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Abstract

It is well-known that the microstructure of electrodes in lithium-ion bat-
teries strongly affects their performance. Vice versa, the microstructure
can exhibit strong changes during the usage of the battery due to aging ef-
fects. For a better understanding of these effects, mathematical analysis and
modeling has turned out to be of great help. In particular, stochastic 3D
microstructure models have proven to be a powerful and very flexible tool to
generate various kinds of particle-based structures. Recently, such models
have been proposed for the microstructure of anodes in lithium-ion energy
and power cells. In the present paper, we describe a stochastic modeling
approach for the 3D microstructure of cathodes in a lithium-ion energy cell,
which differs significantly from the one observed in anodes. The model for
the cathode data enhances the ideas of the anode models, which have been
developed so far. It is calibrated using 3D tomographic image data from
pristine as well as two aged cathodes. A validation based on morphological
image characteristics shows that the model is able to realistically describe
both, the microstructure of pristine and aged cathodes. Thus, we conclude
that the model is suitable to generate virtual, but realistic microstructures
of lithium-ion cathodes.
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1. Introduction

One of the most common energy storage devices are lithium-ion (Li-ion
for short) batteries which have a wide range of applications including auto-
motive technology for electromobility. Thus, there is a variety of publications
on Li-ion batteries, where issues like performance, storage capacity, durabil-5

ity and aging effects of Li-ion batteries are discussed, see, e.g., [1, 2, 3, 4].
It is well-known that the above mentioned issues are more or less di-

rectly linked to the morphology of battery electrodes, see, e.g., [5, 6, 7].
Especially for positive electrodes, i.e., cathodes, microstructure-property re-
lationships were considered in [8]. To get a meaningful and valid insight10

into microstructure-property relationships of Li-ion batteries, it is highly
relevant that one has detailed information of the 3D electrode morphology.
For a long time, this maybe was one of the main limitations, since there
were no advanced (imaging) techniques to measure the highly-complex 3D
microstructure of electrodes. Furthermore, also most modeling approaches15

which were developed to describe electrochemical processes as transport be-
havior of Li-ions, reactions on the surface of active material or degradation
and aging phenomena have been based on 1D or 2D considerations, see,
e.g., [9, 10]. But by the use of modern imaging techniques [11, 12, 13] com-
bined with larger storage and computation capacities on computers, it is20

nowadays possible to reconstruct and characterize the 3D microstructure of
Li-ion batteries. On such three-dimensional structures, spatially resolved
numerical modeling approaches can be used to describe and predict elec-
trochemical processes, see, e.g., [14, 15, 16]. Thus, the combination of 3D
microstructures as input for spatially resolved simulation of electrochemical25

processes is a powerful tool to investigate the influences of morphologies on
batteries’ functionality. One way to provide these 3D microstructures is to
directly take data which was measured and reconstructed from tomographic
imaging, but a more efficient and more flexible way is to use stochastic 3D
microstructure modeling, which has already been successfully applied for30

various kinds of materials, see, e.g., [17, 18, 19]. This has the following ad-
vantages. To calibrate the stochastic microstructure model just a few (or
maybe one) representative tomographic images are required which saves re-
peated expensive tomographic measurements. Furthermore, any number of
desired statistically equivalent replications of a morphology can be gener-35

ated without using laboratory resources every time. But a key advantage is
the opportunity to virtually generate new and not yet manufactured mate-
rials with morphologies leading to a desirable functionality of the battery.
This idea is called virtual materials testing and was already successfully
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performed, e.g., in [20].

(a) Pristine anode in [21] (b) Pristine anode in [22] (c) Pristine cathode

Figure 1: Tomographic grayscale images - 2D slices of cutouts - from anodes considered
in [21] and [22] compared to a pristine cathode considered in the present paper.

In the present paper, we enhance the stochastic microstructure modeling
of anodes presented in [21] and [22] to the modeling of cathodes. In our case,
the cathode material comes from pristine and cyclically aged Li-ion energy
cells of the same type, where the material exhibits several (structural) dif-5

ferences compared to anodes, see Figure 1 for a visual impression. The main
differences concern the volume fraction and the connectivity relations of the
particle phase, and, very conspicuous, the more spherical-shaped cathode
particles compared to anode particles.

Our enhanced model uses all basic concepts (i.e., random tessellations,10

connectivity graphs and the spherical harmonics series expansion of Gaus-
sian random fields) introduced in [21] and [22], but each step of the stochastic
model is adapted to meet the requirements of cathodes. By an appropriate
alteration of the model parameters we are able to use this enhanced modeling
approach not only for a pristine but also for two kinds of aged cathodes.15

The paper has the following outline. In Section 2 we describe the tomo-
graphic image data of the cathode material and how the data is preprocessed.
Then in Section 3 the enhanced stochastic model is presented and it is shown
how the model can be calibrated to the tomographic data. Section 4 con-
tains an extensive model validation, where we compare tomographic and20

simulated data by means of several (image) characteristics. This is followed
in Section 5 by a discussion of differences in the morphologies of the pris-
tine and the two aged cathodes. Finally, Section 6 gives a summary of the
present work as well as a discussion of possible future prospects and tasks.
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2. Material and data

Tomographic image data of 3D microstructures as fundamental input for
stochastic modeling was extracted from cathodes of an automotive plugin-
hybrid energy cell. Thereby, besides pristine cathode material, two different
aging scenarios of the same type of an energy cell cathode (NMC-cathode,5

Ni-rich, nominal capacity about 36.5Ah) were considered and for each sce-
nario the materials’ microstructure was measured by synchrotron tomogra-
phy.

2.1. Description of material and sample preparation

To go further into detail, we consider the cathode material for the follow-10

ing three scenarios: P - pristine plugin-hybrid energy cell (capacity 36.5Ah);
A1 - hybrid-electric-vehicle-profile aged cell (charge-discharge-balanced, ca-
pacity about 32Ah ∼ 90% SOH); A2 - electric-vehicle-profile aged cell (dis-
charge-dominated, capacity about 27.5Ah ∼ 80% SOH). Note that the type
of the energy cell cathode is always the same and the aged cells (A1 and15

A2) were exposed to a steady cyclization over a period of about 6 months.
From each cell a layer (snippet) of cathode material was extracted and then
all layers were stacked resulting in a multilayer sample stack of all scenarios,
where the single layers were fixed and separated by a double-sided adhesive
tape (type FL9628FL, manufacturer 3M). Finally, a smaller and rectangular20

sample was sliced from this larger multilayer sample stack to gain a suitable
specimen for imaging. For details regarding the extraction and preparation
of such a multilayer sample stack we refer to [12].

2.2. Data description and preprocessing

Using synchrotron tomography for imaging, it is possible to create 3D25

data sets of the extracted microstructures of the previously prepared speci-
men. This imaging was performed at the synchrotron X-ray facility BAM-
Line at BESSY in the Helmholtz-Zentrum Berlin für Materialien und Energie
(HZB). More detailed information on the procedure how the tomographic 3D
data sets were created from the specimen, i.e., how the tomographic setup,30

measurement and finally the 3D data reconstruction were carried out, can
also be found in [12]. This imaging procedure led to a three-dimensional
grayscale image of the multilayer sample stack (16-bit, 3253×2911×2663
voxels) with a resolution of about 0.438µm per voxel.

To make use of the extracted microstructures for later model calibration,35

some preprocessing of the tomographic 3D image data is necessary. First,
for reasons of memory efficiency and computation time the 16-bit grayscale
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scenario
P A1 A2

global threshold value t 120 127 138

Table 1: Global threshold values applied to the filtered grayscale images for each scenario.

image was converted into an 8-bit grayscale image. Further, the single layers
of each scenario were cut out from the imaged multilayer sample stack.
Since, usually, the single layers are not planar but skewed and curved in the
stack, we first applied a rotation and then a straightening using polynomial
regression to obtain image data sets of almost planar sample layers for each5

scenario. Finally, we took a cutout from each sample layer of size 1000×1000
voxels in horizontal direction and either zP = 80, zA1 = 105 or zA2 = 100
voxels in vertical direction. Due to damaged parts or artifacts in the imaged
layers, especially close to the edges of a sample layer, the sizes of cutouts
are restricted but still sufficiently large for model calibration. Therefore,10

we picked out every cutout from a preferably homogeneous position in the
respective sample layer.

The good contrast in the grayscale images makes it possible to easily
binarize the data, which means that each voxel is assigned via a global
threshold value t either to the particle phase (foreground, value 255) or to the15

pore phase (background, value 0). Note that the additives, like binder and
carbon black, are considered as belonging to pore phase, because we cannot
distinguish them in the tomographic images. Before global thresholding, the
noise in the image data was reduced by applying a 3D median filter with
a sphere of radius 3 as structuring element, see, e.g., [23]. Then, we used20

the ”Default” method for automatic thresholding implemented in the image
processing program ImageJ (Menu: Image . Adjust . Auto Threshold)
to get an idea of suitable threshold values. This ”Default” method is an
iterative procedure based on the isodata algorithm, see [24]. The global
threshold values which were finally used to binarize the image data are listed25

in Table 1 and are between 2 to 5 units lower than the values suggested by
the automatic ”Default” method. We adjusted the suggested values because
they seemed to be a bit too high. By visual inspection the binarization for
the lower values hit the bounds of the visible particle phase in the grayscale
images better, see Figure 2. Next, as we do not want the particles to30

have holes, all small isolated pore clusters in the particle phase are set to
the particle phase using the same approach as in [21] and [22]. Since we
could not detect isolated pore clusters larger than 5000 voxels, we set all
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Figure 2: 2D cutout of grayscale image (scenario P), where the boundaries of the particle
phase after binarization are overlayed in white.

those pore clusters smaller than this value to the particle phase. As a final
correction step regarding the binarization of the image data, we removed a
few small artifacts from the particle phase, i.e., all by the Hoshen-Kopelman
clustering algorithm (see [25]) detected particle clusters smaller than 100
voxels were set to the pore phase. Such small particle clusters usually result5

from errors in sample preparation and imaging or are impurities or negligible
small particle fragments.

Finally, as the stochastic model considered in Section 3 is a so-called
particle-based model and therefore needs the information on individual par-
ticles of the cathode microstructure, it is necessary to segment the binarized10

image data. For this purpose, we performed exactly the same marker-based
watershed algorithm as in [21] and [22] to detect and then label each particle
by a unique integer. To improve the segmentation results, we additionally
performed a post-segmentation step, since there were still some overseg-
mented areas, especially regarding small fragments between particle pairs,15

see first row of Figure 3. For the post-segmentation step we iterate over all
previously segmented particles, dilate the currently considered particle by a
ball of some radius rpost ≥ 0, check then if the dilated particle completely
covers adjacent particles and remove the markers of these adjacent parti-
cles from the marker set. In the case that two dilated particles completely20

cover each other, then actually just the marker of the (originally) smaller
particle is removed. Finally, we use this subset of markers to restart the
above-mentioned watershed algorithm again. The radius rpost = 7 worked
very well for our data as one can see in Figure 3. A final segmentation result
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Figure 3: Examples of 2D cutouts for particles before (first row) and after post-
segmentation (second row).

is shown in Figure 5(a).
Now, as all preprocessing is done and all essential information gathered,

we can turn to the description of the stochastic microstructure model and
its calibration to tomographic image data.

3. Stochastic 3D microstructure modeling5

The stochastic model for the microstructure of cathodes is based on mod-
eling ideas which have recently been introduced for anodes in [21] and [22].
However, to account for the structural differences between anodes and cath-
odes, some steps of the modeling procedure had to be modified. For this
purpose, tools from stochastic geometry are used, in particular various kinds10

of random (marked) point processes and random tessellations, see, e.g., [26].

3.1. Basic modeling ideas

The construction of the model starts with the introduction of two random
marked point patterns, see Figure 4(a). Due to very low volume fraction
and locally occurring large pores in the considered cathodes, one random15

marked point pattern particularly models such large pores, where the marks
indicate the approximate pore radii and the points their locations. The
other random marked point pattern determines the approximate particle
locations and sizes. Next, these two sets of marked points are used to de-
compose the region of interest (in general a 3-dimensional cuboid) into a set20
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(a) (b) (c)

(d) (e) (f)

Figure 4: Overview of the modeling steps as 2D sketch. (a) Two random marked point
patterns are realized, where the blue dots and circles induce particles and the red ones
induce large pores; (b) A connectivity graph (dashed gray lines) based on the random
marked point patterns and the corresponding Laguerre tessellation (black lines) is simu-
lated, where the red shaded Laguerre polytope indicates an (empty) pore polytope (i.e.,
no particle is placed into); (c) Additional marked points (further red dots and circles) are
determined that induce further pore polytopes; (d) Final arrangement of particle poly-
topes (i.e., a particle is placed into) and pore polytopes (red shaded) is computed, where
the initial connectivity is still retained; (e) Particles fulfilling contact conditions (light
blue dots) are created in the corresponding polytopes using Gaussian random fields on
the sphere; (f) Only the particles are kept and morphological smoothing operations lead
to the final microstructure.

of convex polytopes by means of a Laguerre tessellation (black lines in Fig-
ure 4(b)). Thereby, convex polytopes remain empty which are induced by
marked points modeling large pores, i.e., later on no particles will be placed
in these (pore) polytopes. The red shaded polytope in Figure 4(b) indicates
such a pore polytope. Based on such a tessellation, we model connectivity5

between particles depending on the surface area of a Laguerre facet between
two corresponding polytopes in which particles will be placed. A distance ra-
tio of the two marked points which had induced these neighboring polytopes
is the second quantity on which connectivity between particles depends.
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The resulting connectivity graph, see dashed gray lines in Figure 4(b), is
not necessarily fully connected which we do not require for particle systems
of cathodes contrary to anodes, where we assumed full connectivity of all
particles. At this modeling stage, we are confronted with the problem that
the polytopes into which particles will be placed, see transparent polytopes5

in Figure 4(b), are too large and badly formed to gain reasonably shaped
particles, especially nearly spherical-shaped particles. Therefore, we intro-
duce a third set of marked points inducing further pore polytopes which
remain empty and simultaneously reduce the volume fraction of polytopes
for particles. For this purpose, we look for candidates of additional marked10

points. For each candidate, to be added to the generators of the Laguerre
tessellation (red and blue circles in Figure 4(a)), it is checked whether it
induces a polytope which covers some predefined restriction points (see Sec-
tion 3.4.1 for details). If not, then we add this candidate to the third set of
marked points generating polytopes which remain empty (see red circles in15

Figure 4(c)). Otherwise, the candidate point is marked with the half of its
previous mark and is again checked as described above. If this (modified)
candidate still induces a polytope which covers some of the restriction points,
then the candidate point is marked with 0. If it is still not possible to add
it, then this candidate point is rejected. This procedure is performed for all20

candidate points. Finally, we obtain a tessellation with suitably sized and
reasonably shaped polytopes for particles, see transparent polytopes in Fig-
ure 4(d). In these polytopes particles are placed fulfilling contact conditions
given by the connectivity graph (see Figure 4(e)). The particles themselves
are realizations of Gaussian random fields on the sphere. The final result25

shown in Figure 4(f) exhibits the desired large pores and the typically nearly
spherical-shaped particles.

In the following, all modeling steps summarized above are discussed in
detail.

3.2. Modeling the approximate configuration of large pores and particles30

3.2.1. Initial systems of spheres

As mentioned at the beginning of Section 3.1, due to low volume frac-
tion and locally large pores in the considered cathodes, we introduce a ran-
dom marked point pattern which particularly models the large pores. For
that reason, we extract from the (binarized) tomographic image data just35

pores with a (minimum) pore radius greater or equal tp > 0. We call tp a
pore threshold. Figure 5(b) depicts such large pores as a system of spheres
(white), where the spheres are located at pores with corresponding mini-
mum pore radii. The empirical distribution function of minimum pore radii
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greater or equal tp extracted from binarized tomographic image data of
pristine cathode material is shown in Figure 6(a), black curve. It turns out
that this empirical distribution can be approximated by a truncated (and
then shifted) log-mixed-normal distribution, see red curve in Figure 6(a).
Note that, if we have a mixed-normal random variable Z ′ with mean values5

µ′1, µ
′
2 ∈ R, standard deviations σ′1, σ

′
2 > 0 and probability mix parameter

0 ≤ α′ ≤ 1, then R′ = exp(Z ′) is said to be log-mixed-normally distributed.
Additionally, when restricting the values of R′ to an interval [l′, u′], then R′

is said to be truncated log-mixed-normal with truncation bounds l′ > 0 and
u′ > l′. Finally, R′s′ = R′ + s′ with s′ ∈ R is a shifted version of R′.10

Before we continue with the random point pattern model for large pores,
we explain how pores (i.e., their locations) with minimum pore radii greater
or equal tp are extracted from tomographic data. First, we consider the
Euclidean distance transformation E : R3 → R+ on the pore phase Ξ ⊂ R3

of a binarized tomographic data set, where we assume that Ξ is not the15

empty set. That is, the value E(x) for x ∈ Ξ gives the minimum Euclidean
distance to the particle phase Ξc = R3 \ Ξ, where E(x) = 0 for x ∈ Ξc.
Then, the set of locations

X∗ = {x∗ ∈ Ξ : E(x∗) ≥ E(x) for some ε > 0 and all x ∈ B(x∗, ε)}

of local maxima of E are detected, where B(y, e) denotes a sphere around
center y with radius e. Note that the concept of local maxima (or vice20

versa of local minima if one would consider the negative Euclidean distance
transform −E) for voxel-based image data has been considered, e.g., in [27].
Next, as we just want to model large pores, only local maxima {E(x∗), x∗ ∈
X∗} greater or equal tp > 0 are considered, which we briefly denote by
{E(x∗) > tp}. Finally, {E(x∗) > tp} is thinned out since the detection of25

local maxima is quite sensitive to ”small artifacts” in binarized tomographic
image data. The rule for thinning is as follows:
(a) We iterate over all local maxima {E(x∗) > tp};
(b) For the current local maximum we consider all other local maxima

around whose distance to the current maximum is at most 2tp;30

(c) If for one of these neighboring local maxima it holds that this local
maximum is greater or equal to the current local maximum, then (the
location of) the current local maximum will not be added to the set
X∗∗ = {x∗∗ ∈ X∗ : E(x∗∗) > tp}.

Recall that the values {E(x∗∗)} exactly correspond to the minimum pore35

radii mentioned above.
Because of the applied rule for thinning, the point pattern of pore loca-

tions X∗∗ has a hard-core distance of 2tp, i.e., X∗∗ ∩ B(x∗∗, 2tp) = x∗∗ for
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(a) Segmented structure (b) Segmented structure as spheres

Figure 5: 3D renderings of structure cutouts. (a) Particles of the pristine cathode (scenario
P) after segmentation; (b) Particles represented as gray spheres with volume-equivalent
radii around centers of mass and pores of radius greater or equal tp = 15.0 voxels depicted
as white spheres with corresponding minimum pore radii.

all x∗∗ ∈ X∗∗. Therefore, it is reasonable to model the points in X∗∗ via a
Matérn hard-core point process {S̃n, n ∈ N} with some intensity λ̃ > 0 and
hard-core radius r̃h > 0, see, e.g., [26]. Furthermore, we mark the points
of {S̃n} with sequence {R̃n, n ∈ N} of independent random variables, which
are also independent of the sequence {S̃n}. Each (minimum pore) radius5

R̃n is drawn from the above introduced truncated and shifted log-mixed-
normal distribution with some parameters µ̃1, µ̃2, σ̃1, σ̃2, α̃, l̃, ũ and s̃, where
now 0 ≤ s̃ < tp.

The sequence of pairs {(S̃n, R̃n)} constitutes the random marked point
pattern which models the large pores. Its representation as a system of10

spheres {B(S̃n, R̃n)} has also influence on the collective rearrangement al-
gorithm described in Section 3.2.2.

The next step in stochastic 3D microstructure modeling of cathodes is
to find a model for marked point patterns which describes the (initial) ap-
proximate particle locations and sizes. For this purpose, we use a random15

system of slightly overlapping spheres in exactly the same manner as already
described in [22]. Again, it is necessary that we represent each segmented
particle in the tomographic 3D image data from Section 2.2, see Figure 5(a),
by a volume-equivalent sphere. That is, each particle is transformed into a
sphere with volume-equivalent radius 3

√
3V/4π around its center of mass,20
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(a) Minimum pore radii of large pores (b) Volume-equivalent radii of particles

Figure 6: Empirical distribution of minimum pore radii greater or equal tp = 15.0 voxels
and the parametric probability distribution fit (left); empirical distribution of volume-
equivalent particle radii and the parametric probability distribution fit (right). Both
empirical distributions are extracted from the pristine cathode (scenario P).

see gray spheres in Figure 5(b), where V is the volume of the corresponding
particle. To model such an extracted system of slightly overlapping (volume-
equivalent) spheres, we begin with a random marked point pattern which
can be interpreted as an initial system of (volume-equivalent) spheres. This
initial system is later used as input for a collective rearrangement algorithm5

(also known as force-biased algorithm, see, e.g., [28]). These algorithms
have proved to be successful for the modeling of sphere systems with nearly
vanishing overlaps which is the case for our extracted system of spheres.

As a model for the random marked point pattern we apply a Matérn soft-
core process [29] with some intensity λ > 0 and soft-core radius (i.e. random10

hard-core radius) R > 0 following the truncated log-mixed-normal distribu-
tion with some parameters µ1, µ2, σ1, σ2, α, l and u introduced above. This
point process model has turned out to be appropriate to generate initial
systems of (volume-equivalent) spheres for the subsequent collective rear-
rangement algorithm. Thus, for the initial approximate particle locations15

and sizes we utilize a measurable indexing {(Sn, Rn), n ∈ N} of the Matérn
soft-core process. The independent marks {Rn}, which are also independent
of the points {Sn}, mimic the volume-equivalent particle radii extracted from
segmented tomographic image data. Figure 6(b) shows that the paramet-
ric distribution of R (red curve) fits the empirical distribution of volume-20

equivalent particle radii (black curve) quite well. Altogether, the result is

12



a random marked point pattern {(Sn, Rn)} or in other words an initial sys-
tems of (volume-equivalent) spheres {B(Sn, Rn), n ∈ N} for the following
collective rearrangement algorithm.

3.2.2. Collective rearrangement algorithm

In practice, the realization of samples of the random marked point pat-5

terns {(Sn, Rn)} and {(S̃n, R̃n)} introduced in Section 3.2.1 is restricted to
a bounded sampling window W ⊂ R3, where we apply periodic boundary
conditions to maintain the properties of the point processes. For the fol-
lowing collective rearrangement algorithm, which is performed on W , the
representation of the point patterns as systems of spheres {B(Sn, Rn)} and10

{B(S̃n, R̃n)} serves as initial input. Note that the spheres {B(S̃n, R̃n)}
which will induce large pores are not rearranged by the algorithm and that
the algorithm itself is a modification of well-known rearrangement algo-
rithms, where we refer, e.g., to [30, 28] for details. It works as follows.

1. For each sphere B(Sn, Rn) compute the random shift vector15

Fn =
∑

Sm 6=Sn

Om
2

(Sn − Sm)

‖Sn − Sm‖
1I{Om>0} +

∑
S̃m

Õm
(Sn − S̃m)

‖Sn − S̃m‖
1I{Õm>0},

where Om = Rn+Rm−‖Sn−Sm‖ and Õm = Rn+R̃m−‖Sn−S̃m‖ are ran-
dom lengths of overlaps with spheres B(Sm, Rm) and B(S̃m, R̃m), respec-
tively. In other words, for all intersections with the sphere B(Sn, Rn), we
sum up all unit vectors from the midpoint of an intersecting sphere to Sn
scaled to the length of half overlap Om or total overlap Õm. Here, 1I{O>0}20

is the indicator function of a random overlap length O being greater than
0 and ‖S − S′‖ denotes the Euclidean distance between some points S
and S′.

2. For each sphere B(Sn, Rn) compute the random mean overlap Ōn with
all other spheres {B(Sm, Rm),m 6= n} which intersect with it, i.e.,25

Ōn =

∑
m 6=nOm1I{Om>0}

#{Om > 0,m 6= n}
,

where # denotes the cardinality of a set, i.e., the number of elements in
a set.

3. If the mean of all random mean overlaps Ōn is greater than a given
threshold tO, then shift each sphere B(Sn, Rn) by its random vector Fn
and restart with step 1. Otherwise terminate the algorithm.30
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Note that if a midpoint Sn of the sphere B(Sn, Rn) is shifted outside the
sampling window W , then it will be displaced to enter W on the opposite
side to maintain the condition of periodic boundaries. The length of each
shift vector Fn is chosen in such a way that the initial systems of spheres
are successively transformed into an overall sphere system which finally con-5

sists of nearly non-overlapping spheres. That is, the achieved mean overlap
among spheres B(Sn, Rn), n ∈ N is approximately tO and the achieved mean
overlap between spheres B(Sn, Rn), n ∈ N and B(S̃n, R̃n), n ∈ N is almost
zero.

The outcome of the collective rearrangement algorithm is a marked point10

pattern which constitutes the approximate configuration of large pores and
particles. We denote it by S ∪ S̃ in the subsequent modeling steps, where
S = {(Sn, Rn)} and S̃ = {(S̃n, R̃n)}.

3.2.3. Calibration of point pattern models

To calibrate the point pattern models to the tomographic image data of15

scenarios P, A1 and A2, respectively, it is necessary to suitably determine
the values of all model parameters, see Table 2. The intensities λ̃ and λ are
estimated from the extracted point patterns given by pores (with minimum
pore radii greater or equal tp) and particle centers of mass in the tomographic
data sets. The pore threshold tp is approximately chosen as the radius of a20

sphere such that 10% of the pore phase in a binarized tomographic data set
can be covered with spheres of that radius (see [31] for details). The choice
of the hard-core radius r̃h is a direct consequence of the above mentioned
thinning of local maxima. All parameters of the log-mixed-normal distribu-
tions are estimated via the R-implemented mixtools package [32] (based on25

expectation maximization), if we have two mixture components or via the
R-implemented fitdistrplus package [33] (based on maximum likelihood esti-
mation) provided that we only have a single mixture component. The limits
l̃ and ũ are set to tp − s̃ and rpmax − s̃, where rpmax is the maximum of all
minimum pore radii {E(x∗∗)} observed in the corresponding tomographic30

data set. The shift parameter s̃ is given by s̃ = brpminc−1, where now rpmin
is the minimum of all minimum pore radii. The expression bvc means the
greatest integer less than or equal to v ∈ R. The parameters l and u are the
minimum and maximum volume-equivalent particle radius observed in the
corresponding segmented tomographic data set. The overlap threshold tO35

is chosen as the mean of all mean overlaps among particles represented as
spheres with volume-equivalent radii, see e.g., white spheres in Figure 5(b).
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scenario
P A1 A2

tp 15.0 15.0 13.0

λ̃ 1.30 · 10−6 1.09 · 10−6 1.74 · 10−6

r̃h 2.0 · tp 2.0 · tp 2.0 · tp
µ̃1 0.99 1.93 0.82
µ̃2 - 0.80 -
σ̃1 0.59 0.12 0.52
σ̃2 - 0.46 -
α̃ 1.0 0.16 1.0

l̃ 1.0 1.0 1.0
ũ 12.25 8.41 14.72
s̃ 14.0 14.0 12.0

λ 9.95 · 10−5 9.33 · 10−5 1.11 · 10−4

µ1 1.44 2.13 1.93
µ2 2.07 1.46 -
σ1 0.24 0.41 0.49
σ2 0.41 0.26 -
α 0.21 0.78 1.0
l 1.91 2.03 1.86
u 29.51 32.83 32.88
tO 0.657 0.770 0.634

Table 2: Parameter values of the point pattern models. The parameters tp, r̃h, l̃, ũ, s̃, l, u
and tO are given in voxel length. Empty fields (-) result from the fact that the probability
mix parameter α̃ or α is 1 and thus there is no second mean and standard deviation.

3.3. Modeling the connectivity graph

Recall that in Section 3.2 we have determined the approximate configura-
tion of particles and large pores. Since all considered microstructures consist
of connected particle systems, the logical next step is to determine which
particles are supposed to be connected. Thus, we make use of a random5

graph G = (V, E) which shall describe the connectivity relations between
the particles to be simulated later on, where V is a (random) set of vertices
and E ⊂ V × V are randomly placed edges (segments) between some pairs
of the vertices. In our context, as vertices of the graph we use the marked
point pattern considered in Section 3.2, which describes the approximate10

particle locations and sizes, i.e., V = S. The edges between some pairs of
these marked points indicate where the corresponding particles are supposed
to be connected.
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3.3.1. Particle connections based on a Laguerre tessellation

In the following, we briefly explain how we model the connectivity graph
since the basic ideas are similar to those in [21] and [22], where especially
in [22] further details can be found. We start from a Laguerre tessellation T1
on the sampling window W which is induced by the marked point pattern5

S∪S̃ from Section 3.2, i.e., this tessellation is a collection of convex polytopes
T1 = {Pn} ∪ {P̃n}, where the convex polytopes Pn and P̃n correspond to
the generator points (Sn, Rn) ∈ S and (S̃n, R̃n) ∈ S̃, respectively. For
further details on Laguerre tessellations we refer to [34]. Note that {Pn}
are particle polytopes, i.e., convex polytopes into which particles will be10

placed, and {P̃n} are pore polytopes, i.e., convex polytopes which remain
empty. If Pn is the particle polytope of generator (Sn, Rn) ∈ S and Pm of
(Sm, Rm) ∈ S, then by Fnm we denote the joint (two-dimensional) Laguerre
facet between those two neighboring particle polytopes. For construction of
the connectivity graph, it is sufficient just to consider joint Laguerre facets15

between neighboring polytopes of generators in S since only edges between
those generators (vertices) will be part of the connectivity graph.

It is important to mention that in the rest of Section 3 we consider,
e.g., each pair of marked points (generators) or also each pair of neighboring
polytopes only once. This means that for all quantities with double indices20

(e.g., a joint Laguerre facet Fnm) we only consider the case ”n < m”, where
n,m ∈ N, i.e., we ignore permutations.

Now, based on the tessellation T1, we place an edge between the gen-
erators (Sn, Rn) and (Sm, Rm) whose corresponding polytopes Pn and Pm
share a common facet Fnm depending on, first, the distance ratio Dnm =25

‖Sn−Sm‖/(Rn +Rm) and, second, the area Anm = |Fnm| of Fnm. Roughly
speaking, it is more likely that two particles which will be placed in poly-
topes induced by (Sn, Rn) and (Sm, Rm) are connected with each other if
the distance ratio Dnm is small (i.e., close to 1 or smaller) and the area Anm
of the common Laguerre facet Fnm is large. Note that we do not condition30

the occurrence of an edge on an angle between the points Sn and Sm like
in [22] as we did not detect any significant anisotropy in the microstructures
of scenarios P, A1 and A2.

To bring together these thoughts in a (connectivity) graph model, we
first construct a random marked graph Gall = (V, E ′), where V = S. The35

edges E ′ ⊂ (S ×S,R+) possess non-negative marks {P (Dnm, Anm), n 6= m},
where P (Dnm, Anm) is the probability that the two vertices (Sn, Rn) and
(Sm, Rm) whose corresponding polytopes Pn and Pm in T1 share a com-
mon facet Fnm are connected given the distance ratio Dnm and the facet
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area Anm. Note that Gall contains all edges between pairs of marked points
from S whose corresponding polytopes in T1 share a common facet. Start-
ing from Gall, we construct connectivity graph G = (S, E) by adding edges
from E ′ to the (initially empty) edge set E according to their probabilities
P (Dnm, Anm). That is, G mainly contains edges from Gall having high prob-5

ability P (Dnm, Anm). Such connectivity graphs G describe the connectivity
relations between particles extracted from our tomographic data quite well,
see Section 4.2. In the following, the marks of edges in E are not necessary
anymore and therefore we skip them and just write ((Sn, Rn), (Sm, Rm)) ∈ E
instead of ((Sn, Rn), (Sm, Rm), P (Dnm, Anm)) ∈ E .10

3.3.2. Calibration of connectivity graph model

As before for the point pattern model, we have to calibrate the graph
model to our tomographic image data. This means that we need the prob-
abilities P (d, a) of two marked points (which represent two particles) be-
ing connected in the segmented tomographic microstructures if they have15

a distance ratio d > 0 and an area a > 0 of the common Laguerre facet.
Analogous to [22], the joint probability P (d, a) is expressed as the product
of (marginal) conditional probabilities Pdira(d) and Parea(a) of two particles
being connected given the distance ratio between them is d and the area of
the common Laguerre facet is a, respectively, multiplied with a correction20

factor c > 0. That is,

P (d, a) = min {c · Pdira(d) · Parea(a), 1} .

Both Pdira(d) and Parea(a) can be estimated as follows. Considering the seg-
mented image data of one of the three scenarios, we know from Section 2.2 all
particles and thus obtain their representation {(sexpn , rexpn )} as marked point
pattern (see the end of Section 3.2.1), where a particle is located at its center25

of mass sexpn and has volume-equivalent radius rexpn . From the image data
we also know which pairs of particles are connected. Additionally, we again
extract the marked point pattern {(s̃expn , r̃expn )} representing the large pores
with minimum pore radius greater or equal tp in exactly the same manner as
already described in Section 3.2.1, where s̃expn denotes the pore location and30

r̃expn the corresponding minimum pore radius. Then, given these two marked
point patterns, we can calculate the Laguerre tessellation T exp

1 induced by
the marked point pattern {(sexpn , rexpn )} ∪ {(s̃expn , r̃expn )}. Using all this infor-
mation, we know for each pair of particles represented by (sexpn , rexpn ) and
(sexpm , rexpm ) if they are connected and if their corresponding convex polytopes35

in T exp

1 share a common Laguerre facet f exp
nm. Provided that there exists a
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(a) (b)

Figure 7: (a) Connection probabilities depending on the distance ratio between two parti-
cles; (b) Connection probabilities depending on the area of the joint Laguerre facet. Both
empirical (connection) probability functions (black curves) are computed for the pristine
cathode (scenario P).

common facet f exp
nm, we can estimate the probability Pdira(d) of two particles

being connected given the distance ratio between them is d. Furthermore,
the probability Parea(a) of two particles being connected given the area of
f exp
nm is a can be estimated, see Figure 7.

For modeling purposes, we fit parametric curves to each estimated proba-5

bility function Pdira(d) and Parea(a). That is, we approximate the estimated
probability function Pdira(d) by

Pdira(d) ≈ max

{
adira · d+ bdira

d3 + cdira · d2 + ddira · d+ edira
, 0

}
if d ≥ dlow,

where dlow > 0 is a threshold below which Pdira(d) is put equal to 1. The
estimated probability function Parea(a) is approximated by

Parea(a) ≈ min
{
aarea · â4 + barea · â3 + carea · â2 + darea · â+ earea, pcap

}
,

where â = (a −marea)/sarea is some normalization of a. All parameters of10

the approximations of Pdira(d) and Parea(a) have been determined using the
curve fitting toolbox in MATLAB [35] and their values for the scenarios P,
A1 and A2 can be found in Table 3. For scenario P the fitted parametric
curves are shown in Figure 7 (red curves).

To determine the correction factor c in the definition of P (d, a) we ap-15

ply exactly the same procedure, namely the minimum contrast method, as
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scenario
P A1 A2

adira -0.04 -0.03 -0.03
bdira 0.06 0.05 0.06
cdira -2.65 -2.68 -2.63
ddira 2.31 2.36 2.28
edira -0.63 -0.66 -0.62
dlow 0.814 0.815 0.803

aarea 0.02 0.03 0.04
barea -0.02 -0.008 -0.003
carea -0.11 -0.13 -0.16
darea 0.26 0.28 0.26
earea 0.47 0.52 0.55
marea 350 350 317.5
sarea 202.7 202.7 183.8
pcap 0.685 0.8 0.815

c 1.7875 1.5570 1.4824

Table 3: Fitted curve parameters for the function approximations of Pdira(d) and Parea(a),
listed for each tomographic data set of all three scenarios P, A1 and A2. Each optimized
correction factor c is also listed.

performed in [22]. Thus, the cost function

h(c) = |κexp − κ(c)|

is minimized, where κexp is the mean coordination number observed in the
connectivity graph of a (segmented) tomographic data set and κ(c) is the
mean coordination number observed in connectivity graphs which are real-
ized by the model given the correction factor is equal to c. Note that the5

mean coordination number is the mean number of edges emanating from
a vertex and for the three scenarios P, A1 and A2 we found the rounded
values 2.69, 3.15 and 3.30 for κexp. The value of κ(c) is determined by gen-
erating 100 realizations of the model (i.e., point pattern model plus graph
model with given value of c) and then we average over all mean coordina-10

tion numbers observed in these realizations. By the bisection method [36],
the minimization of the cost function h is executed starting from a suitable
initial interval for possible values of c. The optimized correction factor for
each scenario can be found in Table 3.
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3.4. Modeling of suitable particle polytopes and contact conditions

Up to this point, the stochastic 3D microstructure model involves the
generation of two random marked point patterns which approximately con-
figure the large pores and the particles of the cathode microstructure. Fur-
thermore, the model uses a Laguerre tessellation to determine the connec-5

tivity between particles via a random graph. But the Laguerre tessellation
or, more precisely, its corresponding collection of convex polytopes has two
further functionalities, namely, it influences sizes and shapes of particles
and it also sets contact conditions on polytope boundaries which have to be
fulfilled.10

3.4.1. Enhanced insertion of pore polytopes

To achieve desired sizes and shapes of particles, we have to struggle with
the same kind of modeling issue as in [22]. The difficulty is that, due to the
low volume fraction of the particle phase, the particle polytopes {Pn} ⊂ T1
from Section 3.3.1 are currently too large and badly shaped in order to15

achieve reasonably particles under the connectivity constraints prescribed
by the graph G. Preferably, we need particle polytopes which have the same
order of size as the particles being placed into and possess a nearly spherical
shape similar to, e.g., regular icosahedra or dodecahedra. For this purpose,
we enhance the idea considered in [22] of adding (further) pore polytopes20

which remain empty. The intention of adding further pore polytopes is to
gain suitable (i.e., smaller and more spherical) particle polytopes. Before
we explain the rather technical procedure how further pore polytopes are
added, we introduce some helpful notation.

Let F = {Fnm, ((Sn, Rn), (Sm, Rm)) ∈ E} denote the joint Laguerre25

facets Fnm between pairs of neighboring particle polytopes Pn and Pm, where
the connectivity graph G from Section 3.3 indicates a connection via this
facet. Furthermore, let C = {Cnm} denote the centroids of these facets. Sim-
ilar to F , the set F ′ = {Fnm, ((Sn, Rn), (Sm, Rm)) /∈ E} contains joint facets
between pairs of particle polytopes, where G does not indicate a connection.30

The set of centroids of facets in F ′ is denoted by C′ = {C ′nm}. A third set of
facets F ′′ = {F̃nm} includes joint facets F̃nm between a particle polytope Pn
and a pore polytope P̃m. The corresponding set of facet centroids is denoted
by C′′ = {C ′′nm}. Finally, we introduce the set of polytope vertices {Vl} of
all particle polytopes {Pn}. Note that most of the Vl belong to more than35

one particle polytope but are considered within the set {Vl} only once.
Based on this notation, we can explain the procedure how further pore

polytopes are added. Since each convex polytope of the tessellation T1 is
induced by a marked point, i.e., by its generator, in S ∪ S̃, we try to find
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(a) (b)

Figure 8: Enhanced insertion of pore polytopes: (a) Initial tessellation T1 with red shaded
large pore polytope. The restriction points R (cyan, yellow, golden and green crosses) may
not be covered by further added pore polytopes since they ensure the desired connectivity
of particles and lead to suitable particle polytopes in the end; (b) Candidates for generators
of further pore polytopes Ŝcand (orange, brown and magenta crosses) are determined. Each
candidate point possesses three descending marks and therefore it also has three chances
to generate an additional further pore polytope.

candidates for additional generators of pore polytopes which shrink the par-
ticle polytopes {Pn} to a suitable size and shape. However, the shrinkage
of particle polytopes is restricted in such a way that it does not violate
two requirements. First, we ensure the persistent existence of each facet
Fnm ∈ F through the requirement that no corresponding centroid Cnm ∈ C5

(see Figure 8(a), cyan crosses) is covered by a pore polytope of a possibly
additional generator. Note that this first requirement guarantees reasonable
connectivity according to the graph G. Second, we introduce a set of points
R on the surfaces of the (generator) spheres B(Sn, Rn), see Figure 8(a) blue
circles, inducing the particle polytopes Pn. We also require that no point of10

R is covered by a pore polytope of a candidate generator. Note that this
second requirement prevents too much shrunken particle polytopes. So R
consists of the following points:
(a) Each facet centroid C ′nm ∈ C′ is associated with two neighboring particle

polytopes induced by their generator spheres B(Sn, Rn) and B(Sm, Rm).15

Let ~V ′n be the vector from Sn to C ′nm scaled to length Rn and ~V ′m the
vector from Sm to C ′nm scaled to length Rm. Then, R contains the two
points Sn + ~V ′n and Sm + ~V ′m which belong to the surfaces of B(Sn, Rn)
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and B(Sm, Rm), respectively (see Figure 8(a), yellow crosses);
(b) Each facet centroid C ′′nm ∈ C′′ is associated with a particle polytope

induced by its generator sphere B(Sn, Rn). Let ~V ′′n be the vector from
Sn to C ′′nm scaled to length Rn. Then, R also contains the point Sn +
~V ′′n which belongs to the surface of B(Sn, Rn) (see Figure 8(a), golden5

crosses);
(c) Each particle polytope vertex Vl is associated with up to four particle

polytopes induced by the generator spheres B(Sl1 , Rl1), B(Sl2 , Rl2), . . . .
Let ~Vl1 be the vector from Sl1 to Vl scaled to length Rl1 , ~Vl2 the vector
from Sl2 to Vl scaled to length Rl2 and so on. Then, R additionally10

contains the points Sl1 + ~Vl1 , Sl2 + ~Vl2 , . . . which belong to the surfaces of
B(Sl1 , Rl1), B(Sl2 , Rl2), . . . , respectively (see Figure 8(a), green crosses).

Finally, we add to R all centroids Cnm which are relevant to the first re-
quirement and for practical reasons we consistently denote the points of R
by Xk., i.e., R = {Xk, k ∈ N}. Thus, R contains all points which may not15

be covered and hence imply a restriction to adding further pore polytopes.
Next, we define the set Ŝcand of candidates for additional generators of

pore polytopes. The first candidates we add to Ŝcand are modifications of the
centroids in C′ of the joint facets between two neighboring particle polytopes
induced by their generator spheres B(Sn, Rn) and B(Sm, Rm). Recall that20

on the surface of each of these two spheres we have defined a point which
is contained in R (see item (a) above). Then, we shift the point C ′nm ∈ C′
in such a way that it is placed in the middle between its two corresponding
points from R. Doing the same for all C ′nm, we add the resulting (shifted)
points to Ŝcand (see Figure 8(b), orange crosses). Finally, we complement25

the set Ŝcand by adding all centroids C ′′nm (see Figure 8(b), brown crosses)
and all particle polytope vertices Vl (see Figure 8(b), magenta crosses) as
candidates for additional generators of pore polytopes.

So far, the candidates in Ŝcand possess no marks to serve as generators

for polytopes in a Laguerre tessellation. Therefore, a mark (radius) R̂
(i)
n > 030

is assigned to each point in Ŝcand. From now on, we consistently denote

the candidates for generators in Ŝcand by (Ŝn, R̂
(i)
n ) for i ∈ {1, 2, 3}. That

is, every point Ŝn could be accepted under three different constellations
as an additional generator for a pore polytope. The primary constellation

is (Ŝn, R̂
(1)
n ), where R̂

(1)
n is equal to 0.99 times the distance from Ŝn to35

the nearest point Xk ∈ R. The second constellation is (Ŝn, R̂
(2)
n ), where

R̂
(2)
n = R̂

(1)
n /2 and the last constellation to test is (Ŝn, R̂

(3)
n ), where R̂

(3)
n = 0.

Given the candidates for generators in Ŝcand and the points in R, we thin
out the set Ŝcand such that no point Xk ∈ R is covered by a pore polytope
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(a) (b)

(c) (d)

Figure 9: Enhanced insertion of pore polytopes: (a) The small red shaded polytope in-

duced by the current candidate generator (Ŝn, R̂
(1)
n ) ∈ Ŝcand (magenta cross with circle)

does not cover any of the restriction points Xk ∈ R (cyan, yellow, golden or green crosses),

therefore this generator is accepted and added to Ŝ; (b) The next candidate (Ŝm, R̂
(1)
m )

(orange cross with circle) induces the gray shaded polytope which covers a restriction point

Xk (cyan cross in the upper corner), therefore (Ŝm, R̂
(1)
m ) is rejected; (c) In this case, we

test the previous candidate with the smaller mark R̂
(2)
m (orange cross with circle) and the

induced polytope covers no point of R, therefore (Ŝm, R̂
(2)
m ) is accepted and added to Ŝ;

(d) Final tessellation (pore polytopes are red shaded with generators S̃ ∪ Ŝ as red dots)
induced by the marked point pattern S ∪ S̃ ∪ Ŝ.
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induced by a candidate generator (Ŝn, R̂
(i)
n ) ∈ Ŝcand. This can be checked as

follows. For each candidate generator (Ŝn, R̂
(i)
n ), we start with the primary

constellation (Ŝn, R̂
(1)
n ) and consider the Laguerre tessellation T

(Ŝn,R̂
(1)
n )

in-

duced by the existing marked point pattern S ∪ S̃, additionally including

(Ŝn, R̂
(1)
n ). If the pore polytope P̂n ∈ T(Ŝn,R̂

(1)
n )

of generator (Ŝn, R̂
(1)
n ) does5

not cover any point Xk ∈ R, then we add this generator to the final set
Ŝ of additional generators of pore polytopes (see Figure 9(a)). Otherwise,
e.g., shown in Figure 9(b), we do the same check for the second constella-

tion (Ŝn, R̂
(2)
n ), see Figure 9(c), and, if necessary, also for the third one with

mark equal to zero. Should all three constellations be rejected, then this10

candidate generator (Ŝn, R̂
(i)
n ) for i ∈ {1, 2, 3} is not accepted and not added

to Ŝ.
The final tessellation T , which is induced by the marked point pattern S∪

S̃ ∪ Ŝ, has suitable particle polytopes {Pn} ⊂ T , i.e., the particle polytopes
Pn have desired sizes and shapes in order to achieve reasonable particles15

under the connectivity constraints given by the graph G. This final result
is sketched in Figure 9(d).

3.4.2. Setting of suitable contact conditions

In this section we define the conditions which particles placed into poly-
topes have to fulfill in order to ensure connectivity imposed by the graph20

G from Section 3.3. Recall that the particles shall be connected via joint
Laguerre facets of their neighboring particle polytopes, where G = (S, E)
indicates connections through edges in E . Therefore, we will force the par-
ticles to cover some specific points on such facets of their polytopes (see
Section 3.5.4).25

Recall that the Laguerre facets of the tessellation T where particles are
supposed to be connected are those of F . The corresponding set of facet
centroids is given by C, see Section 3.4.1. Thus, we denote the set of points
which a particle being placed into the polytope Pn has to cover by Cn =
{Cnm ∈ C, n < m,m ∈ N} ∪ {Cln ∈ C, l < n, l ∈ N} for each n ∈ N.30

Furthermore, for convenience, we denote the N <∞ points in Cn by Ci, i.e.,
Cn = {Ci, i = 1, . . . , N}. Consequently, each pair of connected particles will
be at least connected in the centroid of the joint facet between their particle
polytopes, see light blue dots in Figure 4(e). This, so to say, one-point-
per-facet contact condition has two advantages for the creation of particles.35

On the one hand, we tendentially achieve small contact regions between
particles similar to those observed in tomographic data. On the other hand,
the small total number of contact conditions per particle helps to create the
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more spherical-shaped cathode particles.

3.5. Creation of particles under contact conditions

In the previous modeling steps we have prepared the basis which now
puts us in a position to create the particles themselves. The particles, like
in [21] and [22], are modeled as realizations of (conditional) Gaussian random5

fields on the sphere (GRF for short) which are expressed in terms of spherical
harmonics series expansions.

3.5.1. Representation of particles as spherical harmonics series expansion

As just mentioned, each particle is created as a realization of a so-called
(isotropic) Gaussian random field on the sphere ψ : [0, π]×[0, 2π)→ R under10

the given (contact) conditions from Section 3.4.2. Then, the extension of a
random particle in each direction (θ, φ) with respect to some center point is
given by the value ψ(θ, φ) of the GRF in this direction. Note that the GRF
ψ can be uniquely described by a mean radius µ ∈ R and a so-called angular
power function A : [0,∞) → [0,∞) and has the advantage that it can be15

expressed in terms of a spherical harmonics series expansion [37]. Part of
such a series expansion are the so-called spherical harmonics Yl,m : [0, π] ×
[0, 2π)→ C for l ∈ N0 and m ∈ {0, . . . , l} which are given by

Yl,m(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pl,m(cos(θ))eimφ,

where the associated Legendre functions Pl,m : [−1, 1]→ R are defined as

Pl,m(x) =
(−1)m(1− x2)m/2

2l l!

dl+m

dxl+m
(x2 − 1)l.

Then, the corresponding series expansion of a GRF with mean radius µ and
angular power function A has the form

ψ(θ, φ) =
∞∑
l=0

[
al,0Yl,0(θ, φ) + 2

l∑
m=1

[
Re(al,m)Re(Yl,m(θ, φ))

− Im(al,m)Im(Yl,m(θ, φ))
]]
.

The random coefficients al,m,Re(al,m) and Im(al,m) possess normal distri-20

butions, namely, a0,0 ∼ N (µ/Y0,0(θ, φ), A0) with Y0,0(θ, φ) = 1
2
√
π

, al,0 ∼
N (0, Al) for l > 0, Re(al,m) ∼ N (0, Al/2) and Im(al,m) ∼ N (0, Al/2) for
l ∈ N,m ∈ {1, . . . , l}, where {Al, l = 0, 1, . . . } with Al = A(l) is called the
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angular power spectrum. For numerical computations the series expansion
of ψ has to be truncated at a certain (finite) degree of accuracy L <∞, i.e.,
the outer sum extends from 0 to L (as opposed to infinity). To generate
such an approximation of the GRF, all we have to do is to sample a realiza-
tion of the normal distributed random vector (a0,0, a1,0,Re(a1,1), Im(a1,1),5

. . . ,Re(aL,L), Im(aL,L))T. Actually, we will sample from a conditional mul-
tivariate normal distribution, see Section 3.5.4, since we want each particle
(being a GRF) to fulfill given contact conditions. But before we can cre-
ate individual particles via a GRF, we need to determine the parameters
of the (conditional) multivariate normal distribution, i.e., the values of the10

(truncated) angular power spectrum {Al, l = 0, . . . , L} and the mean radius
of each particle. Note that the truncation parameter L as degree of accu-
racy will be chosen dynamically for each particle (see Section 3.5.3 below)
in distinction to the fixed value used in [21] and [22].

3.5.2. Adjustment of angular power function and mean radius15

In this section, we determine the parameters of the multivariate nor-
mal distributions mentioned in Section 3.5.1. For this purpose, we begin
to estimate the values of the angular power spectrum from the segmented
tomographic image data. To do so, we describe each segmented particle
by a spherical harmonics series expansion truncated at L = 20, see [38] for20

details, and thus we know the series coefficients describing each segmented
particle. Given these coefficients, we can estimate their variances and in this
way we also obtain estimates of the values Al for l = 1, . . . , L. To these data
points (l, Al) we fit a parametric function, see Figure 10, which provides an
appropriate approximation of the angular power function, i.e.,25

A(l) ≈ aA · l + bA
l2 + cA · l + dA

.

By the curve fitting toolbox in MATLAB we get the values of aA, bA, cA
and dA for the scenarios P, A1 and A2 as listed in Table 4.

Recall that the mean radius µ of each random particle is mainly con-
trolled by the coefficient a0,0 (it holds a0,0 ∼ N (µ/Y0,0(θ, φ), A0), whereas
all other coefficients have expectation zero). Thus, to control the expected30

volume EV = 1
3

∫ 2π
0

∫ π
0 E[ψ(θ, φ)3] sin(θ)dθdφ of each random particle, we

choose the coefficient a0,0 deterministically depending on each particle poly-
tope Pn ∈ T and the volume fraction νexp/ξ which a particle should cover
being placed into Pn. Here, νexp is the volume fraction of the particle phase
observed in a tomographic data set and ξ is the volume fraction of all parti-35

cle polytopes {Pn} ⊂ T obtained in a model realization. The values of νexp
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Figure 10: Fitted angular power function
(red) to the estimated angular power spec-
trum (black dots) for scenario P.

scenario
P A1 A2

aA 0.1027 0.1217 0.1049
bA 0.2411 0.1892 0.1066
cA -4.009 -4.019 -4.064
dA 4.206 4.215 4.284

Table 4: Fitted values of parameters aA,
bA, cA and dA.

for the three scenarios P, A1 and A2 can be found in Table 5. Under the as-
sumption of independence of all random series coefficients al,m,Re(al,m) and
Im(al,m), it is possible to show that the expected volume EV of a particle
has the form

EV = |B(o, 1/2
√
π)| a30,0 + ΣL a0,0,

where |B(o, 1
2
√
π

)| ≈ 0.09403 is the volume of a sphere with radius 1
2
√
π

around the origin o. The parameter ΣL can be written as

ΣL =
1

2
√
π

L∑
l=1

Al

∫ 2π

0

∫ π

0

[
Yl,0(θ, φ)2 + 2

l∑
m=1

[
Re(Yl,m(θ, φ))2

+ Im(Yl,m(θ, φ))2
]]

sin(θ)dθdφ.

It depends on L and the estimates of the angular power spectrum Al for5

l = 1, . . . , L. This means that ΣL can vary from particle to particle since
L is chosen dynamically. Then, for each particle polytope Pn with volume
|Pn| we get the coefficient a0,0 by solving the equation (which has a unique
real-valued solution)

ρ|Pn|νexp/ξ = 0.09403a30,0 + ΣL a0,0.

As in [22], ρ is a correction factor which compensates for the errors that10

might occur due to the involvement of contact conditions Cn from Sec-
tion 3.4.2. This means that the assumption of independent series coefficients
made above is no longer valid under given contact conditions. Therefore, we
compensate for this missing assumption by adding the factor ρ. Note that
the correction factor ρ is determined as a the root of h(ρ) = |νexp − ν(ρ)|15

using the bisection method, where ν(ρ) is the mean volume fraction of the
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particle phase over 10 model realizations with the given ρ. In this way, for
the scenarios P, A1 and A2, we get the values ρP = 0.9891, ρA1 = 0.9834
and ρA2 = 0.9644.

Finally, if we choose the coefficient a0,0 for each particle in such a way,
it ensures us to generate particle systems with the desired volume fraction5

νexp on average.

3.5.3. Relate degree of accuracy L to coordination number

To account for the typically spherical-shaped cathode particles, we choose
the degree of accuracy L < ∞ of the truncated spherical harmonics series
expansion in a dynamic manner. Since particles have to fulfill given contact10

conditions, especially large particles often have many contact conditions,
we are just able to create particles with nearly spherical shapes if we have
”more degrees of freedom” for some particles. By increasing L, we can pro-
vide ”more degrees of freedom” to particles with many contact conditions
which is related to a large coordination number for such particles indicated15

by the connectivity graph G. Therefore, for each particle, we relate L with
its coordination number given by G. In particular, a small coordination
number implies a smaller value of L to guarantee sufficiently smooth parti-
cle surfaces. In contrast, a large coordination number requires a larger L to
avoid deformed and strongly non-spherical particles which would occur due20

to the many contact conditions. We allocate the value of L for each particle
as follows.

We set a ”default”, minimum and maximum degree of accuracy denoted
by Ldf , Lmin and Lmax, respectively, where we used Ldf = 8, Lmin = 5 and
Lmax = 20. Furthermore, we also define a ”default” coordination num-25

ber κdf as the integer closest to the mean coordination number κexp ob-
served in segmented tomographic image data. Moreover, given the cur-
rently realized connectivity graph G, we know its minimum and maximum
coordination number κmin and κmax. In most cases, coordination numbers
κ ∈ {κmin, . . . , κmax} in G range from 0 to 25. The degree of accuracy for30

each particle with coordination number κ is then given by

L = Ldf + 1I{κ≤κdf}
κ− κdf

κdf − κmin
(Ldf −Lmin) + 1I{κ>κdf}

κ− κdf

κmax − κdf
(Lmax−Ldf).

This allocation ensures a preferably uniform spread of L over the range of
coordination numbers κ. Furthermore, it assigns Ldf to the coordination
number κdf , Lmin to the coordination number κmin and Lmax to the coordi-
nation number κmax.35
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3.5.4. Using the whole framework to create individual particles

Now, we are in a position to place individual particles into the corre-
sponding particle polytopes {Pn} ⊂ T , where each particle has its origin
in the centroid Mn of the corresponding polytope Pn. For each particle we
have strong control over its size through the first coefficient a0,0. Its shape5

depends on the angular power function A(l), the degree of accuracy L and
the points in Cn which the particle has to cross, where the points in Cn are
directly influenced by the shape of Pn. Recall that the contact conditions
given by the points in Cn ensure connectedness of a particle as indicated by
the graph G from Section 3.3. They are translated into terms for the spher-10

ical harmonics series expansion of a particle in the following way. Each of
the N points Ci ∈ Cn can be expressed in spherical coordinates with respect
to the centroid Mn of polytope Pn into which we will place a particle. This
means that a point Ci is given as (θi, φi, ri) for i ∈ {1, . . . , N}, where the
angles θi and φi describe the direction (of the vector) from Mn to Ci and15

ri = ‖Mn − Ci‖ is the distance between Mn and Ci. Then, for a particle
being placed into Pn, it has to hold that

ψ(θ1, φ1) = r1, . . . , ψ(θN , φN ) = rN ,

where each ψ(θi, φi) = ri is a linear equation with the (random) unknowns
a1,0,Re(a1,1), Im(a1,1), . . . ,Re(aL,L), Im(aL,L). Since a0,0 is a constant which
is known from Section 3.5.2, we can rewrite the system of linear equations20

as
ψ̂(θi, φi) = ri − a0,0Y0,0(θi, φi) for i = 1, . . . , N,

where ψ̂(θi, φi) corresponds to ψ(θi, φi) but without the term a0,0Y0,0(θi, φi).
The particle is then created by drawing a realization from the normal dis-
tributed coefficient vector (a1,0,Re(a1,1), Im(a1,1), . . . ,Re(aL,L), Im(aL,L))T

given ψ̂(θ1, φ1) = r1−a0,0Y0,0(θ1, φ1), . . . , ψ̂(θN , φN ) = rN−a0,0Y0,0(θN , φN ).25

The detailed procedure how such a conditionally normal distributed vector
is simulated can be found in [21]. Finally, the centroid Mn and the coef-
ficient vector (a0,0, a1,0,Re(a1,1), Im(a1,1), . . . ,Re(aL,L), Im(aL,L))T describe
the realized particle being placed into polytope Pn.

Sometimes we have to struggle with the case that an undesired and de-30

generated particle is created. On the one hand, a particle is identified as
degenerated in the same way as in [22], namely, if the maximum particle
extension max{ψ(θ, φ)} is larger than 1.5 times the maximum distance of
the centroid Mn to the boundary of its polytope. Furthermore, a particle is
deemed to be degenerated if it has a negative extension, i.e., if ψ(θ, φ) < 035

for some direction (θ, φ), which is possible by definition. In the case that
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a particle is identified as degenerated, we first try to handle this problem
by running up to 1000 repetitions to create a new particle, i.e., drawing
new realizations from a conditionally normal distributed random vector.
If this still results in a degenerated particle (which occurs in very few, if
any, instances), then we ultimately create a particle with coefficient vector5

(ã0,0, 0, . . . , 0)T, where ã0,0 = rpart/Y0,0(θ, φ) = 2
√
πrpart. Such a particle

is simply a sphere with center Mn and radius rpart. For rpart we distin-
guish between two situations. If the connectivity graph indicates at least
one connection for the particle, then rpart is the maximum distance of the
polytope centroid to a point of the corresponding contact conditions, i.e.,10

rpart = maxi∈{1,...,N}{ri}. A sphere with this radius preserves all contact
conditions. If the connectivity graph does not indicate a connection for the
particle, then rpart is equal to the mark of the marked point which induced
the corresponding particle polytope, i.e., rpart = Rn, where (Sn, Rn) ∈ S
induced polytope Pn. A sphere with such a radius mimics a particle of the15

originally target size. Note that the idea to ultimately describe a particle
through a sphere is reasonable, since the particles in the considered cathode
materials exhibit nearly spherical shapes.

3.5.5. Morphological smoothing of the particle system

The stochastic 3D microstructure modeling is completed by the following20

step. First, we discard all auxiliary tools such as the marked point patterns,
the Laguerre tessellation or the connectivity graph and only keep the created
particle system which might have a partially rough surface resulting in a too
large surface area. To avoid this, we perform a morphological closing of the
particle phase with a ball of radius 2 voxels as structuring element. Sub-25

sequently, we proceed with an opening of the particle phase with the same
structuring element. For more information about morphological closing and
opening we refer, e.g., to [39] and [40].

4. Model validation

After having introduced the stochastic 3D modeling approach for micro-30

structures of cathodes, we perform a validation by comparing several image
characteristics which are computed, on the one hand, from (segmented)
tomographic image data and, on the other hand, from realizations of the
model. Thereby, we will demonstrate that the model achieves good fits
for all considered image characteristics regardless of the scenario P, A1 or35

A2. All characteristics are computed on images with a size of 400 × 400
voxels in horizontal direction and either zP, zA1 or zA2 voxels in vertical
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direction depending on the given scenario. That is, for each tomographic
data set, we cut out four disjoint subimages with the corresponding size from
the larger image (which has 1000 × 1000 voxels in horizontal direction, see
Section 2.2), since four is the maximum number of disjoint cutouts having
a size of 400× 400 voxels that can be extracted from it. On the other hand,5

four realizations of the model are generated in windows with the same size.
In the following, the depicted result of each considered characteristic

is the mean over the results of this characteristic computed on four tomo-
graphic cutouts or four model realizations. Additionally, some of the follow-
ing figures contain the ranges between the (pointwise estimated) minimum10

and maximum values as shaded areas, see, e.g., Figure 11.

4.1. Characteristics of pore phase

We first validate the model by comparing some characteristics which
show that the model is able to generate pore morphologies as observed in
tomographic data sets. Recall that one of the features in the considered15

cathodes are the locally occurring large pores. To deal with this observation,
a marked point pattern was introduced which is supposed to model large
pores (see Section 3.2). Furthermore, the additional pore polytopes from
Section 3.4.1 also contribute to a suitable pore morphology. A characteristic
perfectly depicting that the model leads to suitable pore morphologies is the20

so-called continuous pore size distribution (see [31] for details). It describes
how much volume of the pore phase can be covered by (overlapping) spheres
of a fixed radius or, in other words, how much porosity can be accessed if
we fill in the pore phase with such spheres. A good accordance, especially
for pores with large radii, between the continuous pore size distributions for25

tomographic and simulated data holds for all three scenarios P, A1, A2 and
is depicted in Figure 11.

The morphology of pore phase plays an important role regarding trans-
port properties of cathodes, since lithium ions flow through the pore phase
during charging and discharging of the batteries. In particular, an appro-30

priate characteristic to evaluate the geometry of transport paths through
the pore phase is its tortuosity and, more precisely, the so-called geodesic
tortuosity [41], which describes the ratio of the length of shortest paths
through the pore phase in through-plane direction divided by the thickness
of the cathode. Figure 12 shows the distribution of these ratios for randomly35

chosen starting points on the ”bottom” of the cathode in through-plane di-
rection.
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(a) Scenario P (b) Scenario A1 (c) Scenario A2

Figure 11: Continuous pore size distribution, where the value for a radius of 0 corresponds
to the overall porosity.

(a) Scenario P (b) Scenario A1 (c) Scenario A2

Figure 12: Geodesic tortuosity of paths through pore phase in through-plane direction.

4.2. Characteristics of particle phase

We now validate the model by comparing the particle systems of to-
mographic and simulated image data. Visual inspection of the 3D cutouts
described at the beginning of Section 4 shows a very good accordance for the
pristine cathode (scenario P), see Figure 13, which also holds for the other5

two scenarios. We can recognize a suitable pore morphology and, in partic-
ular, the particles seem to have appropriate locations, sizes and shapes. To
confirm this, we take a closer look at several characteristics of the particle
phase.

To begin with, we compare so-called first order characteristics, namely,10

volume fraction and specific surface area (i.e., surface area divided by bulk
volume) of the particle phase. Table 5 shows the mean values and rela-
tive errors listed for scenarios P, A1 and A2. The volume fraction is well
controlled by the model (see also Section 3.5.2), just the values of specific
surface area are a bit too large for simulated data of scenarios A1 and A2.15

Before we continue to consider characteristics which evaluate the particle
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(a) Tomographic image data (b) Simulated image data

Figure 13: 3D renderings of microstructure cutouts of the pristine cathode (scenario P).

volume fraction specific surface area (1/ µm)
P A1 A2 P A1 A2

tomographic 0.3358 0.3737 0.4144 0.1958 0.1991 0.2199
simulated 0.3342 0.3758 0.4131 0.1945 0.2087 0.2353

relative error 0.48% 0.56% 0.31% 0.66% 4.8% 6.98%

Table 5: Mean value and relative error of volume fraction and specific surface area of the
particle phase.

phase in its entirety, we first look at some characteristics which help us to
validate single components of the model. These are the models of marked
point patterns, connectivity graph and Laguerre tessellation, where in Sec-
tion 3.2 the final marked point pattern S has described the approximate
locations and sizes of particles. Note that we do not have to give thought5

to the intensity of these points (i.e., the expected number of particles per
unit volume) and the distribution of their marks, because we directly adjust
these two model components to the features which we observe in tomo-
graphic data. Thus, we are just interested in the structural arrangement
of these points and compare it to the arrangement of particle midpoints in10

tomographic data. The so-called nearest neighbor distance distribution [42]
is a useful characteristic to evaluate the spatial arrangement of points. It
describes the probability of a randomly chosen point of the point pattern
to find its nearest neighbor within some given distance. The corresponding
probability distribution functions for a given range of distances are shown15

in Figure 14 and exhibit an excellent fit. Next, we briefly check whether
the simulated connectivity graph from Section 3.3 mimics the graph which
describes particle connectivity in (segmented) tomographic data. For this
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(a) Scenario P (b) Scenario A1 (c) Scenario A2

Figure 14: Nearest neighbor distance distribution function.

(a) Scenario P (b) Scenario A1 (c) Scenario A2

Figure 15: Histograms of the coordination numbers, where the first two bins (at 0) indicate
the relative frequencies of unconnected particles.

purpose, we consider the distribution of the coordination number, i.e., the
number of directly connected particles per particle. Histograms of the coor-
dination numbers are shown in Figure 15. The fits of the distributions are
very good and, of course, also the mean coordination numbers are correct
since they have been adjusted when we determined the correction factor c at5

the end of Section 3.3.2. Furthermore, the relative frequencies of particles
having no connection are nicely fitted by the graph model, which is indicated
by the first two bins (at 0) of the histograms in Figure 15. To obtain rea-
sonably shaped particles, especially nearly spherical particles, the shapes of
the convex polytopes for particles {Pn} of the final Laguerre tessellation T10

introduced in Section 3.4.1 are very important. In particular, the enhanced
insertion of further pore polytopes in Section 3.4.1 aims at polytopes for
particles having, among others, nearly spherical shapes. Then, it is also
more likely that the particles under contact conditions have nearly spherical
shapes. As an indicator of spherical-shaped particle polytopes we consider15

the distribution of sphericity of these polytopes, where sphericity means
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how spherical an object is compared to an ideal sphere. More precisely, the
sphericity Ψ is equal to π

1
3 (6Vobj)

2
3 /Aobj , where Vobj is the volume and Aobj

is the surface area of the considered object (e.g., a polytope), see [43]. The
corresponding distributions are depicted in Figure 16, where it is clearly vis-
ible that the simulated results correspond to the tomographic observations5

very well.

(a) Scenario P (b) Scenario A1 (c) Scenario A2

Figure 16: Distribution of sphericity of particle polytopes.

Finally, we return to characteristics which evaluate the entire morphol-
ogy of the particle phase. A characteristic giving us an insight into the
3D morphology of the particle phase is the so-called chord length distribu-
tion [44]. Let Fω : [0,∞)→ [0, 1] denote the probability distribution function10

of the length of segments (chords) which run through the particle phase in
a predefined direction ω, e.g., in through-plane direction. In other words,
if a randomly chosen straight line in direction ω crosses the cathode, then
segments of intersection with the particle phase occur. The probability that
the length of such a (random) segment is less than or equal to c ≥ 0 is15

then given by Fω(c). In this paper, we analyze the chord length distribution
in through-plane and two perpendicular in-plane directions. In Figure 17
we show the estimated curves for the pristine cathode (scenario P). The
fit between the chord length distributions extracted from tomographic and
simulated microstructures is also pretty good for the other two scenarios.20

Last but not least, we investigate the sphericity of particles. Nearly
spherical-shaped particles are typical for cathodes, but under the given con-
tact conditions in the model it is hard to realize particles of such a shape.
Table 6 gives the mean sphericity of particles for each scenario, whereas
Figure 18 depicts the corresponding distributions of the sphericity. For each25

scenario, the mean sphericity of particles from simulated data is very close
to that of particles from corresponding tomographic data. Just the distribu-
tions of the sphericity slightly differ from each other, because for simulated
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(a) Tomographic (b) Simulated

Figure 17: Chord length distributions for the pristine cathode from tomographic and sim-
ulated data. In case of tomographic data, the slightly left-shifted chord length distribution
in through-plane direction is just an artifact due to small thickness of the cathode and it
does not result from anisotropy of the material, since there is no anisotropy in any of the
three scenarios. In general, the chord lengths in simulated data are slightly smaller, but
the model perfectly hits the isotropy of the cathodes.

data the distributions are narrower (i.e., have smaller variances) and do not
reach as many values very close to 1 as in tomographic data. Neverthe-
less, we are able to create particles having acceptable sphericity values as
a direct consequence of suitable polytopes for particles and the dynamic
parameter L.

mean sphericity of particles
P A1 A2

tomographic 0.8975 0.8964 0.9071
simulated 0.902 0.8974 0.8978

relative error 0.5% 0.12% 1.03%

Table 6: Mean sphericity of particles.

5

5. Discussion of changes in microstructure caused by cyclical aging

As Section 4 showed significant differences between scenarios P, A1 and
A2 with respect to several microstructure characteristics, we will now discuss
and interpret these results in detail.

First of all note that electrical aging affects all parts of a Li-ion bat-10

tery cell, but especially the positive (cathode) and negative (anode) active
material. Moreover, electrical aging of scenarios A1 and A2 does affect
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(a) Scenario P (b) Scenario A1 (c) Scenario A2

Figure 18: Distribution of sphericity of particles.

anode and cathode in a similar way, so that differences in cell capacity as
described in Section 2.1 are valid indicators for the decrease of performance
and the changes in microstructure of anodes and cathodes. In particular,
it is well-known that massive decrease of anode capacity is caused by cy-
cling and storage in high battery cell state of charge (SOC). This results in5

lower electrochemical potentials which lead to degradations like increase of
solid electrolyte interface (SEI), deposition of metallic lithium on graphite
particles and particle cracking [45].

In the present paper, cyclic profiles were designed in a way that very
high and very low SOCs were reduced to a minimum to avoid the aging10

mechanisms stated above; in detail, the hybrid-electric-vehicle profile (A1)
was cycled in a SOC-range between 70% and 40% and the electric-vehicle
profile (A2) was set to a range between 90% and 5%. Nevertheless, there are
significant differences between the microstructures of scenarios P, A1 and
A2. Note that in general the morphological characteristics computed for ag-15

ing scenario A1 are often closer to corresponding characteristics of pristine
material than those obtained for scenario A2, which suggests that there is
evidence for larger mechanical aging stress on cathode side using scenario
A2. A common descriptor of this phenomenon is the volume fraction of
active particles which is defined as the (expected) volume of active parti-20

cles per unit volume of the analyzed material. Table 5 shows the extracted
volume fractions for tomographic measurements which nicely mesh with the
measured cell capacities from Section 2.1. The increase of volume fraction
for the cycled samples can be explained by mechanical stress caused by elec-
trical load which leads to a densification of particle systems [46]. Cycling25

of sample A2 (higher depth of discharge (DOD)), causes higher mechanical
stress which can be validated by the highest decrease of capacity as well
as the highest volume fraction of active particles observed. Furthermore,
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one can see effects of mechanical aging stress by having a closer look at the
continuous pore size distribution (see Figure 11). The tomographic data
of pristine (Figure 11(a)) and hybrid-electric-vehicle aged materials (Fig-
ure 11(b)) show that there is a significant higher amount of larger pores
(e.g., pore radii greater 6µm) available than one can see in Figure 11(c) for5

electric-vehicle aged material. Also the geodesic tortuosity (see Figure 12)
reflects the phenomenon of densification of the particle systems, which the
decreasing occurrence of tortuosity values close to 1 and the (slightly) in-
creasing mean tortuosity show in Figures 12(a)-12(c). Regarding the coor-
dination numbers, we can recognize a shift of their histograms to the right10

from scenario P via A1 to A2 (see Figures 15(a)-15(c)). This can again be
explained by densification mechanisms.

However, most likely, these differences between the microstructures of
scenarios P, A1 and A2 do not yet fully explain the decrease of (electrical)
capacity which has been observed for these scenarios, see Section 2.1. We15

thus suppose that there might be further structural degradation phenomena,
e.g. regarding the inner structure of the porous active particles, which can
not be visualized by the tomographic X-ray imaging technique considered
in the present paper.

6. Summary and outlook20

Our intention to enhance the recently developed models for the mi-
crostructure of anodes was successfully accomplished and an accordingly
adapted model for the microstructure of cathodes could be achieved. The
basic concepts of the stochastic 3D model for cathodes are in principle those
of the anode models, but several structural differences between anode and25

cathode materials required modifications of the previous models. This in-
cludes the locally occurring large pores in the considered cathodes and the
generally low volume fraction of the particle phase. Therefore, a random
marked point pattern which particularly models such large pores was incor-
porated into the modeling approach. By means of a Laguerre tessellation it30

induces empty pore polytopes which form the desired large pores. Further-
more, the connectivity graph which indicates the particles being connected
was slightly modified. For example, the graph does not have to be fully
connected anymore. But the most important modifications with respect to
the previous anode models concern the shapes of the cathode particles. In35

contrast to the graphite anode particles, the metal oxide cathode particles
exhibit nearly spherical shapes, where especially the larger particles seem to
be almost spherical-shaped. For this purpose, two main modifications were
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made and now the particles in structures simulated by the model exhibit
suitable (nearly spherical) shapes. The first modification concerned the La-
guerre polytopes into which particles are placed. They initially were too
large and had shapes which made it impossible to place nearly spherical-
shaped particles into. Therefore, by a rather sophisticated procedure fur-5

ther generators for empty pore polytopes were determined. These additional
pore polytopes then shrink the polytopes for particles and simultaneously
give them a (more spherical) shape which makes it easier to place nearly
spherical-shaped particles into. The second modification concerns the par-
ticles themselves and their representation as truncated spherical harmonics10

series expansions. In the previous anode models, the spherical harmonics
series expansion is truncated at a fixed parameter L, but now this L is dy-
namically coupled for each particle to its number of connections given by the
connectivity graph. Creating particles this way has two advantages. Parti-
cles which have to fulfill a smaller number of connections are less restricted15

by these contact conditions and have reasonable shapes also for small L.
The choice of large L is necessary if the particle has to fulfill a large number
of connections. Then, a large L gives this particle ”more degrees of freedom”
such that the particle is able to take a nearly spherical shape.

Finally, the enhanced stochastic 3D modeling approach developed in20

the present paper can generate virtual microstructures of Li-ion cathodes
which resemble their microstructures reconstructed by synchrotron tomog-
raphy. The goodness of fit between simulated virtual structures and the
tomographic ones was confirmed by model validation based on several mor-
phological image characteristics. Moreover, through the alteration of model25

parameters it was possible to calibrate the model not only to a pristine but
additionally to two cyclically aged cathodes.

This latter aspect shows that our cathode model is as flexible as the previ-
ously developed anode models and therefore it could also be used for virtual
materials testing. That is, the model is able to generate further virtual, not30

yet manufactured cathode morphologies with optimized performance prop-
erties. To investigate cathode morphologies regarding their performance,
the simulated structures can then be used as an input for spatially resolved
electrochemical simulation models, see [47, 48].
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[1] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, and D. Riu.
A review on lithium-ion battery ageing mechanisms and estimations for
automotive applications. Journal of Power Sources, 241:680–689, 2013.

[2] M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre,5

K. Nechev, and R. J. Staniewicz. Main aging mechanisms in Li ion
batteries. Journal of Power Sources, 146(1):90 – 96, 2005.

[3] N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun, K. Amine,
G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce. Challenges facing
lithium batteries and electrical double-layer capacitors. Angewandte10

Chemie International Edition, 51(40):9994–10024, 2012.

[4] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach. Chal-
lenges in the development of advanced li-ion batteries: a review. Energy
& Environmental Science, 4(9):3243–3262, 2011.

[5] S. Cho, C.-F. Chen, and P. P. Mukherjee. Influence of microstruc-15

ture on impedance response in intercalation electrodes. Journal of The
Electrochemical Society, 162(7):A1202–A1214, 2015.
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