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Abstract—Charge transport in disordered materials, such
as organic and amorphous inorganic semiconductors, is often
modeled in a stochastic framework. The microstructure of the
disordered material is interpreted as a realization of a stochastic
model and, given a realization of this model, the charge transport
process itself is treated as a random process. In this paper,
we give an introduction to this combined stochastic modeling
approach. We first describe the basic physics underlying charge
transport in disordered materials. Then, we discuss stochastic
models of the material and the charge transport process. In
organic semiconductors, charge transport is modeled either by
a continuous-time random walk in a random environment or an
interacting particle system in a random environment. In amor-
phous inorganic semiconductors, charge transport is modeled by
a continuous-time random walk in a deterministic environment.
In the organic semiconductor case, the resulting stochastic models
need to be solved using numerical methods. As such, we discuss
Monte Carlo methods for estimating charge transport properties.
In particular, we discuss a recently developed method, Aggregate
Monte Carlo, which can be used to significantly speed up Monte
Carlo simulations. Finally, we discuss the problem of modeling
recombination in organic semiconductors.

I. INTRODUCTION

The charge transport properties of organic semiconductors
(and, to a lesser extent, amorphous inorganic semiconductors)
are a major focus of research in condensed matter physics
and materials science. These materials offer many advantages
over conventional semiconductors. In particular, they are often
cheap to produce, light-weight and can have attractive me-
chanical properties (for example, they may be very flexible).
Applications of organic semiconductors include organic light-
emitting diodes (OLEDs) and organic solar cells. A general
introduction to the field is given in [1].

Stochastic modeling plays a key role in studying charge
transport in these semiconductor materials. There are two
reasons for this. Firstly, organic and amorphous inorganic
semiconductors are disordered materials. Such materials can
be interpreted as realizations of stochastic models. For ex-
ample, a given spatial configuration of molecules could be
thought of as a realization of a spatial point process and
the corresponding molecular energies could be regarded as
a realization of a Markov random field (whose neighborhood
structure is induced by the spatial locations of the molecules).
The second reason is that the modeling of the charge transport

process is usually at a molecular level, where the motion
of single and interacting charge carriers is best described by
random processes.

This paper aims to give a brief introduction to the physics of
charge transport in disordered semiconductors, to explain the
links between the physics and various stochastic models, and
to describe some recent achievements in stochastic modeling
of charge transport. A particular focus is placed on efficient
Monte Carlo methods for estimating charge transport proper-
ties.

II. CHARGE TRANSPORT IN DISORDERED
SEMICONDUCTORS

A. Types of Semiconductors

Conventional inorganic semiconductors are made from crys-
talline solids such as silicon. These materials have highly
ordered structures, with the molecules arranged into lattices.
However, there are some defects in the structure caused, for
example, by the vibration of the constituent molecules; see
[2] for more details. Amorphous inorganic semiconductors do
not have the crystalline structure of conventional inorganic
semiconductors and are, thus, disordered materials.

Organic semiconductors are made from materials that pri-
marily consist of hydrogen and carbon atoms. In contrast to
conventional semiconductors, these materials can have highly
disordered structures. This is often due to the way in which the
materials are fabricated; see [3]. The disorder manifests itself
in two different forms: energetic disorder and spatial disorder
(often called diagonal disorder and off-diagonal disorder in
the physics literature). Energetic disorder refers to the disorder
in the energies of the molecules (or polymer segments) which
form the material. Spatial disorder refers to the disorder in the
locations of these molecules (or polymer segments).

B. Charge Transport Basics

In solids, electrons are confined to certain bands of energy.
Electrons in the conduction band are able to move through
the material. Electrons in the valence band are not. The band
gap describes the difference in energy between the lowest
unoccupied energy state in the conduction band and the highest
occupied energy state in the valence band. In semiconductors,
this band gap is quite small. When an electron has sufficient



energy (which could be obtained, for example, from a photon),
it is able to jump from the valence band to the conduction
band and begin moving through the material. When an electron
jumps into the conduction band, it leaves behind a free space
in the highest occupied energy state of the conductance band.
This free space, called a hole, also moves through the material.
Both holes and electrons carry charges (they are different
species of charge carriers). When holes and electrons moving
through the material come into contact, they can recombine.
That is, the electron can reoccupy its place in the conduction
band, releasing energy. Recombination is an important process
in semiconductors.

In conventional semiconductors, charge carriers are de-
localized. This means they can be treated as if they are
moving through a continuous state space. When an electric
field is applied, this movement is well described using a
modified version of the classical Drude model. In this model,
the charge carrier (more precisely, a quasi-particle) moves
according to Newton’s laws of motion until it hits a defect.
At this point it scatters, changing direction according to some
probability distribution and changing speed according to the
local temperature. For more details, see [2] and [4].

In the presence of sufficient disorder in the material, how-
ever, the charge carriers become localized. In other words,
they do not move freely through the material but rather hop
from molecule to molecule (or polymer segment to polymer
segment). The phenomenon of localization in the presence
of disorder was first identified by Anderson in the seminal
paper [5]. This localization can be explained by the presence
of energy states within the band gap from which a charge
carrier must escape; see [4]. As a result of the localization,
the nature of charge transport in disordered semiconductors is
very different to that in conventional semiconductors.

C. Charge Mobility

In the absence of an external electric field, charge carriers
move about randomly within a material with no drift in
any direction. When an external uniform electric field, F , is
applied, the charge carriers begin to move in the direction of
F . The drift velocity, v, of the transport process is the average
speed of a charge carrier as it moves through the material in
this direction. The charge mobility, µ, is the drift velocity
normalized by the magnitude of the force. That is,

µ =
v

|F |
.

Charge mobility is one of the most important quantities
describing charge transport in semiconductors. It is closely
related to the current and the conductivity of the material;
see [1]. Charge mobility behaves very differently in organic
semiconductors than it does in conventional semiconductors.
In organic semiconductors, the behavior of the charge mobility
is closely related to the nature and degree of disorder in the
material being considered.

A number of techniques exist that are able to measure the
charge mobility of a material experimentally. The most widely

used of these techniques is time of flight measurement (ToF).
In this approach, a slice of material of width L is sandwiched
between two electrodes. Electron-hole pairs are generated at
one of the electrodes using photoexcitation. One species of
charge carrier is immediately absorbed at this electrode. The
carriers from the other species travel through the material
to the opposite electrode. The current at this electrode is
measured as a function of time and the drift velocity, v, is
estimated by

v =
L

t̄
,

where t̄ is the average time taken for a charge carrier to reach
the electrode. See [1], [6], [7] and references therein for more
details on ToF.

D. Dependence on Temperature, Force and Carrier Density

Charge mobility depends on a number of macroscopic
variables, in particular, temperature, T , the strength of the field
F and the concentration of charge carriers, ρ. In conventional
semiconductors the drift velocity is usually proportional to the
field strength. As a result mobility is constant as a function
of |F |. This changes, however, at high field strengths, where
the drift velocity begins to increase only sub-linearly towards
a limiting velocity, known as the saturation velocity, and the
mobility begins to decline; see [2] for more discussion. Be-
cause temperature increases scattering, it decreases mobility.
This dependence is usually of the form µ(T ) ∝ T−α for some
0.5 ≤ α ≤ 3; see [6].

ToF experiments have shown that charge mobility in highly
disordered materials behaves very differently from charge
mobility in conventional semiconductors. In particular, the
mobility of disordered semiconductors exhibits a strong de-
pendence on the strength of the external force. For a large
range of field strengths, the mobility follows a Poole-Frenkel
type-law of the form logµ(F ) ∝

√
|F |. Much of the work

on modeling charge transport in disordered media has focused
on capturing this Poole-Frenkel behavior; see the discussion
in [7]. The temperature dependence is also different for
organic semiconductors, with the mobility following either an
Arrhenius-like law of the form logµ(T ) ∝ T−1 or a law of the
form logµ(T ) ∝ T−2; see [6]. Recently, the focus of much
research has been on correctly describing the dependence of
mobility on the density of charge carriers; see, e.g., [8], [9],
[10], [11] and [12]. In experiments, it appears that mobility is
more or less constant for very low charge carrier densities but
begins to increase according to a power law beyond a given
threshold.

The main reason for the markedly different behavior of
mobility in highly disordered semiconductors is the presence
of trap regions in the material. These are groups of molecules
or polymer segments whose energies are markedly lower
than the energies of surrounding molecules/segments. Charge
carriers, which prefer lower energies, become trapped in these
regions for long period of time (and, thus, do not move quickly
through the material). Increasing the strength of the electric
field, helps the charge carriers to escape these low energy



regions. Likewise, when the density is increased, some of the
charge carriers fill the low energy regions, allowing the other
charge carriers to move easily through the material.

III. HOPPING MODELS FOR ORGANIC SEMICONDUCTORS

The motion of a single charge carrier through a highly
disordered material is naturally modeled as a continuous time
random walk in a random environment. The random environ-
ment represents the possible locations of the hopping sites
and their associated energies and the random walk describes
the location of the charge carrier. In practice, realizations
of the random environment are simulated and mobilities are
calculated for each realization. Conditioned on a realization of
the random environment, the motion of a single charge carrier
is described by a continuous-time Markov chain (CTMC). The
mobility of the material is estimated by averaging over the
mobilities of each realization of the random environment.

When multiple charge carriers are considered, their motion
is again modeled by a stochastic process in a random en-
vironment. Given a realization of the random environment,
each charge carrier attempts to move as it would if its
dynamics were determined by a CTMC. In the simplest model
of interactions, the transition rates of this CTMC are the
same as in the single carrier case except that the charge
carrier is not allowed to jump to a site if it is occupied
by another charge carrier. Thus, given the environment, this
process is an exclusion process. In more sophisticated models
of the interaction between charge carriers, repulsive Coulomb
interactions are included by changing the transition rates of
the single carriers depending on the locations of nearby charge
carriers.

A. Hopping Transport

Usually, the random environment considered is not infinite.
Instead, for computational reasons, it is restricted to a bounded
window, W ⊂ R3, with periodic boundary conditions (thus,
approximating an infinite environment). A realization of the
random environment typically consists of a geometric graph,
G = (V,E), and the generator, Q = {qi,j}, of a V -valued
CTMC describing the dynamics of a single charge carrier. The
set of vertices of the graph, V ⊂ R3, records the locations of
the hopping sites. These sites are labeled 1, . . . ,M = |V |. The
set of edges, E, describes possible transitions that a charge
carrier can make. There is an edge between two sites, i and
j, if and only if qi,j 6= 0. The calculation of the rate matrix
depends on a number of factors, foremost amongst them the
locations and energies, {Ei}Mi=1 ⊂ RM , of the hopping sites.
In addition, the transition rates may depend on additional
information about the hopping sites (for example, when the
hopping sites are molecules, their orientations may effect the
transition rates).

The choice of transition rates depends on the nature of
the material, the values of macroscopic parameters and how
detailed the model of the random environment is. The sim-
plest, and most widely used, rates are the Miller-Abrahams

rates; see, e.g., [1], [3]. In this framework, the transition (or
‘hopping’) rate between sites i and j is given by

qi,j =

{
v0 exp{−2 γ Ri,j} if Ej ≤ Ei
v0 exp{−2 γ Ri,j} exp

{
−∆i,j

kBT

}
if Ej > Ei

,

where ∆i,j = Ej−Ei−q(vj−vi)·F and q is the charge of the
charge carrier. Here, Ri,j = ‖vi−vj‖ is the distance between
the locations, vi and vj , of sites i and j, kB is the Boltzmann
constant, v0 is a constant determining the hopping frequency
and γ is a constant that gives the inverse localization radius
of the electron wave function.

Another popular choice of rates is the Marcus transfer rates;
see [6] and [13]. Here, the hopping rate between site i and site
j is given by

qi,j =
2π

~
J2
i,j√

4πλi,jkBT
exp

{
−

(∆ij − λi,j)2

4λi,jkBT

}
,

where ~ is the reduced Planck’s constant, λi,j is the re-
organization energy between sites i and j and Ji,j is the
transfer integral between sites i and j. Note that, in order
to obtain realistic values of λi,j and Ji,j , much more detailed
information about the microstructure of the material is required
than in the Miller-Abrahams case; see [14] and [13].

Usually, transitions rates below a certain threshold are set to
zero (this minimizes the number of edges in G). Alternatively,
only transitions to nearby sites may be considered. When this
thinning of E is performed, care should be taken to ensure
that the resulting Markov chain is still irreducible.

Regardless of the choice of transitions rates, the resulting
Markov chain has the following important qualitative features:

1) Charge carriers prefer to jump to sites with lower
energies.

2) The transition rates from low energy to high energy sites
can be several orders of magnitude smaller than other
transition rates.

It is these features that cause charge carriers to become trapped
in low energies regions of the state space for long periods of
time.

If Coulomb interactions are not modeled in the multiple
charge carrier setting, then the transition rates derived in the
single carrier setting are used to describe the rates at which
hopping attempts are made by the carriers. If a carrier attempts
to jump to an unoccupied site, it does so successfully. If it
attempts to jump to an occupied site, it remains where it is.
Note that the rates of the exclusion process describing the
configuration of charge carriers can be written out explicitly.
However, this does not make sense in practice, due to the size
of the state space. Coulomb interactions can be incorporated
into the rate models by adding an additional term into the
energy difference, ∆i,j . This term depends on the locations of
nearby charge carriers. See [8] for more details.

B. Modeling the Material

As mentioned above, a realization of the random environ-
ment typically consists of a geometric graph G = (V,E)



Fig. 1. A correlated energy surface for a 2D lattice model of hopping sites

and a matrix, Q, of transition rates. Many models have been
developed for these environments, ranging from simple lattice
models to sophisticated models that use computationally-
intensive molecular dynamics simulations.

The most well-established model, described in [15], is the
Gaussian disorder model (GDM). In this model, the set of
locations, V , of the hopping sites is given by the vertices of
a cubic lattice. Thus, there is no spatial disorder whatsoever.
The energies of the hopping sites, {E}Mi=1, are independent
normal random variables with mean 0 and some variance, σ2.
The transition rates are then given by the Miller-Abrahams
rates.

Although the GDM model is able to capture a number of
qualitative features of charge transport in organic semicon-
ductors, it is not able to describe the field dependence of
mobility outside a narrow range of field strengths; see [3] and
[7]. A modification of the GDM that has proven successful
at capturing the field dependence is the correlated disorder
model (CDM). As in the GDM case, the model is lattice-
based and has normally distributed site energies. However,
these site energies are now positively spatially correlated. Such
correlated site energies can be modeled, for example, using a
Markov random field. Figure 1 shows a realization of a Markov
random field describing the energies of hopping sites on a 2D
lattice. Note, in particular, that the correlation encourages the
formation of low energy regions. Although the CDM appears
to be an improvement on the GDM, [11] argues that field
dependence can be properly modeled using the GDM (without
the need for correlated energies) so long as the mobility is
calculated for interacting charge carriers, rather than a single
charge carrier.

In the last few years, increases in computational power
have made much more sophisticated models of the random
environment possible. In [14], the structure of Alq3, a material
commonly used in OLEDs, is simulated at a molecular level
using Monte Carlo methods to simulate the deposition process
that is used to produce the material. In [16], the microstructure
of Alq3 is simulated using molecular dynamics. This approach
is further described in [17]. These approaches are able to
simulate highly realistic configurations of molecules, which
contain the additional information needed in order to use the
Marcus transfer rates. However, they are also computationally
intensive. As a result, the systems sizes that are considered

cannot be too large.
Recently, realistic models of material microstructures based

on stochastic geometry have been developed. Alq3 is modeled
in [18]. DCV4T, which is used as an electron donor in
organic solar cells, is modeled in [19]. These approaches
treat the hopping site locations as a realization of a spatial
point processes. The energies of the hopping sites are then
described by a Markov random field. Additional information,
which is needed in order to use the Marcus transfer rates, is
produced using stochastic models fitted to data from molecular
dynamics simulations. The advantage of the stochastic geom-
etry approach is that it is much less computationally intensive
than molecular dynamics simulations. As a result, much larger
system sizes can be simulated, avoiding finite size effects.

C. Calculating Mobility

In the single carrier case, the mobility of a given realization
of the random environment is calculated as follows. The
position of the charge carrier is given by a CTMC, {Xt}t≥0,
taking values in V and starting at i0. Because the random
environment is typically restricted to a bounded window
W ⊂ R3 with periodic boundary conditions, {Xt}t≥0 has
a finite state space and is irreducible. Thus, {Xt} has a
stationary distribution, π. The drift velocity can then be written
in terms of the stationary distribution as

v =
∑
i

∑
j 6=i

−qi,j
qi,i

πi d(vi,vj),

where d : R3 × R3 → R is the projection onto F of the
signed component-wise distance (taking into account periodic
boundary conditions) between vi and vj . For example, if
W = [0, bx] × [0, by] × [0, bz], then the signed x-component
of the distance is given by

dx(v,v′) =


v′x − vx if |v′x − vx| ≤ bx/2,

bx + v′x − vx if |v′x − vx| > bx/2, vx > v′x,

−bx + v′x − vx if |v′x − vx| > bx/2, vx < v′x,

where v = (vx, vy, vz) and v′ = (v′x, v
′
y, v
′
z). The other

components, dy(v,v′) and dz(v,v
′), are calculated in a

similar fashion. The function d(v,v′) is then given by

d(v,v′) = (dx(v,v′), dy(v,v′), dz(v,v
′)) · F

Using the above formulation, the calculation of the mobility
reduces to solving for the stationary distribution, π. In the
physics literature, π is usually obtained by solving the steady
state form of the master equation (Kolmogorov’s forward
equation), which is given by the system of equations∑

j 6=i

qi,j πj −
∑
j 6=i

qj,i πi = 0

for all i ∈ {1, . . . ,M}; see, e.g., [13].
In the multiple carrier case, the configuration of k

charge carriers is given by a CTMC, {C}t≥0 =

{(X(1)
t , . . . , X

(k)
t )}t≥0, taking values in a subset of V k and



starting at C0 = (i
(1)
0 , . . . , i

(k)
0 ). Given the stationary distribu-

tion of this chain, the velocity can be calculated in a similar
manner to the single carrier case (however, to avoid excessive
notation, we do not give the explicit formula). In contrast to the
single carrier case, it is not practical to calculate the velocity
in terms of the stationary distribution. This is because the size
of the state space is

(
M
k

)
, which becomes prohibitively large

very quickly.
An often used approximation in the physics literature is

the so-called mean field approximation; see, e.g., [13], [20],
[21]. Here, the location of each charge carrier at stationarity
is assumed to be independently and identically distributed
according to the vector π̃, where π̃ is the solution to the system
of equations∑

j 6=i

qi,j π̃j(1− π̃i)−
∑
j 6=i

qj,i π̃i(1− π̃j) = 0

for all i ∈ {1, . . . ,M}. This approximation clearly allows
multiple charge carriers to occupy the same state. However,
a repulsive term is included in the master equation. Note
that, unlike in the single carrier case, the latter equation is
non-linear and is usually solved using an iterative solution
technique as in [22].

IV. MONTE CARLO METHODS FOR ESTIMATING
MOBILITY

Monte Carlo methods are often used to estimate the mobility
of a given realization of the random environment. Such meth-
ods are clearly necessary in the multiple carrier case (except
when using the mean-field approximation). In the single carrier
case, the main motivation for using Monte Carlo methods is
that that they can be easily extended to more complicated
settings. For example, it is straightforward to add additional
charge carriers or another species of charge carriers; see [13].

A. Kinetic Monte Carlo

The standard approach to estimating mobility using Monte
Carlo methods is called kinetic Monte Carlo (KMC) in the
physics community (as it simulates the actual dynamics of the
charge carriers). In the single carrier case, a sample path of
{Xt}t≥0 is simulated. Then, a point estimate of the mobility,
µ, is obtained by normalizing the velocity, v, which is obtained
by dividing the distance the charge carrier has traveled by the
time taken to travel it. More formally, {Xt}t≥0 is simulated
for N steps of the embedded jump chain, {Yn}n∈N0

, where
N0 denotes the non-negative integers.. The velocity is then
estimated by

v̂ =
1

TN

N∑
n=1

d
(
vYn−1 ,vYn

)
,

where TN is the time of the N th jump of {Xt}t≥0. By
the ergodic theorem, this estimator converges to the correct
value almost surely. The complete procedure is described in
Algorithm 4.1.

Algorithm 4.1: Single Carrier KMC

1) Set Y0 = x0. Set t = 0. Set n = 0.
2) Set t = t+ τ , where τ ∼ Exp(−qYn,Yn).
3) Draw Yn+1 from the distribution given by

P(Yn+1 = j |Yn) = − qYn,j

qYn,Yn

.

4) If n < N−1 set n = n+1 and repeat from 2. Otherwise,
return

v̂ =
1

t

N∑
n=1

d
(
vYn−1

,vYn

)
A major disadvantage of the KMC approach is that it often

requires large amounts of computer time in order to return
accurate estimates. The main reason for this is the presence
of trap regions in the energy landscape. A trap region usually
consist of a small number of hopping sites, whose energies are
significantly lower than those of the surrounding sites. When
a charge carrier enters a trap region, it makes an extremely
large number of jumps between the constituent sites before it
is able to escape and continue moving through the material.
This means that most of the computational effort involved in
simulating the Markov chain is spent on jumps between sites
in trap regions (often an order of 106 or 107 jumps may occur
before the carrier leaves the trap region). The end result is that
the Markov chain does not mix quickly enough and requires
a very large number of steps to converge to stationarity; see
[23] for more detailed discussion. This limits both the size of
the random environment and number of realizations that can
be considered.

In the multiple carrier case, the process {Ct}t≥0 is simu-
lated for a given number of jumps and the average distance
traveled by a charge carrier is returned. That is, the velocity
is estimated by

v̂ =
1

k

1

TN

k∑
i=1

N∑
n=1

d
(
v
Y

(i)
n−1

,v
Y

(i)
n

)
,

where Y
(i)
n is the position of the ith particle after the nth

jump of {Ct}t≥0 and TN is the time of the N th jump of
{Ct}t≥0. The procedure is described in Algorithm 4.2.

Algorithm 4.2: Multiple Carrier KMC
1) Set Y (1)

0 = i
(1)
0 , . . . , Y

(k)
0 = i

(k)
0 . Set t = 0. Set n = 0.

2) Set t = t+ τ , where τ ∼ Exp
(
−
∑k
i=1 qY (i)

n ,Y
(i)
n

)
.

3) Draw i∗ according to the distribution given by

P(i∗ = i) = −
q
Y

(i)
n ,Y

(i)
n∑k

j=1 qY (j)
n ,Y

(j)
n

.

4) Draw Y̌ from the distribution given by

P(Y̌ = j |Y (i∗)
n ) = −

q
Y

(i∗)
n ,j

q
Y

(i∗)
n ,Y

(i∗)
n

.

5) If Y̌ 6= Y
(i)
n for all i ∈ {1, . . . , k}, set Y (i∗)

n+1 = Y̌ and
Y

(i)
n+1 = Y

(i)
n for all i 6= i∗. Otherwise, set Y (i)

n+1 = Y
(i)
n

for all i ∈ {1, . . . , l}.



6) If n < N set n = n+ 1 and repeat from 2. Otherwise,
return

v̂ =
1

k

1

t

k∑
i=1

N∑
n=1

d
(
v
Y

(i)
n−1

,v
Y

(i)
n

)
.

The multiple carrier KMC algorithm suffers from the same
limitation as the single carrier algorithm. That is, it spends
most of its computational time simulating charge carriers
jumping back and forth in trap regions, although this can be
somewhat mitigated by dynamically setting hopping rates to
occupied sites to zero. Because multiple charge carrier KMC
already requires far more simulation steps than single carrier
KMC (the number of steps required is roughly proportional
to k), this means that multiple KMC can only be effectively
applied in settings where the system system size and number
of carriers are quite small.

B. Aggregate Monte Carlo for Single Charge Carriers

The aggregate Monte Carlo method (AMC), described in
[23] and [24], was developed to overcome the computational
limitations of the KMC approach. The basic idea is to avoid
simulating the full dynamics of the charge carrier within trap
regions. This is done by coarsening the state space, essentially
aggregating all states within a trap region into a single state. It
is possible to do this in such a way that the resulting estimator
of mobility is consistent; see [19].

The first step in the AMC method is to identify the trap
regions. This is done by considering the jump chain {Yn}n∈N0 .
Although this chain is irreducible, the probability of leaving
a trap region in any given step is very small. Thus, the chain
has a nearly completely decomposable structure. This allows
methods for partitioning the state space of nearly completely
decomposable Markov chains to be used to identify the trap
regions; see [23] and references within.

Given the trap regions, the state space is coarsened by
removing transitions between states inside the traps and then
removing states that become isolated as a result. Thus, when a
charge carrier jumps into a trap region, the next jump will be
to a state outside the trap region. Figure 2 illustrates this. The
left-hand diagram shows the possible transitions the charge
carrier can make in the KMC approach. These transitions can
typically occur in either direction. The right-hand diagram
shows the possible transitions the corresponding stochastic
process, {Ỹn}n∈N0 , can make in the AMC approach. Note
that some of these transitions are only in one direction. When
a charge carrier enters a trap region, it can exit to any state
neighboring the trap region, even if it is itself not a neighbor
of that state. However, the state to which it exits must neighbor
the trap region.

In order to ensure that the mobility estimator is consistent,
the time spent in each trap region must be correctly measured
and the distribution of states to which the charge carrier
can jump on exit should be correct. This is achieved by
treating each trap region as an absorbing CTMC (with the
neighboring states acting as absorbing states). When the
charge carrier jumps into a state in a trap region, the time it

Fig. 2. Possible transitions for carriers in KMC (left) and AMC (right), with
trap regions depicted by circles. In KMC all possible transitions are two way,
but in AMC jumps may only be possible in one direction.

then spends in the trap is taken to be the expected time until
absorption for the corresponding absorbing CTMC. Likewise,
the distribution of exit states is calculated by determining
the probabilities of the absorbing chain being absorbed in
each of the neighboring states. The expected absorption times
and absorption probabilities can be computed using standard
numerical linear algebra packages and are, in practice,
precomputed. The procedure is described in more detail in
Algorithm 4.3.

Algorithm 4.3: Single Carrier AMC
1) Set Ỹ0 = i0. Set t = 0. Set n = 0.
2) If Ỹn is in a trap region, set τ to be the expected time

to absorption of the CTMC starting at Ỹn (where the
neighboring states of the trap region are the absorbing
states). Otherwise, set τ ∼ Exp(−qỸn,Ỹn

).
3) If Ỹn is in a trap region, simulate Ỹn+1 according to the

distribution given by the absorption probabilities of the
jump chain starting at Ỹn (where the neighboring states
of the trap region are the absorbing states). Otherwise,
draw Ỹn+1 from the distribution given by

P(Ỹn+1 = j | Ỹn) = −
qỸn,j

qỸn,Ỹn

.

4) If n < N−1 set n = n+1 and repeat from 2. Otherwise,
return

v̂ =
1

t

N∑
n=1

d
(
vỸn−1

,vỸn

)
The AMC method requires significantly less steps, N , of the

simulation algorithm than KMC in order to obtain an accurate
estimate of the mobility. In both [19] and [23], improvements
of roughly two orders of magnitude are reported.

C. Aggregate Monte Carlo for Multiple Charge Carriers

It would clearly be very beneficial if the AMC algorithm
could be extended to the multiple charge carrier setting, where
Monte Carlo methods are necessary. However, the single
carrier AMC algorithm described above is not easily adapted



to the case of multiple charge carriers. This is because carriers
outside trap regions can interact with carriers inside trap
regions and, as a result, the dynamics of charge carriers within
trap regions cannot be completely ignored. In particular, if
a charge carrier attempts to jump into a trap region that is
already occupied, it is necessary to know where the carriers
are within the trap region.

Recently, a breakthrough has been made in extending the
AMC algorithm to the multiple carrier setting; see [25]. The
basic idea is to consider the full exclusion process restricted
to the trap region (with the neighboring states collapsed into
a single absorbing state). In order for the AMC procedure to
work, the following information needs to be obtained from
this process:

• The random time at which a carrier first tries to exit the
trap region.

• The state to which the carrier attempts to jump.
• If necessary, the distribution of charge carriers within the

trap region at a time prior to the first attempted exit time.

As it transpires, these quantities can be obtained by simulating
a simple birth-death type process (described in [26]), whose
transitions are determined by the eigenvalues of the generator
of the exclusion process restricted to the trap region. As a
result, all the information needed to describe the dynamics
inside the trap region can be obtained in a small number of
simulation steps (say, 20 or 50) without the need to simulate
the whole process, which could make in the order of 106 or
107 jumps within the trap region.

V. CONTINUOUS-TIME RANDOM WALK MODELS FOR
AMORPHOUS INORGANIC SEMICONDUCTORS

Models of charge transport in amorphous inorganic semi-
conductors occupy something of a middle ground between
models for conventional semiconductors and models for or-
ganic semiconductors. This is because charge transport in these
materials can often be modeled as a mixture of a band transport
process and a hopping transport process. In this setting, the
charge carrier moves freely through the material until it comes
into contact with a localized state (trap). It then spends a
random amount of time in this state before escaping and
continuing through the material.

A continuous-time random walk model of such a process
was introduced by Scher and Montroll in [27]. In this model,
the traps are taken to be spatially disordered and the charge
carrier is thought of as hopping between these traps. The
time the carrier spends in a trap is random and depends on
the number and location of nearby traps. Scher and Montroll
argued that this process could be modeled as a continuous-
time random walk on a 3D lattice. The jumps of the random
walk are modeled by a discrete time random walk biased in the
direction of the applied field, F . The waiting times between
jumps have a probability density function, ψ(t), whose tails
follow a power law. More precisely, for t > tmin,

ψ(t) ∝ t−(1+α),

where α > 0. Each random waiting time is supposed to
model both the time spent in the trap and the time taken
to traverse the distance to the next trap. Thus, this model
incorporates the randomness in the environment directly into
the waiting time distribution. Using this approach, Scher and
Montrol were able to explicitly solve for the mobility and
other key quantities; see [27] and [28] for more detailed
discussion. A related model, which was shown to exhibit
similar behavior, is the multiple-trapping model; see [29]
and [30]. In this continuum model, charge carriers diffuse
through the material until they hit a trap state, at which point
they wait for a random period of time before continuing on.
Although these models successfully describe charge transport
in amorphous inorganic semiconductors, they are not good
models for organic semiconductors; see [1] and [31].

VI. RECOMBINATION

Recombination is an important process in many organic
semiconductors. In OLEDs, recombination is a desirable pro-
cess that produces light. In organic solar cells, recombination
is an undesirable loss process that reduces the efficiency of the
cells; see [32]. Recombination occurs when an electron and
hole come close to one another and the electron reoccupies
its place in the valence band, ceasing to move through the
material. When deep trap regions are not present in the mate-
rial, the recombination rate is determined by the mobilities of
the holes and electrons; see [1]. However, when the hole and
electron mobilities are highly asymmetric, the role of traps can
dominate the recombination process. In this case, the carriers
of the slower species become caught in traps and are stuck
in them until they come into contact with the faster moving
species.

Recombination can be modeled within the hopping transport
framework described above. Generally, an attractive Coulomb
force between the two species should be included in the
transition rate model. The recombination rate can then be
studied using Monte Carlo methods. When modeling OLEDs,
the material is treated as finite (i.e. there are no periodic
boundary conditions). One end of the material is specified as
the anode and the other as the cathode. The two species are
then injected at opposite ends of the material, and the number
that successfully make their way across the material without
recombining is recorded.

The simulation of such a complicated process as recombi-
nation is clearly computer intensive. It is possible to extend
the multiple carrier AMC method to this setting. However,
this does not completely alleviate the speed issues. One
particular issue is that the event that an injected charge carrier
successfully reaches the opposite end of the material may be
a rare event. It is well established that standard Monte Carlo
approaches to rare event simulation do not work well; see,
e.g., [33] and [34]. Recently, [35] used importance sampling,
a classical technique from rare event simulation, to develop
a more efficient estimator for a toy model of recombination.
The idea of importance sampling is to simulate a stochastic
process under a different probability measure, under which



the event of interest is more likely, and then to reweigh the
resulting estimator so that it is unbiased. In [35], the change of
measure was effected by reducing the rate of any transition of
the particle system that could lead directly to recombination.
This approach led to moderate speed-ups.

VII. OUTLOOK

With advances in computational power, it is now possi-
ble to use increasingly sophisticated and realistic models of
charge transport within disordered semiconductors. However,
these models are often very computationally intensive. For
this reason, there is a clear need to develop more efficient
numerical tools for studying charge transport. For example,
improved Markov chain Monte Carlo methods for estimating
mobility need to be developed, as do techniques for efficiently
simulating interacting particle systems.

As it stands, little rigorous theoretical investigation of the
stochastic models underpinning charge transport in disordered
media has been undertaken. Rigorous analysis of simple but
indicative models using techniques developed in the study of
random motion in random media would represent a major
development in the field.
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