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Abstract

The evolution of the microstructure in corrosive environments plays a key role for the performance
and durability of cementitious materials, however, appropriate methods to quantitatively describe
microstructural alterations are limited. Here, statistical analysis of microscopic data is used to
describe changes in porosity, continuous and individual pore size distributions of reactive cement
phases during leaching and carbonation of hydrated cement blends. Therefore, BSE images ob-
tained from (un)damaged areas of the cement blends were segmented using image processing tech-
niques, followed by geometrical characterization and quantitative evaluation of the microstructural
response(s). It is shown that the dissolution of portlandite generates a high meso- and macro-
porosity (> 100-4000 nm pores), whereas precipitation of C-(A)-S-H and Ca-carbonate polymorphs
leads to a densification of the microstructure, i.e., reducing the fine meso- and micro-porosity (<
500 nm pores). Cement blends made with hydraulically active SCMs and chemically poorly reactive
carbonate fillers performed better than pure (OPC-based) cement paste.

Keywords: Blended cements, Supplementary cementitious materials, Statistical image analysis,
Microstructure, Leaching

∗Corresponding author
Email address: orkun.furat@uni-ulm.de (Orkun Furat)

Preprint submitted to Construction and Building Materials June 9, 2021



1. Introduction

The substitution of ordinary Portland cement (OPC) by supplementary cementitious materials
(SCMs) has become common practice in concrete production due to environmental, technical and
economic benefits [1, 2, 3, 4]. Nowadays, SCMs like granulated blast furnace slag, metakaolin, fly
ash, silica fume, limestone powders and industrial waste products among others are used in concrete
at low up to very high levels, e.g., between 10 % and 70 % for cement [5, 6, 7, 8, 9]. Such cement
blends have a lower or even negative CO2 fingerprint than OPC [10] and can exhibit an improved
resistance against various physical and chemical attacks, such as freeze-thaw, carbonation, external
sulfate attack and leaching [11, 12, 13, 14].

It is well known that the type, amount and composition of SCMs substituted for cement exert an
important control on the mineralogy, abundance, distribution and chemical properties (e.g. solubil-
ity) of the hydrated cement phases, which in turn define the physical characteristics of the cement
paste (e.g. total porosity, pore size distribution and density) and thus the durability properties
of the hardened concrete [15, 16, 17, 18]. Substitution of SCMs for cement generally reduces the
portlandite content [Ca(OH)2] of a certain mix design, because the SCMs can react with Ca(OH)2

to form calcium-silicate-hydrates (C-S-H phases) during cement hydration (e.g. [19]). C-S-H phases
are the principle reaction product in fully hydrated concrete.

Dissolution of Ca(OH)2 and C-S-H phases, for example, via exposure of concrete to soft water
(e.g. meteoric water or drainage solutions), leads to an increase in porosity and in a reduction
of strength [20, 21, 22, 23]. This weakening of the concrete’s microstructural and mechanical
properties can subsequently promote a great variety of alteration phenomena, such as Ca-loss and
C-S-H phase transformation, alkali-silica reaction, carbonation, de-dolomitization, microorganisms
attack, chlorine ingress and/or external sulfate attack [12, 15, 16, 24, 25, 26]. Among these processes
mentioned above, a high resistance against leaching attack is arguably one of the most important
durability parameter for concrete, if considering that leaching enhances other attack forms [18, 27]
and takes place in nearly all man-made and natural surroundings (e.g. [14, 28, 29]).

The substitution of SCMs for cement has a positive effect on the leachability of concrete due
to less soluble Ca(OH)2 and denser matrices [30]. The influence of the mix design, type of cement
and SCMs used, water/binder ratio, curing time, exposure conditions, etc. on the leachability of
OPC-based concrete has been extensively studied (e.g. [21, 31]). Recently, it has been reported in
Baldermann et al. [8] that hydrated cement blends with 10 up to 70 wt.% of SCM substitution can
exhibit a performance equal or better than OPC-based cement pastes in weakly corrosive environ-
ments due to mineralogical and microstructural improvements. However, an advanced knowledge
of how these critical parameters affect the material’s performance is still limited.

In the present paper, we elucidate microstructural details, such as the development of porosity,
continuous and individual pore size distributions as well as the grain size distribution of portlandite,
of five hydrated cement blends and of one OPC-based reference mix, previously introduced in
Baldermann et al. [8], using an advanced approach based on statistical image analysis of back-
scattered electron (BSE) image data to characterize the damage progress in the cement blends. For
such a quantitative analysis, image processing algorithms have to be applied on the BSE image
data in order to semantically segment the latter into phases or even individual pores and grains
[32, 33, 34, 35, 36, 37]. The segmentation of image data depicting the material’s microstructure
has some advantages over other available pore space characterization methods, such as mercury
and Wood’s metal intrusion [38, 39, 40], because it allows to compute well-defined descriptors
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for characterizing the microstructure’s geometry and reactive phase content and distribution [41,
42]. A phase-wise segmentation of image data, e.g., the segmentation into pore space and solid
phase, allows for the computation of various informative scalar descriptors, i.e., single numerical
values, like porosity, tortuosity and constrictivity [43]. Additionally, functional descriptors like, for
example, the continuous pore size distribution or chord length distributions of the pore space can be
computed, which provide less aggregated information on the material’s phases [44, 45]. Segmenting
the phases of image data further into individual objects of interest like pores or grains allows for
the computation of size and shape characteristics of each pore or grain [37]. Then, the material
can be efficiently analyzed by fitting parametric probability distributions to the histograms of the
considered characteristics [46].

Although mathematical procedures and approaches to optimize BSE image qualities and to
obtain quantitative porosity data from processed BSE images are commercially available, such
standardized results are often not presented at a high level of accuracy, as they frequently do
not account for the complexity of the pore space and the mineral phase compositions seen among
different sets of samples. Herein, we describe advanced algorithms to compute and interpret the
complex distributions of pore spaces and portlandite phase contents across zones of increased vs.
decreased chemical reactivity within hydrated cement blends. The presented approach may help to
overcome current limitations in the identification of the relations between mineral phase reactivity,
alteration mineralogy and corrosion behavior of hydrated cement blends exposed to corrosive CO2

environments. Therefore, we combine and calibrate well-established conventional algorithms from
image processing to compute advanced microstructure descriptors from BSE image data of cement
blends. The considered descriptors are used to characterize the evolution of the microstructure of six
hydrated cement blends in the course of leaching and carbonation, both qualitatively and quantita-
tively. Therefore, in Section 2.1 we shortly describe the materials and the imaging procedure which
have been considered in Baldermann et al. [8]. The methods from digital image processing utilized
for segmenting and analyzing the image data are described in Section 2.2. Then, the microstructure
descriptors considered in the present paper which can be computed from the segmented BSE image
data, are introduced in Section 2.3. This approach leads to a more detailed probabilistic charac-
terization of pore space and portlandite phase content and relative distribution across the samples.
Up to our knowledge, this is the first time where such characterization using functional descriptors
has been performed for cementitious materials. The results and a quantitative comparison between
the considered hydrated cement blends based on the advanced microstructure descriptors are given
in Section 3, where we identify physical and chemical key processes that significantly contribute to
the formation of zones of chemical reactivity vs. unreactive or passivated zones. This knowledge
can help to better understand the links between mineralogy of hydrated cement blends and the
development of alteration patterns upon chemical corrosion. Finally, the microstructural responses
of the cement pastes due to combined leaching and carbonation are summarized in Section 4.

2. Materials and methods

2.1. Sample preparation and primary characterization

The mix design of the cement blends, their fabrication, curing and subsequent alteration matrix
(i.e. combined leaching and carbonation tests) are described in detail in Baldermann et al. [8].
Briefly, a reference paste (CEM100) made from pure CEM I 52.5R (clinker content: > 95 wt.%;
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Table 1: Mix design for the reference cement and cement blends.

Sample CEM I SF MK MEF MIF GS water w/p

ID [cm3] [cm3] [cm3] [cm3] [cm3] [cm3] [cm3] [-]

CEM100 159.6 300.6 0.6

CEM90/SF10 143.6 22.8 300.6 0.6

CEM90/MK10 143.6 19.3 300.6 0.6

CEM60/MEF32.5/MK7.5 95.7 15.2 60.3 300.6 0.6

CEM60/MEF32.5/MIF7.5 95.7 60.3 13.9 300.6 0.6

CEM30/GS70 47.9 120.1 300.6 0.6

C3A content: 12 wt.%) and five cement blends made from the same cement and containing dif-
ferent amounts and types of SCMs were cast, according to [47, 48]. The cement blends are made
of the following SCMs or mixes thereof: silica fume (SF), metakaolin (MK), limestone mesofiller
(MEF), limestone microfiller (MIF) and granulated slag (GS). They are labelled as CEM90/SF10,
CEM90/MK10, CEM60/MEF32.5/MK7.5, CEM60/MEF32.5/MIF7.5 and CEM30/GS70, where the in-
dices refer to the percentage of cement which was substituted with the respective SCM (Table 1).
These mix designs are currently considered for use in various weakly corrosive environments, such
as in underground construction sites, yet their equivalent performance to ordinary Portland-based
cements without SCMs has to be proven. The water/powder-ratio (w/p-ratio) was adjusted to 0.6
for all mix designs. The cement pastes were filled into cylindrical plastic tubes (diameter: 70 mm;
height: 150 mm) and rotated for 12 h to prevent the specimens from segregation. The total volume
of the specimens produced varied from 460 cm3 to 470 cm3.

The specimens were immediately transferred into semi-permeable plastic bags which were stored
at 100 % relative humidity for a period of 182 days at 20± 2 °C to ensure full hydration. Over this
timeframe, a thin film of bleed water developed on the specimens’ surface which was permanently
undersaturated with respect to the partial pressure of CO2 in atmosphere (PCO2 = 10−3.4 atm),
causing weakly aggressive leaching of the cement pastes. The subsequent conversion of CO2(1)

into dissolved carbon species (mainly CO3
2− due to alkaline pore water conditions) induced a fur-

ther carbonation of the cement pastes and other mineral dissolution and re-precipitation reactions.
Specifically, the pore water was at any time close to saturation or undersaturated with respect to
portlandite and C-S-H phases of variable type and chemical composition, and highly supersatu-
rated with respect to CaCO3 polymorphs (calcite and vaterite), hydrotalcite [Mg6Al2CO3(OH)16 · 4
(H2O)] and other AFm phases, such as hydrotalcite (cf. Fig. 2 in reference [8]). These condi-
tions promoted the development of an alteration layer, i.e. a leached, cracked and carbonated zone
of variable thickness (0.1 up to 1.5 mm) depending on the mix design of the specimens. On the
other hand, the inner zone of the specimens remained unaltered. All materials were subjected to
mineralogical, spectroscopic, thermo-analytical and electron-microscopic techniques to study the
progress of microstructural damage upon combined leaching and carbonation attack [8]. Important
parameters of the altered and unaltered zones of each mix design are provided in Table 2.

2.2. Acquisition and processing of image data

Microscopic alteration features across the specimens were visualized on polished surfaces using
backscattered electron (BSE) images (8-10 images for each sample with width: 50 µm and height:
35µm at a pixel size of 24.4 nm) collected on a Zeiss Sigma 300 VP microscope operated at 15 kV.
These image dimensions and numbers of images were chosen to ensure a reasonable degree of
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Table 2: Compilation of microstructural properties and reactive phase contents of hydrated cement blends [8].

sample thickness sample number porosity port- Ca/Si ratio Al/Si ratio

ID of corrosive description of BSE landite of C-S-H of C-S-H

layer [µm] images [%] [%]a (molar)b (molar)

CEM100 1470 ± 220
unaltered 10 9.5 ± 2 19.7 1.71 ± 0.20 0.12 ± 0.05

altered 10 23.2 ± 7 17.7 1.23 ± 0.21 0.24 ± 0.09

CEM30/GS70 120 ± 40
unaltered 9 5.7 ± 2 6.2 1.39 ± 0.33 0.37 ± 0.04

altered 9 6.2 ± 1 6.1 1.16 ± 0.27 0.32 ± 0.06

CEM90/SF10 170 ± 50
unaltered 10 6.9 ± 2 14.5 1.57 ± 0.14 0.14 ± 0.07

altered 8 9.8 ± 2 13.0 1.21 ± 0.09 0.25 ± 0.08

CEM90/MK10 370 ± 80
unaltered 8 6.4 ± 1 15.9 1.59 ± 0.22 0.31 ± 0.05

altered 10 5.6 ± 12 12.5 1.32 ± 0.17 0.35 ± 0.06

CEM60/MEF32.5/ 420 ± 60
unaltered 8 7.3 ± 2 15.5 1.53 ± 0.25 0.16 ± 0.04

MIF7.5 altered 8 8.0 ± 5 14.3 1.34 ± 0.11 0.23 ± 0.08

CEM60/MEF32.5/ 210 ± 40
unaltered 8 6.2 ± 2 8.2 1.56 ± 0.19 0.27 ± 0.11

MK7.5 altered 8 6.2 ± 3 7.7 1.32 ± 0.16 0.30 ± 0.07

aBased on thermogravimetric analyses.
bBased on SEM-EDX analyses.

precision and direct comparison of the microstructural properties of the individual samples [49],
e.g., after the segmentation described in Section 2.2.3 we observe between 748 an 3291 individual
pores in each considered scenario and sample. Moreover, the low standard deviations reported
for the porosity in Table 2 indicate a good reproducibility of the data (with the exception of
CEM90/MK10 (altered)). Mineral identification in the unaltered and altered zones of each mix
design was realized by energy dispersive X-ray spectroscopy (single spot analysis at 15 kV; beam
diameter: 1-2 µm; acquisition time: 30 s; number of EDX analysis: 3-6 per sample and zone) using
an Oxford Instrument X-max80 SDD EDXS detector. The analytical precision is better than 2 at.%
for Ca, Al and Si analyses [50]. The BSE images allow a quantitative microstructure analysis of
the considered cement blends. However, note that the 3D microstructural objects of the blends,
like pores or grains, are sampled by means of 2D sections only [51]. According to the instrumental
set-up we have chosen the smallest pores to be identified are ∼30-50 nm in size, which is consistent
with published literature [8]. Thus, interlayer space in and intragranular porosity of C-S-H phases
are not visualized by this approach. A sequence of 8-10 BSE images per sample and zone were
considered in the statistical analysis of image data in order (i) to overcome common problems with
resin embedding and polishing the surface of the samples and (ii) to obtain a representative picture
of the microstructural properties of the individual mix designs. In the following, only the average
values are reported unless stated otherwise.

Therefore, the raw BSE image data (see Figure 1a) were processed and semantically segmented
such that a differentiation between the material’s main mineral phases and the pore space (see also
Figure 2 for details) was enabled, i.e., a proper binarization of the image data allows a separation
into pore space, primary hydrated cement phases (portlandite and C-S-H phases) and alteration
minerals (CaCO3 polymorphs and hydrotalcite), respectively (see Figure 1c).

In Section 2.3, various pore space descriptors are explained which are used to characterize
the cement’s pore space from the binarized image data like, for example, the porosity or more
sophisticated descriptors like the continuous pore size distribution [52, 53]. In addition to the
binarization of BSE images, the pore space was further decomposed into individual pores, which
allows for an in-depth analysis of the microstructure of the cement blends. Analogously, the main
characteristics (area fraction, grain size distribution) of portlandite, i.e., the most reactive hydrated
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cement phase, were quantitatively assessed by binarizing and further object-related segmenting the
image data. However, note that due to the 2D nature of the image data the computation of some
characteristics describing the 3D material is difficult or only possible under certain assumptions,
like, for example, stationarity, i.e. spatial statistical homogeneity, and isotropy. Furthermore, some
characteristics, like the pore/grain size distribution, computed from 2D sections will be biased
towards smaller sizes [51]. Nevertheless, the 2D image data allows for a direct comparison between
the cement blends considered in the present paper.

Below, the image processing steps are described, which were performed to enhance and segment
the individual BSE images. Therefore, we consider an image I with a resolution of n×m pixels to
be a map I : Z2 → R with I(x) = 0 for x /∈ W , where W = {1, . . . , n} × {1, . . . ,m} is the sampling
window. Then, the (image) value of a pixel at the coordinate x ∈ W is given by I(x). Note
that the microscope is equipped with an Angle Selective BSE (HDAsB) detector using nitrogen as
the imaging gas at variable pressures between 10 and 133 Pa, which is ideal for precise boundary,
feature and particle measurements at high spatial resolution even in the high vacuum mode (1.2 nm
at 15 kV). Nevertheless, there is some noise present in the image data, thus the first image processing
step consists of denoising which, however, can blur image features at a small scale.

2.2.1. Image denoising

Denoising of image data can be performed by linear operations, like for example, convolving
the image I with a Gaussian kernel [54]. Even though this relatively simple but fast approach can
reduce noise significantly, it has the disadvantage of blurring the output image. Therefore, a more
sophisticated non-linear operation was used to reduce noise in the image data, namely the so-called
non-local means denoising algorithm [55]. Using this method, the values Idenoised(x) of the denoised
image Idenoised are computed as weighted sums from the original BSE image I, i.e.,

Idenoised(x) =
∑
y∈W

w(x, y)I(y) for each x ∈ W. (1)

The weight function w : W 2 → [0,∞) is given by

w(x, y) =
1

Z(x)
exp

(
− 1

h2

∑
z∈N

Gσ(z)|I(x+ z)− I(y + z)|2
)
, (2)

where N ⊂ Z2 is a certain (sub-) sampling window centered at the origin o = (0, 0), Gσ is a
bivariate Gaussian kernel centered at o with standard deviation σ and covariance % = 0, Z(x) is a
normalization factor and h > 0 is a parameter controlling the degree of smoothing. Results of the
non-local means denoising algorithm are visualized in Figure 1b.

2.2.2. Segmentation of the pore space

In order to determine the pore space in image data the smoothed image Idenoised has to be
binarized, i.e., we compute a new image Bpore the pixel values Bpore(x) of which are equal to 0
or 1, where Bpore(x) = 0 if x ∈ W corresponds to the pore space. Therefore, we compute an
initial binarization Binitial by global thresholding of Idenoised with some threshold T > 0. For each
series of images taken from the individual cement blends the threshold values were manually chosen
[56] such that the resulting porosities observed in binarized images were identical to the published
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: Image processing steps performed to enhance and segment the BSE image data. a: Raw image data.
b: Denoised image. c: Binarized image depicting the pore space obtained after global thresholding followed by
morphological closing (see Figure 2 for details). d: Euclidean distance transform. e: Segmentation of the pore space
into individual pores, where each pore is visualized by its own color. f: Segmentation into solid phase (white), micro-
(black), meso- (dark gray) and macropores (bright gray). Due to the resolution of the BSE images micropores below
10-20 nm cannot be depicted properly. g: Binarized image depicting portlandite obtained after global thresholding
followed by morphological closing. h: Segmentation of the portlandite phase into individual grains, where each grain
is visualized by its own color.
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thresholding

morphological

closing

Figure 2: The procedure for binarizing a denoised image Idenoised (left). After thresholding the initial binarization
Binitial (middle) is smoothed by morphological closing in order to obtain the final binarization Bpore of the BSE
image into solid phase and pore space (right).

porosity data given in Table 2. The results were cross-checked with published X-ray diffraction and
thermogravimetric data for verification of accuracy. Figure 2 (middle) depicts the initial binarization
Binitial which exhibits rather rough boundary lines at the interface between the pore space and the
solid phase, where the roughness is caused by noise. In order to reduce this roughness, we use a
morphological closing operation with a disk-shaped structural element, the size of which controls
the degree of smoothing [35, 57]. Furthermore, the smoothing performed by morphological closing
removed small connected components associated with pores which were not distinguishable from
noise. Note that too large structural elements may significantly modify characteristics of the binary
image data, e.g., the surface area or the number of connected components. The final binarization
of the pore phase and the solid phase is depicted in Figure 1c, see also Figure 2 (right).

2.2.3. Segmentation of individual pores

The binarized image Bpore allows for an extensive analysis of the pore space. However, it is not
yet possible to distinguish individual pores from Bpore, since the 2D sections of neighboring pores
might be connected in the image data. Consequently, a determination of the size of 2D sections of
individual pores is not directly possible. Therefore, we partition the pore space depicted in Bpore

into individual pores using a marker-controlled watershed algorithm [35, 58], see Figure 1e. The
conventional watershed algorithm is a region growth algorithm. It considers a grayscale image I
as a topographic map in which, metaphorically speaking, “basins” are filled with “water”. The
algorithm grows individual basins (regions) starting from local minima of the image I. When two
regions touch each other they are separated by a watershed line, resulting in a partition of the
image I. Since each local minimum of the image leads to its own region in the segmentation, the
conventional watershed algorithm splits, in many applications, the objects of interest into too many
regions. This effect is also referred to as oversegmentation. To overcome this issue, we assigned,
in a prior step, each object of interest, i.e., each pore, with a single marker. Thus, instead of
growing regions from local minima the marker-based watershed algorithm grows them from these
predetermined markers. Below, it is described in more detail how the markers are computed for
segmenting the pore space.

First, the Euclidean distance transform Ξ of the binary image Bpore is computed, which is given
by

Ξ(x) = min
y∈W,Bpore(y)=1

‖x− y‖ for each x ∈ W, (3)

where ‖ · ‖ denotes the Euclidean norm. For pixels x ∈ W associated with the pore space, i.e.,
with Bpore(x) = 0, the value Ξ(x) is the distance from x to the solid phase. If x belongs to the
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solid phase, i.e., if Bpore(x) = 1, we have Ξ(x) = 0. Thus, Ξ is a grayscale image corresponding
to the binary image Bpore. Note that centers of pores are roughly located at the local maxima of
Ξ or equivalently at the local minima of −Ξ, see Figure 1d. As mentioned above the watershed
algorithm leads to oversegmentation when taking into consideration every local minimum for the
region growth procedure. Therefore, we suppress unnecessary minima in −Ξ by computing the so-
called h-minima transform [35], from which the local minima are used as markers for the watershed
algorithm. The resulting segmentation of the binary image Bpore is denoted by S, see Figure 1e for
a segmentation of the pore space depicted in Figure 1c into individual pores.

2.2.4. Segmentation of micro-, meso- and macropores

The decomposition of the pore space into individual pores allows to distinguish between different
types of pores, i.e., pores can be categorized by their size as micro-, meso- and macropores. There-
fore, the areas A1, . . . , An of each individual pore in S are computed by counting the number of
pixels associated with the given pore. Then, the area-equivalent diameters d1, . . . , dn are computed
by

dk =

√
4Ak
π

(4)

for each k = 1, . . . , n. Based on the diameter dk we define the three types of pores mentioned above.
Namely, according to [59], a pore with area-equivalent radius rk = dk/2 is called

micropore, if rk ≤ 100 nm,

mesopore, if 100 nm < rk ≤ 1000 nm,

macropore, if rk > 1000 nm.

Thus, using these three categories of pores the segmentation S of the binary image Bpore can be
transformed into an image depicting four phases, namely the solid phase, the micro-, meso- and
macropores, see Figure 1f.

2.2.5. Segmentation of the portlandite phase

Similarly to the binarization of the denoised image Idenoised, i.e., its decomposition into the
pore space and the solid phase described above, we identify the portlandite phase by an additional
binarization step. More precisely, using thresholding followed by morphological closing, we compute
the binary image Bport. For pixels x ∈ W corresponding to the portlandite phase the image Bport

has the value 1. Note that the threshold Tport (which is larger than the threshold T chosen for the
segmentation of the pore space) to determine the portlandite phase within the different zones of the
samples was chosen manually, as the z-contrasts between, for example, calcite and portlandite are
relatively similar. However, the accuracy of our statistical image analysis was verified by comparison
with full-quantitative estimates obtained from X-ray diffraction and TG data (cf. Table 2), and the
offset between the datasets turned out to be less than 1 %. For the altered zone of sample CEM100

the binary image Bport is visualized in Figure 1g. Analogously to the procedure for segmenting
the pore space into individual pores, we segment Bport into individual portlandite grains using a
marker-controlled watershed algorithm, see Figure 1h.
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2.3. Statistical analysis of image data

Both the binary image Bpore and its segmentation S into individual pores, determined by the
approach described in Section 2.2, allow a quantitative characterization of the pore space, which
subsequently allows for a quantitative comparison of the microstructural properties of the different
hydrated cement blends.

In order to characterize the cement blends using the processed image data considered in Sec-
tion 2.2, we first investigate the porosity, which is an aggregated pore space descriptor. Then,
more complex, functional characteristics are computed, like the continuous pore size distribution
and the individual pore size distribution. Furthermore, these characteristics are assessed for each
individual type of pores, i.e., for micro-, meso- and macropores. Note that some of the pore space
characteristics considered in this paper can be easily transferred to the binary image Bport depicting
the portlandite phase and its segmentation into individual portlandite grains (see Section 2.2.5).
For example, from the binary image Bport we can determine the area fraction of portlandite, which
is, under the assumption of stationarity and isotropy of the material, equal to its volume fraction
in 3D and an analogue of the porosity determined from Bpore [60, 61]. Furthermore, the grain size
distribution of portlandite grains is determined analogously to the computation of the individual
pore size distribution described above.

2.3.1. Porosity

A characteristic pore space descriptor is the porosity ε, which is the area fraction of the pore
space in the image data. Note that assuming spatial statistical homogeneity and isotropy of the
material, ε is equal to the volume fraction of pore space in 3D. It can easily be estimated from the
binary image Bpore by

ε =

(
1− 1

|W |
∑
x∈W

Bpore(x)

)
, (5)

where |W | denotes the cardinality of the setW , i.e., |W | = nm for an image Bpore with a resolution of
n×m pixels. Analogously, the area-fractions of micro-, meso- and macro-pores, i.e., their respective
porosities, denoted by εmicro, εmeso and εmacro, respectively, can be computed.

2.3.2. Continuous pore size distribution

Even though the porosity ε, as a single numerical value, efficiently helps characterizing the pore
space, it is a highly aggregated characteristic, i.e., it does not, for example, distinguish between
the size and shape of individual pores. Therefore, more sophisticated characteristics of the pore
space are computed. One of them is the continuous pore size distribution (CPSD), which provides
a functional characterization Fcpsd : (0,∞)→ [0, 1] of the pore space. More precisely, the values of
the function Fcpsd of a binary image Bpore can be determined by

Fcpsd(r) =
1

|W |
∑
x∈W

1Ξ(x)>r, (6)

where Ξ is the Euclidean distance transform of Bpore given in Equation (3) and 1 denotes the
indicator function, i.e.,

1Ξ(x)>r =

{
1, if Ξ(x) > r,

0, else.
(7)
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The value Fcpsd(r) of the CPSD given in Equation (6) is the area fraction of that part of the pore
space which can be covered by overlapping disks with radius r. The overlapping disks have to be
completely contained in the pore space. Note that, contrary to cumulative distribution functions,
CPSDs are monotonously decreasing. Furthermore, for infinitesimally small radii r the values of
Fcpsd converge to the porosity ε, i.e., limr↓0 Fcpsd(r) = ε.

2.3.3. Distribution of individual pore sizes

Although the CPSD can easily be computed from the Euclidean distance transform Ξ of the
binary image Bpore it does not distinguish between individual pores observed in the segmentation
given in S, i.e., it does not contain any information regarding the distribution of individual pore
sizes. More specifically, the CPSD does not provide a probability density f : R→ [0,∞) from which
we can compute the probability P(D ∈ [a, b]) of a random pore size D belonging to some interval
[a, b] by

P(D ∈ [a, b]) =

∫ b

a

f(d) dd. (8)

Therefore, in the following it is described how such probability densities can be derived from image
data, more specifically, from the area-equivalent diameters d1, . . . , dn of pores computed from the
segmentation given in S, see Section 2.2.4. A general parametric approach for modeling the (in-
dividual) pore size distribution is exemplarily described for the image data of the unaltered zone
of sample CEM100. For the other cases considered in the present paper the modeling has been
performed analogously.

The histogram of the area-equivalent diameters d1, . . . , dn observed in the unaltered zone of
sample CEM100 is visualized in Figure 3. Note that the distribution of pore sizes can be described
more efficiently by fitting a parametric probability distribution to the sample d1, . . . , dn. More
precisely, for a given parametric family of probability densities {fθ : θ ∈ Θ} (e.g., normal, log-
normal or gamma distribution) with some set Θ of potentially admissible parameter values, the
parameter θopt ∈ Θ providing the best fit fθopt is determined by maximizing the (log-)likelihood
function L [62], i.e.,

θopt = arg max
θ∈Θ

L(θ; d1, . . . , dn), (9)

where the likelihood function L is given by

L(θ; d1, . . . , dn) =
n∏
k=1

fθ(dk). (10)

Note that for many parametric families of probability densities there are explicit formulas for com-
puting the optimal parameter θopt. If no formula is given the optimization problem considered in
Equation (9) is solved numerically.

In order to compare various fits obtained for different parametric families of probability densities,
we use the Akaike information criterion (AIC) [62] which prefers families with large maximum
values L(θopt; d1, . . . , dn) of the likelihood function while keeping the number of model parameters
small to avoid overfitting. Thus, using the AIC we choose, among several “common” families of
probability densities (namely the Birnbaum-Saunders, Burr, exponential, extreme value, gamma,
generalized extreme value generalized Pareto, half-normal, inverse Gaussian, log-logistic, log-normal,
Nakagami, Rayleigh, Rician, Weibull distributions [63, 64, 65]), the best parametric fit. Note that

11



0 1 2 3 4
0

0.5

1

1.5

diameter d [µm]

p
ro

b
ab

il
it

y
d
en

si
ty

[1
/µ

m
] histogram

fitted Birnbaum-
Saunders distribution

Figure 3: Histogram (blue) of the area-equivalent pore diameters in the unaltered zone of the CEM100 samples with
a parametrically fitted probability density (red).

the considered families of probability densities are mono-modal which reflects the mono-modality
indicated by the histograms of the area-equivalent diameters d1, . . . , dn, see, for example, Figure 3
(blue). For example, the Birnbaum-Saunders distribution provides the best fit for describing the
probability density of the area-equivalent diameter of pores in the unaltered zone of sample CEM100,
see Figure 3.

The probability density f which is fitted to the observed pore diameters d1, . . . , dn (with n =
2315) by means of Equation (9) is called a number-weighted probability density [66, 67].

3. Results and discussion

3.1. Quantitative analysis of the pore space

3.1.1. Porosity

In order to determine the porosity of a mix design in either the altered or unaltered zone, 8−10
BSE images were taken into consideration for each zone of every considered cement blend, each
acquired at the same resolution. The porosity of each image was computed by means of Equation
(5). For each mix design, the median values of these porosities in the altered and unaltered zone,
respectively, were computed to characterize the various mix designs in the respective different zones
with a single porosity value each, see Table 2. Analogously, we computed the area-fractions of
micro-, meso- and macropores, i.e., their respective porosities, denoted by εmicro, εmeso and εmacro.
Table 3 lists the median values of the micro-, meso- and macroporosities for the various cement
blends in both the unaltered and altered zone considered in the present paper.

The porosity of the materials in the unaltered zone is in the typical range of fully hydrated
cement pastes, i.e., varying from 5.7 ± 2.0 % to 9.5 ± 2.0 % for all mixes [68]. As expected, a
reduction of the cement content through addition of SCMs in the cement blends resulted in a
sudden decrease of the porosity up to 30 %, compared to CEM100. This is due to an increase of
the volume of the hydrated cement phases (especially C-S-H and C-A-S-H) via latent-hydraulic
and/or pozzolanic reactions in the presence of hydraulically active SCMs (GS, SF and MK) and/or
an increase of the packing density due to a micro-filler effect induced by chemically poorly reactive
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Table 3: Median values of the micro-, meso- and macroporosities determined for various cement blends.

CEM100 CEM30/GS70 CEM90/SF10

unaltered altered unaltered altered unaltered altered

εmicro [%] 0.0018 0.0019 0.0013 0.0005 0.0020 0.0036

εmeso [%] 6.51 8.61 4.13 3.57 5.94 8.19

εmacro [%] 2.39 12.7 1.73 2.14 0.80 1.94

CEM90/MK10
CEM60

/MEF32.5/MIF7.5

CEM60

/MEF32.5/MK7.5

unaltered altered unaltered altered unaltered altered

εmicro [%] 0.0064 0.0016 0.0014 0.0011 0.0010 0.0011

εmeso [%] 5.66 5.99 5.23 4.08 3.99 4.29

εmacro [%] 0.21 2.36 1.03 2.99 0.80 3.30

carbonate additives (MEF and MIF) [69, 70]. Comparing the porosities obtained in the altered
versus unaltered zone of all mixes it becomes clear that leaching has led to a partially significant
increase in the porosity, in particular in sample CEM100 (2.2-times), relative to the other mixes.
Sample CEM90/SF10 exhibited the second-highest increase in porosity (0.7-times), whereas all other
mixes remained virtually unaffected or slightly lost porosity (cf. changes in porosity in the altered
vs. unaltered zone of each mix reported in Table 2). The comparably high leachability of CEM100

and CEM90/SF10 is most likely due to the high initial portlandite phase content and high Ca/Si
molar ratio of C-S-H in these mixes (Table 2), making their matrices more vulnerable for dissolution
processes, which cannot be counterbalanced by their higher degree of carbonation compared to all
other mixes (cf. Table 2 in [8]). The competition between leaching-induced gain of secondary
porosity versus microstructural densification is evident from the data presented in Table 3: (i) the
dissolution of coarser portlandite grains generates a huge meso- and macro-porosity in all mixes,
except for sample CEM30/GS70, where this effect is less pronounced due to the relatively lower
primary portlandite content (Table 2; [71]). (ii) Ongoing precipitation of hydrated cement phases
and fine alteration minerals results in a simultaneous reduction (CEM30/GS70 and CEM90/MK10) or
stabilization (CEM100, CEM60/MEF32.5/MIF7.5 and CEM60/MEF32.5/MK7.5) of the micro-porosity
despite of progressive leaching action, with the only exception being CEM90/SF10, which gained
micro-porosity. The latter, however, is characterized by significant alteration of the C-A-S-H phase
composition (cf. Table 3 in [8]), which suggests that the cement matrix of this mix is more vulnerable
for leaching attack.

3.1.2. Continuous pore size distribution

Furthermore, the pore space was characterized more extensively with the help of CPSDs. By
means of Equation (6), CPSDs were computed from the 8− 10 BSE images for each zone of every
considered cement blend. The results are depicted in Figure 4, where the curves were obtained by
computing the pointwise median values of the CPSDs of each BSE image obtained from the altered
or unaltered zone, respectively. These results indicate that, generally speaking, i.e. in 5 of 6 cases
(the only exception being CEM30/GS70), for any radius r ∈ [0 µm, 1.5 µm] the fraction of the pore
space, which can be filled with circles of radius r, is systematically larger in the altered zone.

From these data, three distinct trends can be observed in terms of modification of the pore
system: (i) pure cement paste and CEM90/SF10 (i.e., made with silica fume) showed a high reac-
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tivity, in particular, the finer pores were much more affected than the coarser ones and the porosity
gain was generally larger compared to the other mixes (cf. Table 2). This can be attributed to
enhanced portlandite leaching and incomplete pozzolanic reaction between microsilica and port-
landite, respectively, which retarded a sufficient densification of the microstructure [48]. (ii) Mixes
CEM90/MK10 and CEM60/MEF32.5/MK7.5 (i.e., made with metakaolin) showed a lower porosity
gain, but a significant deterioration of the coarser pores compared to all other mixes. A similar
negative effect of metakaolin additives was recently observed in Steindl et al. [71] for wet- and
dry-mix shotcrete samples subjected to sulfate attack. (iii) In contrast, mixes CEM30/GS70 and
CEM60/MEF32.5/MIF7.5 (i.e., made with granulated slag and limestone) showed a gradual, but
much slower shift to a higher porosity and all types of pores were affected in a similar manner. This
suggests that enhanced C-(A)-S-H and hydrotalcite formation as well as packing density optimiza-
tion by addition of slag and fine limestone can improve the leaching resistance of cement blends,
corroborating prior findings reported in [3, 71].

3.1.3. Distribution of individual pore sizes

Analogously to the parametric probability density shown in Figure 3, we have fitted the proba-
bility densities of the pore sizes for the unaltered and altered zones of each cement blend considered
in the present paper, see Figure 5. Comparing the probability densities, it is evident that the mode
is typically shifted to the left, i.e., to a smaller pore size, which is due to the microstructural densifi-
cation described above (CEM30/GS70 is the only exception). Dissolution-re-precipitation reactions
within the cement matrix and aggregate grains contributed further to changes in the probability
densities of the pore sizes, i.e., an increase in the heterogeneity of the different materials is seen,
as it can be inferred from the overall “broadening” of the probability density (see red curves in
Figure 5). Because probability densities can often be described by just a few parameters, and many
characteristics like, e.g., the mean value and the variance can be computed directly from probabil-
ity densities they are an efficient and informative tool for characterizing materials. More precisely,
there are formulas for computing characteristics (mean value, variance etc.) of the distribution from
parameters, see [63, 64]. For reproducibility of the results, Table 4 lists the parameters of the fits
depicted in Figure 5. Furthermore, the fitted probability densities f allow for the computation of
conditional probability densities. For example, from f , we can easily characterize the size distribu-
tion of macropores, i.e., pores with an area-equivalent radius larger than 1µm. More precisely, the
probability density fmacro of the macropore sizes is given by

fmacro(d) =
f(d)∫∞

2
f(x) dx

for each d > 2. (11)

Note that analogously to Equation (11) we can determine the probability densities of micro- and
mesopore sizes from f .

3.2. Portlandite phase analysis

As mentioned above, some of the characteristics considered in Section 2.3 for describing the pore
space can easily be transferred to the portlandite phase. For example, by substituting Bpore with
Bport in Equation (5) we can compute the portlandite area fractions for the cement blends listed in
Table 2.
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Figure 4: Pointwise median values of the CPSDs computed for the cases listed in Table 2 for the unaltered (blue)
and altered (red) zones.
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Figure 5: Probability densities of pore sizes of the cement blends listed in Table 2 for the unaltered (blue) and altered
(red) zones.
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Table 4: Parameters of fitted probability densities describing the pore size distributions depicted in Figure 5. Formulas
for these probability densities of the parametric families of distributions can be found in [63, 64].

cement
blend

zone
family of
distributions

parameter values

CEM100
unaltered Birnbaum-Saunders β = 0.56, γ = 0.74

altered Birnbaum-Saunders β = 0.74, γ = 0.96

CEM30/GS70
unaltered Birnbaum-Saunders β = 0.63, γ = 0.77

altered lognormal µ = −0.27, σ = 0.75

CEM90/SF10
unaltered gamma a = 2.33, b = 0.3

altered Birnbaum-Saunders β = 0.55, γ = 0.81

CEM90/MK10
unaltered

generalized
extreme value

k = 0.3,
σ = 0.17, µ = 0.31

altered Birnbaum-Saunders β = 0.72, γ = 0.95

CEM60/
MEF32.5/MIF7.5

unaltered lognormal µ = −0.54, σ = 0.7

altered lognormal µ = −0.38, σ = 0.82

CEM60/
MEF32.5/MK7.5

unaltered lognormal µ = −0.55, σ = 0.67

altered Birnbaum-Saunders β = 0.65, γ = 1.05

Furthermore, from the segmentation which partitions the binary image Bport into individual
portlandite grains, see Figure 1h, we compute the area-equivalent diameter of each grain. As de-
scribed in Section 2.3, we can then fit parametric probability distributions to the extracted grain
sizes. The results are visualized in Figure 6. The corresponding families of distributions and pa-
rameters are given in Table 5. From these data, two fundamentally different processes can be
recognized: (i) The relative increase of portlandite grains with smaller sizes (i.e. < 0.5 µm) in the
altered zone is interpreted to be due to a relative decrease of the coarser portlandite grains (i.e.
0.5-3.0 µm) through leaching, which also explains the increase in the macro-porosity of most mixes
(cf. Figure 5). The only exception is sample CEM90/MK10, probably because of the relatively high
amounts of neo-formed carbonates in this mix, which passivated and protected even the coarser
portlandite grains from dissolution or conversion to other hydrated cement phases. Similar passi-
vation effects have been described in [1, 3, 18] and are illustrated in Figure 7. (ii) The preservation
of the smaller portlandite grains is due to an encapsulation effect induced by the precipitation of
volume-expansive hydrated cement phases, i.e., C-(A)-S-H, which prevented the small portlandite
grains from further dissolution (cf. Figure 8). It is expected that these portlandite grains will
dissolve once the larger portlandite grains have been quantitatively consumed and this process will
affect the durability development of the cement blends on the long-term [8, 71].

4. Conclusions

We characterized the evolution of the microstructure of the pore space and the portlandite phase
of six different cement blends upon coupled leaching and carbonation, using statistical image analysis
based on BSE images of 2D sections of the considered samples. As microstructural descriptors
for the modification of the pore space and the reactive phase content, we used the porosity but
also functional descriptors like the continuous pore size distribution and the probability density of
individual pore sizes. Furthermore, we distinguished between micro-, meso- and macropores which
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Figure 6: Portlandite grain size distributions of the cement blends listed in Table 2 for the unaltered (blue) and
altered (red) zones.
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Table 5: Parameters of fitted probability densities describing the grain size distributions depicted in Figure 6.
Formulas for the probability densities of these parametric families of distributions can be found in [63, 64].

cement
blend

zone
family of
distributions

parameter values

CEM100
unaltered gamma a = 1.15, b = 0.68

altered Birnbaum-Saunders β = 0.32, γ = 1.52

CEM30/GS70
unaltered Birnbaum-Saunders β = 0.23, γ = 1.67

altered inverse Gaussian µ = 0.48, σ = 0.13

CEM90/SF10
unaltered Nakagami µ = 0.3, ω = 1.17

altered Birnbaum-Saunders β = 0.17, γ = 1.81

CEM90/MK10
unaltered Nakagami µ = 0.49, ω = 0.5

altered Nakagami µ = 0.36, ω = 1.23

CEM60/
MEF32.5/MIF7.5

unaltered Nakagami µ = 0.52, ω = 1.52

altered Nakagami µ = 0.53, ω = 1.15

CEM60/
MEF32.5/MK7.5

unaltered Nakagami µ = 0.41, ω = 0.81

altered Birnbaum-Saunders β = 0.18, γ = 1.74

Figure 7: SEM-BSE images of CEM90/MK10 (left) and CEM60/MEF32.5/MK7.5 (right) showing portlandite grains
(P) encapsulated by a thin layer of secondary calcite (CSec). Note that areas rich in partly carbonated C-S-H phases
have a diffuse particle shape vs. primary calcite (C) with a rhombohedral particle shape added as MEF (or MIF)
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Figure 8: SEM-BSE images of CEM90/MK10 (left) and CEM60/MEF32.5/MK7.5 (right) showing portlandite grains
(P) encapsulated by volume-expansive, fine to foil-like C-(A)-S-H.

allowed the computation of their respective area fractions, i.e., the computation of the micro-, meso-
and macroporosity. Moreover, the progress in portlandite phase reactivity of the considered cement
blends was characterized by their grain size distributions. These descriptors of the microstructure of
the considered cement blends allowed for a detailed analysis of the microstructural changes occurring
during leaching and carbonation, which can be summarized as follows:

(i) The reduction of the OPC content by substitution with SCMs (granulated slag, silica fume,
metakaolin, limestone, and some of their combinations) led to a decrease in porosity up to
30 %, compared to pure cement paste without additives. Formation of volume-expansive
hydrated cement phases (C-S-H and C-A-S-H), prolonged latent-hydraulic and/or pozzolanic
reactions and improvements of the packing density due to a carbonate micro-filler effect are
the reasons for this porosity reduction.

(ii) Leaching causes a partially significant increase in porosity, depending on the mix design. A
severe deterioration of the microstructure was evident in the pure cement paste, compared
to the cement blends. Generally, gain in porosity was generated in the meso- and macropore
system (>100 nm).

(iii) The dissolution of portlandite grains is responsible for the increase in the meso- and macro-
porosity. The addition of granulated slag (i.e., sample CEM30/GS70) may reduce this effect,
because of a relatively lower primary portlandite content, compared to the other mixes. In
contrast, precipitation of C-(A)-S-H, hydrotalcite and Ca-carbonate polymorphs result in a
microstructural densification, which is expressed by a decrease in the micro- and fine meso-
porosity (<500 nm) in the altered mixes. The only exception is sample CEM90/SF10 (i.e.,
made with silica fume), where the cement matrix was more vulnerable for leaching.

(iv) Carbonation and also C-(A)-S-H phase formation can enhance the passivation of highly re-
active hydrated cement phases (i.e., portlandite) via an encapsulation mechanism, which
partially prevents the cement matrix from further leaching. This effect is most pronounced in
sample CEM90/MK10 (i.e., made with metakaolin).
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(v) All cement blends made with hydraulically active SCMs and chemically poorly reactive car-
bonate micro- and meso-fillers showed a better resistance against leaching than pure (OPC-
based) cement paste.
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