cutouts in the uncompressed and compressed case into account, respectively. This means that in
both cases, we use an area of more than 30 mm2 for our analysis. As microstructure descriptors,
we consider spatially resolved thicknesses, porosities, and mean geodesic tortuosities. Note that
the mean geodesic tortuosity τ0 quantifies the length of shortest transportation paths through
the pore space. More precisely, for a given cutout, we compute the mean value of the length of
shortest transportation paths going from the inner surface of the paper sheet intersected with
this cutout through the pore space to the outer surface of the sheet. Then, τ0 is defined as
this mean value divided by the local thickness of the sheet. For further details regarding mean
geodesic tortuosity, we refer to Stenzel et al. (2016) and Neumann et al. (2019). In general, for
r ¡ 0, the descriptor τr is analogously defined (Neumann et al., 2021), but only paths which
can be passed by balls of radius r (in µm) are taken into account. In this study, we particularly
consider τ0 and τ3.0. The statistical analysis of local microstructure descriptors provides the
variablity of local thicknesses, local porosities, and the local tortuosities τ0 and τ3.0 for paper
sheets before and after compression. The pairwise interdependence between local porosities
and both, local tortuosities as well as local thicknesses, are quantified by means of correlation
coefficients.

3. Results

3.1. Changes in macroscopic properties. To begin with, we consider macroscopic proper-
ties of the samples before and after compression in order to quantify the compression-induced
changes. The experimentally measured values are shown in Figure 3. This figure comprises the
values of the basis weight, the caliper-based thickness, the Bekk smoothness parameter, and the
Gurley retention time.

The basis weight measured (at two different locations) for the samples before and after
compression stays essentially the same at ca. 100 g/m2, see Figure 3(a). The variation of
the basis weight was assessed by inspecting the power spectra of the β-radiographs (Norman
and Wahren, 1974) with a size of 10�10 cm2. The radiograph of the uncompressed sample
is exemplarily shown in Figure 1(e); all further β-radiographs and the related power spectra
are provided as supplementary material. The power spectra reveal a larger variation in the
compressed sample across all length scales between 0.2 mm and 2 cm. Below 1.2 mm, i.e.,
on length scales observable within the field of view of µ-CT scans, the variation is only subtly
enhanced after calendering. This implies that calendering did not strictly preserve the local
mass density, but did not profoundly alter the lateral fiber arrangement either.

The smoothness of surfaces is characterized using the Bekk method. The Bekk smoothness
parameter informs on the time (in seconds) for a fixed volume of air to leak between the surfaces
of a paper sample and a smooth glass. According to Figure 3(c), the Bekk smoothness param-
eters associated to top and bottom surface strongly increase after calendering, which is in line
with the intended purpose of calendering. Remarkably, the variation of the smoothness param-
eters increases with calendering as well. Formerly dominating air-leakage pathways permitting
large volume fluxes are likely replaced by a large variety of leakage pathways carrying consid-
erably less air volumes. The caliper-based thickness (Figure 3(b)), i.e., the apparent thickness
associated with the most protruding regions of the paper sheets, shows a marked reduction after
compression from 141 to 108 µm. Also the measured variation of thickness reduces due to the
surface smoothing.
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The Gurley retention time shown in Figure 3(d) is inversely proportional to the volume flux
of air that each of the two paper samples permit. Regardless whether air is transported from
the top to bottom surface (side 1 in Figure 3) or vice versa (side 2 in Figure 3), compression
leads to a twice as high retension time and a marked enhancement in variation. The corre-
sponding decrease in volume flux indicates a substantial change in the pore space available for
air transport.

3.2. Local changes of the microstructure. To relate this profound reduction in volume
flux to local properties of the pore-space, we turn to the inspection of the microstructure.
Illustrative cutouts taken from the 3D microstructure of each of the two paper samples are shown
in Figure 4(a,b) and emphasize the most striking differences between them. The uncompressed
sample shows a marked corrugation of the surface that is, at least in part, caused by a spatially
fluctuating number of vertically stacked fibers (black regions in Figure 4(a)). Correspondingly,
less fibers lead to a reduced local thickness δ in that region, as illustrated in Figure 4(c). In
contrast, the compressed sample shows rather smooth surfaces and an apparently constant and
overall reduced thickness. Beyond thickness reduction and smoothing, hard-nip calendering is
expected to compact the paper transversely such that the most protruding fiber-rich regions
are compacted in vertical direction. The less a feature protrudes beyond the final thickness,
the less the paper is locally compacted. The microstructure of regions, in which fibers do
even not protrude at all, are essentially preserved. In this way calendering transforms regions
of different thicknesses into regions of different degrees of compression and, thus, of different
mass densities. Figure 4(d) illustrates that this compression acts locally. Depending on the
location, the sample is compressed to a fraction of the original thickness of the sample. Some
regions are not compressed at all and hence preserve their original thickness and structure.
Turning back to the cross-section of the compressed sample shown in Figure 4(b), we may
indeed discern between regions with a high density of fibers (indicated in black) related to a
marked compression and regions with a lower density of fibers, representing small if not even
absent compression. To substantiate these observations, we perform statistical image analysis
where the focus is on four selected, local microstructure descriptors which have been introduced
above: Thickness, porosity, mean geodesic tortuosity, τ0, related to all pathways, and mean
geodesic tortuosity, τ3.0, associated to high volume pathways exhibiting a minimum diameter
of 3 µm. This image analysis provides (i) the univariate distributions of these quantities, (ii)
the pairwise interdependence between them, and (iii) their dependence on the number and
size of the local inspection regions. While the former two quantitatively assess the impact of
calendering, the latter will inform us, whether the data set has been representative for the paper
sheet.

Figure 5 compares the univariate distributions of the selected local quantities in terms of the
probability density functions for cutout sizes of 90 µm and 330 µm. Each panel displays the
distribution for the uncompressed sample in the upper half and the corresponding distribution
for the compressed sample in the lower half. Note that we determined the probability density
functions by diffusion-based kernel density estimation (Botev et al., 2010). A first inspection
suggests that calendering-induced profound changes in the local thickness, local porosity, and
in τ3.0. To quantify the interdependence between the local microstructure descriptors we deter-
mined the correlation coefficients between path-length related descriptors and local porosity as
well as local thickness. This set of correlation coefficients, shown as functions of the cutout size
in Figure 6, suggest a marked difference in the microstructures.

However, before inspecting the differences between the paper samples revealed by univariate
distributions and correlation coefficients more closely (as will be done in the following section),
it is important to evaluate first whether the estimated local distributions are representative for
the samples. This is a crucial aspect, since, in case that the number of local inspection regions
used for our statistical image analysis is too low, we may, e.g., miss regions of pronounced
fiber aggregation or regions in which fibers are particularly loosely packed. Therefore the
obtained statistical results might be biased by the location of the inspection regions. We test
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the requirement of considering sufficiently many local inspection regions. For this purpose,
the discrepancy between the distributions computed with all cutouts and the distributions
computed with a subset of all cutouts, i.e., 306 cutouts for the uncompressed sample and
324 for the compressed sample, is determined. For this purpose, we consider a fixed cutout
size of 330 µm. The results are shown in Figure 7, where the discrepancy is measured in
terms of the Kolmogorov distance. Note that the Kolmogorov distance between two probability
distributions is defined as the supremum distance of the corresponding cumulative distribution
functions. In Neumann et al. (2021), we used the Kolmogorov-Smirnov test based on the
Kolmogorov distance to validate a parametric model for the joint distribution of local porosity
and local path-length related descriptors. Figure 7 shows that for all microstructure descriptors,
a number of at least 200 cutouts has to be considered such that the Kolmogorov distance is
below 0.05. Due to the increasing variability of local microstructure descriptors with decreasing
cutout size, this statement remains valid for cutout sizes below 330 µm. Moreover, we provide
.gif-files as supplementary material showing the evolution of the univariate distribution of each
descriptor, when–step by step–more local inspection regions are incorporated until all available
cutouts are used in the end. The corresponding file names are listed in Table 1.

Not only the number, but also the size of the cutouts is expected to have an impact on
the univariate distributions of local microstructure descriptors. For example, Sampson (2001)
illustrated that the variance in local basis weight decreases with cutout size. For all four local
descriptors, considered in the present article, the mean values in dependence of the cutout size
are shown in Figure 8, where the 0.95- and 0.05-quantiles are additionally given for quantifying
the variability. The complete univariate distributions are provided as supplementary material.

4. Discussion

4.1. Distributions of local microstructure descriptors. The univariate distributions of
local microstructure characteristics reveal profound differences between the two samples: The
distributions of local thicknesses (Figure 5(a,e)) and local porosities (Figure 5(b,f)) fully cor-
roborate the expected impact of calendering (Chinga et al., 2007; Vernhes et al., 2010). The
probability density function of the local thickness takes its maximum at ca. 110 µm for the
uncompressed sample and at ca. 100 µm for the compressed sample, respectively. Beyond that,
however, the probability density function of the compressed sample sharply decreases after the
maximum value. In other words, the local thicknesses do not exceed 120 µm after compression.
However, note that–interestingly–variations towards smaller values of the local thickness behave
similar for the compressed and uncompressed case (compare also Figure 8(b)). This markedly
changed variability of the local thickness is fully in line with the caliper-based thickness prob-
ing and with the visual inspection of the cutouts in Figure 4(a,b). In terms of local porosity,
compression causes a decrease of mean local porosity from 0.43 to 0.34. The slightly skewed
distribution in Figure 5(f) suggests that the pores are not uniformly compressed. A glance
on the pores found in the cutouts, shown as gray regions in Figure 4(a,b), suggests that, in
particular, large pores undergo a disproportionately large compression.

Besides porosity, also the length and thickness of pathways through the pores, i.e., the
sinuosity and capacity of pathways, are expected to affect the volume flux of air and, hence, the
Gurley retention time. We expect that calendering introduces changes in location, length, and
thickness of local pathways, which affects the morphology of transportation paths as follows.
First, in average, the paths–all paths as well as paths exhibiting a diameter of at least 3 µm–
become longer. Second, the variability of the lengths of transportation paths is increased. Three
major reasons lead to these assumptions: (i) The practically unchanged regions will pertain their
local tortuosities; (ii) for the other regions, the following two complementary (limiting) cases
suggest that the tortuosity ought to increase due to local compression. When, for example,
hypothetically assuming a uniform transversal compression of pore space and fibers alike, the
length of established pathways can be shown to shrink less than (or equally as) the local paper
thickness. Then, the mean geodesic tortuosity increases with increasing degree of compression.
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When, however, rather assuming an exclusive transversal compression of the pore space, i.e.,
assuming rigid fibers, the local porosity shrinks. In this case, additionally to the afore-mentioned
mechanism, the topology of the pore space is not necessarily preserved either, e.g., because fibers
getting in contact may block pathways. Then, the tortuosity rises due to the known negative
correlation between porosity and tortuosity (Neumann et al., 2021). Our assumption regarding
the increased local variations of the length of transportation paths is based on a third argument.
Namely, (iii) as calendering introduces regions of different degrees of compression, compare the
arguments (i) and (ii) mentioned above, the local variations in tortuosity and the overall mean
geodesic tortuosity are expected to increase.

The distributions of τ0 associated with all pathways (Figure 5(c,g)) do not suggest marked
changes under compression. Compression changes the sample-averaged value of τ0 merely from
1.64 to 1.63 and induces a bit more skewed distribution as well as a slightly reduced variance
of τ0. In stark contrast to this, the descriptor τ3.0 related to high-volume pathways is strongly
affected by compression (Figure 5(d,h)). Compression leads to a profound increase of high-
volume path lengths. The sample-average of τ3.0 increases almost by a factor of two from 3.08
to 5.94 for the largest cutout-size of 330 µm. The sample-variance of the path lengths increases
even more impressively, as path lengths exceeding the local thickness by more than a factor
of ten non-negligibly contribute to the distribution of τ3.0. This implies that an overwhelming
fraction of the pathways is oriented parallel to the paper surface. Considering a mean local
paper thickness of ca. 100 µm, there are pathways spanning lateral distances of more than one
millimeter.

4.2. Pairwise interdependence between local descriptors. With the insights gained above,
we now rationalize the similarities and differences regarding the pairwise interdependence be-
tween local microstructure descriptors, which were found for the uncompressed and compressed
paper. At first, we focus on the correlation coefficients between path-length related descriptors
and local porosity. Note that the correlation coefficients between local porosity and both path-
length related descriptors, τ0 and τ3.0, are negative (Figure 6(a,b)) as expected in general for
any porous material. With the growing size of the cutout, which is used as an inspection region,
the correlation coefficient decreases for the uncompressed sample and stabilizes for large cutout
sizes. This confirms the hypothesis conjectured based on maximum cutout sizes of 150 µm
in (Neumann et al., 2021), where a detailed discussion about the influence of the cutout size on
the interdepedence between local porosity and local path-length related descriptors is provided,
see Section 4 of (Neumann et al., 2021). The stronger variation of local microstructure descrip-
tors induced by compression might be the reason that the correlation coefficients between local
porosity and τ3.0 are still slightly fluctuating for large cutout sizes of the compressed sample
(Figure 6(b)). Remarkably, the absolute values of correlation coefficients decrease strongly after
compression. This effect is stronger for τ0, where the correlation is nearly vanishing, compared
to the results obtained for τ3.0. Recall that we observed only small changes in the univariate dis-
tribution of τ0, see Figure 5. In combination with the low correlation between local porosity and
τ0, this suggests that–after compression–the topology of pathways remains nearly unchanged,
while the porosity is reduced. This also explains that the negative correlation between local
porosity and τ3.0 is stronger for the compressed compared to the uncompressed sample, since,
by definition, more pores are required for the high-volume paths. The most critical condition to
form such high-volume pathways is the ability to form an appropriately sized vertical connection
between the fiber sheets (Sampson, 2003; Sampson & Urquhart, 2008). These findings suggest
that the doubling of Gurley retention times upon calendering is caused, at least in part, by a
marked reduction in porosity and by a reduction of transversal pore connections in high-volume
pathways.

Moreover, we analyze the correlation coefficients between local thickness and path-length
related descriptors. The results are shown in the lower panels of Figure 6, where one can
observe a negative correlation between local thickness and path-length related descriptors. This
means that–in average–τ0 and τ3.0 decrease with increasing thickness. An exception is τ3.0 in
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the compressed sample, where almost no correlation is oberved. Before we discuss these results
in detail, recall the results of Figure 5 showing that the local thickness variation is strongly
reduced upon calendering. When considering all paths, i.e., the descriptor τ0, the correlation
coefficients before and after compression are almost indiscernible (Figure 6(c)). The reason
for this might be a combination of two effects. First, as also suggested by the univariate
distributions and by the correlation coefficients between local porosity and τ0, the topology
of pathways remains unchanged after compression. Second, the impact induced by changes of
local porosity is compensated by changes of the local thickness. Turning from τ0 to τ3.0, the
negative correlation becomes slightly less pronounced before compression and vanishes after
compression (Figure 6(d)). Note that for the computation of path-length related descriptors
of a given cutout, we consider those paths, the starting point of which is located within the
cutout. However, the paths themselves might leave the cutout. Our results have shown that
the high-volume paths (normalized by the local thickness) become longer after compression.
This means that these paths will leave the cutout in which they start with high probability and
thus the absolute values of the correlation coefficients between the local thickness and τ3.0 are
negligibly small. We conjecture that the small deviations of the correlation coefficient around
zero are artifacts of the estimation.

4.3. Influence of local inspection regions. The discussion, provided above, shows that our
statistical analysis allows us to unambiguously discriminate between the two paper samples. In
this section, we address the influence of number and size of local inspection regions with an
emphasis on the representativeness of data used in the present study. First, we show that the
number of cutouts is chosen sufficiently large, to reliably determine the univariate distributions
of local descriptors. In a second step, we discuss the influence of the cutout size, i.e., the size
of the local inspection regions, on these univariate distributions.

The results presented in Figure 7 as well as the evolution of univariate distributions, esti-
mated from an increasing amount of data (Table 1), show that–regardless of the sample (before
or after compression) and regardless of the considered local descriptor–at least 200 cutouts were
necessary for a reliable estimation of the corresponding univariate distributions. We observe
that the local thickness appears to be especially sensitive to the actual location of the cutouts the
distribution is composed of. This observation underlines that our tomographic measurements
probed indeed distinct regions. Moreover, we can conclude that for a reliable quantification of
local variations based on statistical image analysis as performed in the present study, we require
highly resolved image data representing an area of least 200 � p330µmq2 � 21.78 mm2. The
close relationship between effective macroscopic properties and geometrical microstructure char-
acteristics in general (Torquato, 2002) and path-length related descriptors in particular (Stenzel
et al., 2016; Neumann et al., 2020), let us strongly conjecture that the same size of image data is
necessary to quantify local variations of macroscopic properties of the considered paper sheets,
such as, e.g., their air permeance. Note that the necessary number of cutouts for a reliable
determination of the univariate distributions of local microstructure descriptors itself depends
on the underlying microstructure. This means that the given value of 21.78 mm2 cannot be
considered as a universal constant for all paper materials.

The results with respect to the influence of the size of local inspection regions on the mean
values and corresponding 0.95- and 0.05-quantiles are presented in Figure 8. One can observe
that the strongest decrease of the variability occurs when increasing the cutout size from 30 µm
to 90 µm. But even if the domain of uncertainty between the considered quantiles becomes
smaller with increasing cutout size, it remains relatively large for the cutout size of 330 µm.
Note that this variability of microstructure descriptors for cutout sizes of 330 µm does not
contradict the results obtained in Rolland du Roscoat et al. (2007), where REV sizes between
200 µm � 200 µm and 330 µm � 330 µm in lateral direction are determined using methods
developed in Kanit et al. (2003). As already mentioned in the introduction, the microstructure
characteristics computed from the REV in Rolland du Roscoat et al. (2007) still exhibit a certain
variability.
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5. Conclusion

Our multilayer stack configuration allows us to feasibly and efficiently obtain large microstruc-
ture datasets of paper by µ-CT at a resolution that permits a detailed analysis of the pore space.
Each scan provides multiple, virtual volumes at once. Inserting the paper stack into a Kapton
tube prevents not only the use of any adhesives, but also allows us to readily scan other paper
regions without changing the sample. The total area comprised by the individually scanned
volumes reaches the order of square centimeters.

Applying the proposed multi-layer stack configuration to paper material before and after
calendering allows us for a data-driven investigation of the sample size, which is necessary to
reliably extract the distribution of local microstructure descriptors. We consider local porosity,
local thickness, and local path-length related descriptors. Our main conclusion is that, for
reliably quantifying local variations of the paper materials considered in the present study, an
area in the order of 20 mm2 is required. This supports the results of Kritzinger et al. (2008), who
have shown that–even if regions at different locations are considered–an area of several square
millimeters is required to reliably determine the distribution of local thickness for coated paper
sheets. Moreover, our results are in line with Dirrenberger et al. (2014), who have demonstrated
that the analysis of fiber-based materials generally requires gigantic REVs.

Besides the issue of representativity, our study reveals quantitative insights regarding the in-
fluence of calendering on local microstructure descriptors. In particular, high volume pathways,
being predominantly responsible for the volume flux of air, are strongly affected by compres-
sion. An overwhelming fraction of each of these pathways is oriented parallel to the paper
surfaces. Compression suppresses the forming of appropriately sized transversal openings be-
tween the fiber sheets such that pathways must cover much larger distances prior finding a
suitable transversal connection.
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6. Tables

Table 1. Filenames related to given geometrical descriptors in the uncom-
pressed and compressed case

uncompressed compressed
porosity porosity movie psi.gif porosity movie hzb.gif
thickness thickness movie psi.gif thickness movie hzb.gif
τ0 tau0 movie psi.gif tau0 movie hzb.gif
τ3.0 tau3 movie psi.gif tau3 movie hzb.gif
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7. Figures

Figure 1. Paper strips in a Kapton tube (a-e). Overview of the paper strip
alignment within the tube (a-b). Optical image showing the paper and Kapton
strips inserted in the tube (c). 3D visualization of binarized image data inside
the Kapton tube (d). β-radiograph of the uncompressed sample (e).
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Figure 2. Cross-sections of greyscale images obtained by µ-CT, which represent
the microstructure of the uncompressed (top) and compressed (bottom) sample,
respectively.
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Figure 3. Comparison of uncompressed (blue) and compressed paper (grey) in
terms of (a) basis weights (measured at two different locations), (b) caliper-based
thickness, (c) Bekk smoothness parameter, and (d) Gurley retention time. The
Gurley retention time and the Bekk smoothness are measured with respect to
the two boundary sides of the paper sheets (side 1 and side 2 which correspond
to bottom and top surface), while the basis weights are measured at two different
locations of the paper sheets. The error bars show the corresponding standard
deviations.
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Figure 4. Cross sections of the binarized 3D images showing the microstructure
before and after compression by hard-nip calendering (a,b). Fibers are repre-
sented in black, while the inner pores are represented in grey. The cutouts are
0.64 mm long. Schematic illustration of the local microstructure (c,d) showing
local thickness variations before calendering (c) and locally varying degrees of
compression after calendering (d). While thinner regions with unaltered local
structure may persist, regions with a larger local basis weight will be densified.
For these densified regions, symbolized by the question mark, the compression-
induced change of the microstructure is a priori unknown.
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Figure 5. Univariate distributions of four local descriptors before and after
compression for cutout lengths of 90 µm and 330 µm. In each panel, the prob-
ability densities in the upper panel refer to the uncompressed sample and the
ones in the lower panels to the compressed sample. The descriptors considered
here are local thickness (a,e), local porosity (b,f), and the local mean geodesic
tortuosities τ0 (c,g) and τ3.0 (d,h).
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Figure 6. Comparison of correlation coefficients between pairs of local mi-
crostructure descriptors before and after compression. Correlation coefficients
between local porosity and τ0 (a) resp. τ3.0 (b), as well as between local thick-
ness and τ0 (c) resp. τ3.0 (d) are shown for various cutout sizes.
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(a) (b)

(c) (d)

Figure 7. Discrepancy between the distributions of the local microstructure
descriptors porosity (a), thickness δ (b), and the path-length related descriptors
τ0 (c) and τ3.0 (d) computed with all cutouts and the corresponding distribution
computed with a subset of cutouts. For this purpose, a fixed cutout size of
330 µm is considered. The x-axis indicates the number of cutouts taken into
account and the discrepany is quantified by means of the Kolmogorov distance
for both, the compressed and the uncompressed sample. The black dotted lines
represent the level of a Kolmogorov distance of 0.05.

22



(a) (b)

(c) (d)

Figure 8. Mean values of local porosity (a), local thickness (b), local tortu-
osities τ0 (c) and τ3.0 (d) over the considered cutout sizes. The areas between
the 0.95- and 0.05-quantiles are shaded, i.e., for a given cutout size, 90 % of
the corresponding local microstructure descriptors are contained in these shaded
areas.
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8. Supplementary Material

β radiographs. Figure 9 shows two β-radiographs recorded for the uncompressed (a) and
the compressed paper (b). The color code indicates the basis weight for each pixel in the
radiograph. The mean values obtained for each sample agree well with the nominal basis
weight of 100 gm�2 of this paper type. The variation in each of the radiographs is quantified
with power spectra according to the method of Norman and Wahren (1974). The resulting
spectra, given in Figure 10, show the normalized variations of the area weight as a function of
the distance between two locations, denoted as wavelength. Marked variations above 10 mm
indicate variations at the floc scale. At wavelengths below 1.2 mm, i.e., at distances that can be
probed within the field of a view of our µ-CT scans, also marked variations occur (Figure 10(c)).
Though the variations found in the compressed (gray and black lines) and uncompressed sample
(green lines) are rather similar, there is a trend to slightly larger variations in the compressed
sample.

Moreover, further information regarding the influence of the cutout size on local microstruc-
ture descriptors is provided in Figures 11 and 12. These figures show the distribution of local
microstructure descriptors for cutout sizes of 30µm, 60µm, . . . , 330µm. In particular, this addi-
tional information complements Figure 8, where mean values and quntiles of the distributions
are visualized.

Figure 9. β-radiographs of two uncompressed (a) and two compressed samples
(b) with the mean basis weight xβy. Each radiograph comprises an area of
10�10 cm2. The greyscale bar indicates the local basis weight.
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uncompressed

location 1

location 2

compressed

(a) (b) (c)

μ-CT field of view

Figure 10. Power spectra obtained from β-radiographs shown in Figure 9 of
the two uncompressed (a) and the two compressed samples (b). Marked normal-
ized variations exceeding 1000/octave in β at wavelength above 1 cm indicate
variations in the basis weight on the centimeter scale. (c) Close-up view on the
power spectrum in the wavelength range monitored with the µ-CT field of view.

(a) (b)

(c) (d)

Figure 11. Univariate distributions of local porosity (a), local thickness (b),
local tortuosities τ0 (c) and τ3.0 (d) computed from all cutouts of the uncom-
pressed sample. The cutout sizes of 30 µm, 90 µm, . . . , 330 µm are considered.
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(a) (b)

(c) (d)

Figure 12. Univariate distributions of local porosity (a), local thickness (b),
local tortuosities τ0 (c) and τ3.0 (d) computed from all cutouts of the compressed
sample. The cutout sizes of 30 µm, 90 µm, . . . , 330 µm are considered.
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