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∗ These authors contributed equally to this manuscript.

† Corresponding author:

BG Trauma Center

Eberhard Karls University Tübingen
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Abstract

Superficial zone chondrocytes (CHs) of human joints are spatially organized in dis-

tinct horizontal patterns. Among other factors, the type of spatial CH organization

within a given articular surface depends on whether the cartilage has been derived

from an intact joint or the joint is affected by osteoarthritis (OA). Furthermore,

specific variations of the type of spatial organization are associated with particular

states of OA. This association may prove relevant for early disease recognition based

on a quantitative structural characterization of CH patterns. Therefore, we present

a point process model describing the distinct morphology of CH patterns within the

articular surface of intact human cartilage. This reference model for intact CH orga-

nization can be seen as a first step towards a model-based statistical diagnostic tool.

Model parameters are fitted to fluorescence microscopy data by a novel statistical

methodology utilizing tools from cluster and principal component analysis. This way,

the complex morphology of surface CH patters is represented by a relatively small

number of model parameters. We validate the point process model by comparing

biologically relevant structural characteristics between the fitted model and data de-

rived from photomicrographs of the human articular surface using techniques from

spatial statistics.

Keywords : Chondrocyte, Cluster Analysis, Elliptical Cluster Pro-

cess, Human Articular Cartilage, Knee Joint, Matérn Hardcore Pro-

cess, Principal Component Analysis, Spatial Organization
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1. Introduction

Articular cartilage is a connective tissue that functions hydrodynamically to bear

loads and provide almost friction-free movement of diarthrodial joints (Kuettner et al.

(1991)). It is composed of an extracellular matrix and sparsely distributed cells, the

chondrocytes (CHs), which maintain matrix homeostasis via a synchronized balance

between anabolism and catabolism (Kuettner et al. (1991); Poole (1997)). The orga-

nization of the CHs exhibits a depth-dependent density variation (Jadin et al. (2005))

on which the classification into superficial (0-10% tissue depth), middle (10-40%),

and deep (40-100%) cartilage zones with distinct compositions, structures, and func-

tions is based (Hunziker (1992)). In the deeper zones, the cell density is very low, and

CHs are arranged in vertical columns (Stockwell and Meachim (1979)). In strong

contrast, the superficial zone cell density is relatively high and CHs are arranged

horizontally in groups at the articular surface (Stockwell and Meachim (1979)).

As published recently in this journal, human CHs of the superficial zone form dis-

tinct, almost planar patterns with various types of horizontally oriented clusters such

as strings, round or oval clusters, pairs, and single CHs (Rolauffs et al. (2008); Schu-

macher et al. (2002)) (see Fig. 1, 2). Moreover, each articular joint surface was shown

to be dominated by only one of these four patterns. Their presence within a specific

articular surface correlated with the anatomical joint type suggesting a functional

role of the organizational structure of superficial CHs (Rolauffs et al. (2008)). How-

ever, because functional roles of joint-specific CH patterns in the transverse plane

have not been shown, alternative hypotheses e.g. that patterns are non-functional

consequences of joint-specific developmental processes should also be mentioned. The
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correlation of specific CH patterns with specific joint types (convex/concave, rota-

tional, uni- or bi-axial joints) was uncovered in intact, healthy human joints. In

joints affected by osteoarthritis (OA), a degenerative joint disease associated with

loss of CHs and matrix elements, the spatial structure of CH patterns differed greatly

from that of intact joints (Rolauffs et al. (2010, 2011)). This is partially due to re-

cently unraveled spatial re-modeling processes, partially to unordered proliferation,

and partially due to cell death. Thus, the type of cellular organizational structure

that is present within a given articular surface is specific for the state of disease of

the corresponding joint. This may likely prove relevant for the development of quan-

titative diagnostic methods in the context of both clinical and fundamental research.

This vision motivated us to describe the organizational structure of human superfi-

cial CHs by a mathematical point process model. In the present study we specifically

address the intact surfaces of healthy joints and hypothesize that the spatial struc-

ture of the corresponding CH patterns can be characterized by a suitably constructed

point process model. Consequently, this study aims to develop such a point process,

which may in future work represent a reference model for the statistical comparison

of microscopy data needing classification with respect to its degree of disease. Fur-

thermore, we aim to evaluate the quality of model fit by a comparison of geometric

characteristics of simulated realizations to those of real data. Our model character-

izes CH patterns within the surface of intact cartilage by a relatively small set of

model parameters, thus yielding a concise representation of the complex morphology.

For a future statistical classification of CH patterns, a model-based approach offers
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the advantage that arbitrarily large samples of reference images may be easily pro-

duced by computer simulation, whereas alternative bootstrap methods require large

sets of experimental data. Large samples of virtual CH patterns which are struc-

turally similar to real microscopy data are e.g. the basis for various Monte-Carlo

tests comparing patient data to a reference model for intact cartilage.

The organizational structure of CHs is characterized by highly variable shapes of CH

clusters (Rolauffs et al. (2008) and (2011)). The coexistence of different shapes such

as strings and elliptical clusters in single microscopy images (Fig. 2) induced a need

for a rather flexible cluster point process model to adequately capture morphological

variability in intact cartilage. Thus, we suggest to model the occurring cluster shapes

by non-overlapping random ellipses whose shape distribution can be fitted to a given

dataset by variation of model parameters. This approach turns out to be well-suited

to describe and reproduce the high variability of the CH patterns of intact cartilage.

2. Materials and methods for data acquisition

The articular cartilage data to be modeled in this study was obtained with in-

stitutional approval from healthy adult human tissue donors (n = 2, age 52 and 60

years) within 24 hours after death through the Gift of Hope Organ and Tissue Donor

Network (Illinois, USA) and through the Institute of Pathology (n = 2, age 18 and 78

years), Eberhard Karls University (Tübingen, Germany). We investigated cartilage

samples (n = 4) from a standardized location (medial condyle of the distal femur

of the knee-joint in full joint extension) where they were taken from the superficial

zone of the weight-bearing area of the articular surface and were stained with an

immunofluorescent reagent as previously described in Rolauffs et al. (2008). Based
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on these 4 cartilage samples, we recorded 8 images of the articular surface for our

analysis. Prior to cartilage sample removal, the joints were graded according to a

5-point scale by a modified Collins grading (Muehleman et al. (1997)), using the

following criteria: grade 0 (normal cartilage without signs of degeneration), grade 1

(minor surface roughening), grade 2 (fibrillations and fissuring), grade 3 (full defects

covering less than 30% of the articular surface), and grade 4 (full defects covering

more than 30% of the articular surface). Only joints with the grades 0-1 were in-

cluded into this study. No other pathology than articular degeneration was observed

in any of the joints. In brief, samples were washed (1% Triton X-100 in phosphate

buffered saline (PBS)) for 5 min, stained for 60 min with propidium iodide (10µg/ml

in PBS) and washed for 10 min with Tris-buffered saline (0.1M Tris, 0.15M NaCl,

pH7.5). The superficial CH organization was visualized by fluorescence microscopy.

Avoiding sectioning, all samples were viewed with a perpendicular angle between

the optical axis of the microscope and the articular surface of the sample, provid-

ing a top-down view as described in Rolauffs et al. (2008), Rolauffs et al. (2010),

and Rolauffs et al. (2011). The images were digitally recorded beneath the surface

when CHs first came into focus (Illinois samples: Nikon Eclipse TE200 microscope at

10x magnification, objective Nikon Plan Fluor 10x/0.3 DIC L/N1, fluorescence filter

appropriate for propidium iodide, manual exposure correction avoiding overexposed

image areas, image resolution 696x520 pixels; Tübingen samples: Zeiss Axiophot

at 10x magnification, objective EC Plan-Neofluar 10x/0.3 M27, fluorescence filter

appropriate for propidium iodide, manual exposure correction avoiding overexposed

image areas, image resolution 1388x1040 pixels). The CH positions were defined by
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their Cartesian coordinates. In brief, each image was exported with Adobe Photo-

shop (San Jose, CA) into ImageJ (NIH, USA), converted into grayscale values, and

analyzed by finding the maxima of the local grayscale values.

Thus, each CH nucleus was identified by its local grayscale maximum and marked

with a single black pixel using the ImageJ function “find maxima” (output type“single

points”), and an appropriate noise tolerance in combination with the “preview point

selection”. Because the analyzed CHs were mainly localized in the top optical plane,

they were largely represented by crisp signals that were well suited for this type of

image analysis. Cells with slightly blurred signals due to a slightly deeper z-axis

position - did not represent a problem for this method. However, cell clusters rarely

contained cells in and out of focus. In contrast, the signals of cells that were situated

in a much deeper optical plane were blurred to such an extent that they were not

analyzable by the presented method and were excluded from this study. The Carte-

sian coordinates of each CH nucleus center were determined with ImageJ using the

method “Save xy coordinates”.

The data to be modeled consisted of 8 images showing the positions of CH nuclei

at the cartilage surface as found in the knee-joint (Fig. 2, left, and supplementary

material). Image sizes and the numbers of contained CHs can be found in Tab. 1.

Due to the known physical dimensions of CHs in situ (Choi et al. (2007)), cell-

cell distances smaller than 7.5µm were considered as artifacts (approximately 3%

of all occurring cell-cell distances). Thus, of two points situated nearer than 7.5µm

one point was randomly chosen and removed (1.1% to 3.4% of all points from each

point pattern were removed). Consequently all remaining points kept an interpoint-
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distance of at least r = 7.5µm. In point process theory, this distance is called a

hardcore radius. If r was chosen smaller than 7.5µm, differences in the cleaned data

were marginal. For r ≥ 7.8µm, a substantial number of points would have been

removed from the data indicating that 7.5µm is a natural choice of the minimal

inter-point-distance.

3. Results

3.1. Modeling concept

The nature of CH patterns requires a suitable point process model to satisfy the

following properties.

(i) Clusters are non-overlapping and mostly well-separated.

(ii) Cluster shapes can be both string-like or elliptical.

(iii) Since surface CHs do not overlap, there is a hardcore distance of points (points

closer to each other than this distance do not occur).

In order to construct a point process model with these features, we apply the

following general approach which will be detailed in Section 3.3. Cluster centers are

given by an elliptical Matérn hardcore process. This point process is characterized

by the property that each point is surrounded by an ellipse of random axis lengths

and orientation, where the ellipses are non-overlapping. In our model each of the

ellipses contains itself a collection of so-called child points. This way the model

achieves a clustered structure of the overall point pattern (Fig. 2). The required

variability of cluster shapes ranging from string-like to circular patterns is induced
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by an appropriate joint distribution for the axis lengths of the ellipses. The random

child points in the ellipses are finally combined with a background point pattern

outside the ellipses accounting for pairs and single CHs. The hardcore distance

observed in the data is ensured by the choice of corresponding models for the child

and background point processes (see Section 3.3).

3.2. Estimation of cluster shape parameters from the microscopy data

If a point process model is intended to describe a set of data, a fitting methodology

for the model parameters needs to be established. For the point process introduced

below, our attempts to fit the model by the widely used minimum contrast method

(see e.g. Heinrich (1992); Illian et al. (2008); Stoyan (1992)) did not result in a

satisfactory resemblance of cluster shapes between model and data. As a remedy,

we developed a novel approach to fit the point process to our data based on a direct

estimation of the ellipse shape distribution from the microscopy images. In the

current section we derive and discuss this novel approach to identify ellipses based

on point patterns restricted to the ellipse area.

In a first step we extracted CH clusters directly from the image data by a standard

hierarchical cluster analysis using the single linkage method (see e.g. Arabie et al.

(1996); Jobson (1992) and the Appendix). Given the results of the cluster analysis

summarized in Tab. 1, we were determined to estimate the axis length distribution

of ellipses bounding the clusters. An ellipse centered at the origin with semi-axis

lengths a ≥ b > 0 such that the longer axis is located on the first coordinate axis is

denoted by

E(a, b, 0) = {(x1, x2)
> ∈ R

2 :
x2
1

a2
+

x2
2

b2
≤ 1}.
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image subject area (µm2) # points intensity # clusters # background # ellipses
(µm−2) points

1 1 628 × 469 167 5.67·10−4 68 51 26
2 2 628 × 469 164 5.57·10−4 67 54 29
3 2 628 × 469 172 5.84·10−4 65 59 25
4 3 896 × 671 242 4.03·10−4 84 62 37
5 3 896 × 671 340 5.66·10−4 110 89 48
6 3 896 × 671 283 4.71·10−4 99 95 37
7 4 896 × 671 143 2.38·10−4 78 88 13
8 4 896 × 671 192 3.19·10−4 83 80 23

Table 1: Results of the hierarchical cluster analysis for the image data to be modeled. Ellipses
were constructed for clusters containing at least 3 points, the remaining cell nuclei were classified
as background points.

For θ ∈ [−π/2, π/2) we denote by E(a, b, θ) the image of E(a, b, 0) under a rotation

around the origin by an angle θ.

If we consider a fixed ellipse E(a, b, 0) with 0 < b ≤ a, the points of a homo-

geneous Poisson process on E(a, b, 0) are conditionally independent and uniformly

distributed on E(a, b, 0) given that their number is known. Thus, the question to

recover E(a, b, 0) from the realization of a Poisson process restricted to E(a, b, 0)

reduces to the task of estimating a and b based on some random vectors Y1, . . . , YN,

where Y1, Y2, . . . are independent and uniformly distributed on E(a, b, 0), and the

Poisson distributed random variable N is independent of Y1, Y2, . . .. The following

proposition summarizes basic properties of such random vectors, which are easily

verified by elementary computations.

Proposition 1. Let Y be a 2D random vector which is uniformly distributed on

E(a, b, 0), then EY = o and the covariance matrix ΣY of Y is given by

ΣY =

(
a2

4
0

0 b2

4

)
.
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This observation will finally lead to estimators for a and b using principal compo-

nent analysis (PCA) (for details on PCA see e.g. Jollifee (2002)). The first principal

component of a random vector Y with E(Y 2) < ∞ is defined as

η1 = max
‖ξ‖=1

Var(ξ>Y )

and the corresponding direction of maximum variance is denoted by

ξ1 = argmax‖ξ‖=1Var(ξ
>Y ).

The second principle component is then given by

η2 = max
‖ξ‖=1

Var
(
ξ>(Y − ξ1ξ

>
1 Y )

)

with a corresponding direction of maximum residual variance

ξ2 = argmax‖ξ‖=1Var
(
ξ>(Y − ξ1ξ

>
1 Y )

)
.

Since Y is a 2D random vector, it is easily seen that ξ2 is one of the two unit vectors

orthogonal to ξ1. Moreover, it is well-known that η1 and η2 are the eigenvalues of

the covariance matrix ΣY , whereas ξ1 and ξ2 are corresponding eigenvectors of unit

length (Jollifee (2002) pp.5). Thus, Proposition 1 entails the following result.

Corollary 2. Let Y ∼ U(E(a, b, 0)) with a > b, then

η1 =
a2

4
, η2 =

b2

4
, ξ1 = (1, 0)>, and ξ2 = (0, 1)>.

Now we consider the eigenvalues η̂1 ≥ η̂2 of the sample covariance matrix

Σ̂Y =
1

N− 1

N∑

i=1

(Yi − Y N)(Yi − Y N)
>
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of Y1, . . . , YN, where N ≥ 2. For a and b we obtain the natural estimators

â = 2
√

η̂1 and b̂ = 2
√

η̂2 .

This defines a method to estimate the semi-axis lengths a and b from a realization

of a Poisson process in the ellipse E(a, b, 0) with parallel orientation to the coordinate

axes. In a next step we consider ellipses E(a, b, θ) + c which are rotated by an angle

θ and centered at some point c ∈ R
2. Let Oθ be the orthogonal matrix describing a

rotation by an angle θ ∈ [−π/2, π/2) around the origin, i.e., in particular O−1
θ = O>

θ .

If we consider shifted and rotated versions OθY1 + c, . . . , OθYN + c of the random

vectors Y1, . . . , YN, we obtain a Poisson process in the ellipse E(a, b, θ) + c. The

covariance matrix ΣOθY+c of the transformed random vector OθY + c is given by

ΣOθY+c = OθΣYO
>
θ .

Thus, ΣOθY+c has the same principal components as ΣY . This observation and the

fact that the columns of Oθ form an orthonormal basis of eigenvectors of ΣOθY+c lead

to the following generalization of Corollary 2.

Corollary 3. Let Y ∼ U(E(a, b, θ) + c) with a > b, then

η1 =
a2

4
, η2 =

b2

4
, ξ1 = (cos θ,− sin θ)>, and ξ2 = (sin θ, cos θ)>.

As a consequence, given a sequence of conditionally independent random vectors

Y1, . . . , YN with Yi ∼ U
(
E(a, b, θ) + c

)
and N ≥ 2 we obtain the natural estimators

â = 2
√
η̂1, b̂ = 2

√
η̂2, and θ̂ = arcsin(−ξ̂1,2) (1)

for a, b, and θ, where η̂1, and η̂2 are the eigenvalues of the sample covariance matrix
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Σ̂Y , and ξ̂1 = (ξ̂1,1, ξ̂1,2)
> is an eigenvector of unit length for η̂1 with ξ̂1,1 ≥ 0.

Moreover, given that N > 0, Proposition 1 yields that ĉ = Y N defines an unbiased

estimator for the location vector c. It is verified by elementary computations that

if in the above definitions the Poisson distributed random variable N is replaced

by a deterministic integer ν ≥ 0, the assumptions on Y1, . . . , Yν entail the strong

consistency of the estimators â, b̂, and θ̂ as ν → ∞, and one can also show asymptotic

unbiasedness by a dominated convergence argument. The estimators are however not

unbiased as is clearly seen in Fig. 3 (a), where small numbers of points in particular

lead to an underestimation of the minor axis length. Note that for the image data

we are modeling, the independence assumption of the points is violated since a

hardcore radius leads to mutual repulsion of points. However, the simulation results

of Fig. 3 (c) and (d) showing the empirical conditional estimation means and standard

deviations in the hardcore setting given that N = ν indicate that the hardcore effect

of our data does not lead to severe distortions of the estimation results in comparison

to the independent setting.

In real CH patterns one also finds string-like clusters, where the number of points

on the surrounding ellipse is proportional to the major axis length rather than to

the ellipse area (Fig. 2). As will be discussed later, these clusters are modeled by

a different type of point process constructed by a two-step procedure. In a first

step a point process is realized on the major axis of the ellipse, thus yielding points

which are concentrated on a line segment. Subsequently, these colinear points are

independently and uniformly shifted within the ellipse in parallel direction to the

minor axis. In the following the construction of this process is made precise for the
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ellipse E(a, b, 0). In the easiest case, given the total number N of points equals ν,

the locations Y1, . . . , Yν are independent copies of a random vector Y0 = (Y01, Y02),

where the first component Y01 is uniformly distributed on (−a, a), i.e.,

Y01 ∼ U(−a, a), (2)

and the conditional distribution of Y02 given Y01 is

Y02 | Y01 ∼ U

(
−b

√
1−

Y 2
01

a2
, b

√
1−

Y 2
01

a2

)
. (3)

Using the definition of the conditional density and elementary computations one

obtains the following result.

Proposition 4. Let Y be a 2D random vector which is distributed as defined by (2)
and (3). Then EY = o and the covariance matrix of Y is given by

ΣY =

(
1
3
a2 0
0 2

9
b2

)
.

Comparing the above result to Proposition 1, it is evident that using the estima-

tors defined by (1) to reconstruct the shape of the ellipse from point patterns formed

by independent random vectors of this type, the length of the major ellipse axis is

overestimated, whereas the minor axis length is slightly underestimated. This effect

is illustrated by the simulation results shown in Fig. 4, where we applied the estima-

tors in (1) in the two cases of a Poisson process (as covered by Proposition 4) and a

Matérn hardcore process on the major ellipse axis prior to shifting. The simulation

results indicate that in the hardcore setting the bias of the estimators only slightly

increases in comparison to the Poisson case. Moreover, the bias is relatively stable in

the number of points and the length of the minor axis is not severely underestimated.
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3.3. Point process model

In this section we describe our point process model for CH patterns to be fitted to

the image data. An overview on the stepwise model construction is given in Fig. 5.

Shapes and centers of the CH clusters are modeled by an elliptical Matérn hard-

core process in R
2 with points {Xn}n≥1 and associated ellipses {E(An, Bn,Θn)}n≥1.

The first ingredient for the construction of an elliptical Matérn hardcore process is

a homogeneous Poisson point process in R
2 with intensity λ0, where λ0 denotes the

expected number of points in the unit square. Additionally, we consider a sequence

of iid random ellipses centered at the Poisson points with independent uniform ori-

entation distribution. These ellipses are in general overlapping. For each clique of

overlapping ellipses one of them is selected at random to survive, whereas the others

are deleted. For a formal construction of this thinning procedure we refer to the

appendix. It is intuitively clear that large ellipses are more likely to be intersected

by others than small ones, which results in a decreased survival probability during

thinning. It is however not easily possible to determine the ellipse shape distribution

before thinning analytically for a given shape distribution after thinning, and thus

to estimate the distribution before thinning from a set of image data to be modeled.

We nevertheless needed to identify an appropriate joint distribution function for the

axis lengths of the typical ellipse E(A0, B0,Θ0) before thinning, and started with an

analysis of the marginal distributions of the semi-axes in the microscopy data. These

can be adequately approximated by two gamma distributions and hence it seems nat-

ural to model the common distribution of the semi-axis lengths by a two-dimensional

analogue. Since by definition 0 ≤ B0 ≤ A0, the support of an appropriate density
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function needs to be restricted to the area below the first bisecting line in the first

quadrant. These considerations led us to the density

f(a, b) = κfa
2b3e−(pa+qb)1I{0≤b≤a}, (4)

for some parameters p, q > 0, and a normalizing constant κf . Note that κf needs

not to be explicitly known in order to sample from the density f using a rejection

sampler. More precisely, a realization of a random vector with density f is obtained

by repeated realization of two independent random variables Za ∼ Γ(3, p) and

Zb ∼ Γ(4, q) until Za ≥ Zb.

Given the marked point process XM = {(Xn, E(An, Bn,Θn))}n≥1 representing the

non-overlapping ellipses, we construct finite child point processes Y (n) = {Y
(n)
k } on

the ellipses E(An, Bn,Θn) +Xn and a background point process Y (B) = {Y
(B)
k }k≥1

outside the ellipses. The child processes Y (n) on the random ellipses are independent

and modeled by two different hardcore processes with hardcore distance r > 0, where

the choice of the model depends on ellipse thickness. In case Bn > r, an ellipse is

classified as thick and its associated child process is defined as the restriction of an

ordinary Matérn hardcore process Z(n) = {Z
(n)
k }k≥1 on R

2 with hardcore radius r

and intensity λ1 > 0 to the ellipse E(An, Bn,Θn) +Xn, i.e.,

Y (n) = Z(n) ∩ (E(An, Bn,Θn) +Xn).

An ordinary Matérn hardcore process is defined as the more general elliptical model

introduced above with all ellipses given by the deterministic disc B(o, r
2
).

In view of our data, the number of points in thin ellipses (satisfying Bn ≤ r) depends
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primarily on the length of the major axis and not on the area of the ellipse. Clusters

on thin ellipses are therefore modeled by 1D Matérn hardcore processes on the major

ellipse axis, whose points are then independently and uniformly shifted within the

ellipse in parallel direction to the minor axis. For a formal definition we consider

a fixed thin ellipse E(a, b, 0) in parallel orientation to the coordinate system and

a Matérn hardcore process {Z
(n)
1k }k≥1 on R

1 with hardcore radius r and intensity

λ2 > 0. The child process on E(a, b, 0) is then defined as

Y (n) = {(Z
(n)
1k , Z

(n)
2k )}k≥1 ∩ E(a, b, 0),

where the distribution of Z
(n)
2k conditioned on Z

(n)
1k ∼ U(−a, a) was defined in (3).

For an ellipse E(a, b, θ) + x in general position we consider an appropriately rotated

and shifted version of the above process.

Since for the analysis of our microscopy data, ellipses could only be estimated for

clusters of at least 3 points, ellipses containing less than 3 points are discarded in

the model and our point process representing CH patterns is finally defined as

Y = Y (B) ∪
⋃

n: |Y (n)|≥3

Y (n),

where |Y (n)| denotes the number of points of Y (n).

It remains to specify the process Y (B) of background points. For this we consider the

random subset WXM
of R2 which is not covered by the (slightly enlarged) ellipses,

i.e.,

WXM
= R

2 \
⋃

n: |Y (n)|≥3

(
E(An, Bn,Θn) +Xn

)
⊕B(o, ρ), (5)
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where ⊕ denotes the dilation A⊕B = {x+ y : x ∈ A, y ∈ B} of two sets A,B ⊂ R
2.

The background point process is then defined as Y (B) = Ỹ (B) ∩ WXM
, where Ỹ (B)

is an ordinary Matérn hardcore process with fixed hardcore radius r and intensity

λ3 > 0 on R
2. The parameter ρ specifies the repulsion effects of the ellipses on the

background points. The dilation of the ellipses by the disc B(o, ρ) in (5) ensures

that the background points keep a minimal distance ρ from the ellipses.

3.4. Model fitting

In order to fit the point process model described in the preceding section to our

CH data we need to estimate the following parameters:

• The hardcore radius r,

• the repulsion parameter ρ

• the intensity λ0 of the Poisson process used to define the elliptical Matérn

hardcore process governing cluster shapes and locations,

• the intensity λ1 of the Matérn hardcore process on the thick ellipses,

• the linear intensity λ2 controlling the child process on the thin ellipses,

• the intensity λ3 of the background point process, and finally

• the parameters p, q for the density f (see (4)) controlling the axis distribution

of the ellipses before thinning.

The process of model fitting explained below is summarized in Fig. 6. For our CH

data, the hardcore radius r and the repulsion parameter ρ were not estimated from
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the data but set to the values r = 7.5µm and ρ = 3.5r, respectively. These were nat-

ural choices in view of the minimum inter-point-distances after data preprocessing

and the stopping criterion during cluster analysis (see Section 2 and the Appendix).

However, for general applications of the model, the hardcore radius r may be directly

estimated from the data as r̂ = min i 6= j

k = 1, ...,K

‖yki − ykj‖, where {yk1, . . . , ykνk} are

the nucleus coordinates of image k. Moreover, the repulsion parameter ρ may be

estimated as the minimal distance of the background points to the ellipses.

The extracted ellipses were classified as thick or thin, depending on whether their

minor semi-axis exceeded r = 7.5µm or not.

In order to specify estimators for the remaining parameters we introduce the follow-

ing notation. For the kth image, where k = 1, . . . , K, and ellipses constructed as

described above we denote by

• Wk the observation window corresponding to the kth image,

• N
(k)
1 the number of the points in thick ellipses in Wk,

• N
(k)
2 the number of the points in thin ellipses in Wk,

• N
(k)
3 the number of background points in Wk,

• Ê
(k1)
1 , . . . , Ê

(k1)
n1(k)

the estimated thick ellipses in Wk,

•
(
â
(k1)
1 , b̂

(k1)
1

)
, . . . ,

(
â
(k1)
n1(k)

, b̂
(k1)
n1(k)

)
the estimated lengths of the corresponding

semi-axes,

• Ê
(k2)
1 , . . . , Ê

(k2)
n2(k)

the estimated thin ellipses in Wk,
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•
(
â
(k2)
1 , b̂

(k2)
1

)
, . . . ,

(
â
(k2)
n2(k)

, b̂
(k2)
n2(k)

)
the estimated lengths of the corresponding

semi-axes, and

• ˆ̀(k)
1 , . . . , ˆ̀

(k)
n2(k)

the intersection lengths of the major axes in the thin ellipses

with Wk.

This leads to the following natural estimators for λ1, λ2, and λ3. We define

λ̂1 =

∑K

k=1N
(k)
1∑K

k=1 |
⋃n1(k)

i=1 E
(k1)
i ∩Wk|

, λ̂2 =

∑K

k=1N
(k)
2∑K

k=1

∑n2(k)
i=1

ˆ̀(k)
i

, and

λ̂3 =

∑K

k=1N
(k)
3∑K

k=1 |Wk \ (
⋃2

j=1

⋃nj(k)
i=1

(
Ê

(kj)
i ⊕B(o, ρ)

)
|
.

As will be demonstrated below and illustrated in Fig. 7, the joint axis length dis-

tribution of the typical ellipse in the image data was well reproduced by the model

when the axis length distribution before thinning was given by the density f defined

in (4) which was fitted to the joint axis distribution computed from the image data.

This way we neglected the difference between the distribution of a typical ellipse

before and after thinning in the elliptical Matérn hardcore process, which has been

discussed in Section 5.2. The simulation results in Fig. 7 indicate that the resul-

ting increase in the likelihood of small ellipses was however compensated for, when,

after completion of the thinning process, ellipses with less than three points were

discarded. In summary, Fig. 7 suggests that the final simulated joint axis length

distribution of the retained ellipses after thinning and discarding of ellipses contain-

ing less than three child points was in satisfactory agreement with the axis length

distribution of the ellipses extracted from the image data.

The parameters p and q for the density f of (A0, B0) given in (4) were fitted by
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parameter value mean standard deviation p-value
p 7.7 · 10−2 7.98 · 10−2 2.77 · 10−3 0.398
q 0.496 0.456 0.03 0.166
λ0 1.25 · 10−4 1.07 · 10−4 1.43 · 10−5 0.202
λ1 3.07 · 10−3 3.04 · 10−3 1.83 · 10−4 0.878
λ2 5.24 · 10−2 5.37 · 10−2 1.11 · 10−3 0.318
λ3 2.47 · 10−4 2.77 · 10−4 9.77 · 10−6 0.004

Table 2: Empirical estimation means and standard deviations when model parameters were repeat-
edly fitted to samples of 8 realizations of the point process model. The true model parameters
given in the first column represent the estimation results for the microscopy data. p-values refer
to Monte-Carlo tests investigating the hypothesis that the true parameters are drawn from the
distribution underlying the samples of estimation results.

numerical minimization of the loss function

L1(p, q) =
∥∥(ā, b̄

)
− Ep,q (A0, B0)

∥∥ ,

where ā and b̄ denote the mean estimated lengths of the major and minor semi-axes

in the data. Thus, we used the moment estimator (p̂, q̂) = argminL1(p, q) for (p, q).

It remained to estimate the parameter λ0 determining the intensity of the ellipse

centers before thinning in the elliptical Matérn hardcore process. For this purpose

we used an estimator obtained by numerical minimization of the loss function

L2(λ0) = |λ̂− λ(λ0)|,

measuring the difference between the total empirical intensity

λ̂ =

∑K

k=1(N
(k)
1 +N

(k)
2 +N

(k)
3 )

∑K

k=1 |Wk|

in the data and a Monte-Carlo estimate of the model intensity λ(λ0). We finally set

λ̂0 = argmin L2(λ0).
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3.5. Stability of the fitting method

The stability of the fitting methodology introduced in the preceding sections was

scrutinized by a refitting procedure. For this purpose we simulated 8 realizations of

the point process model with the parameters that were estimated when analyzing the

microscopy data. For these 8 simulated datasets, the fitting procedure including the

cluster analysis was conducted resulting in a set of estimated model parameters. This

procedure of point process model realization and successive estimation of associated

model parameters was performed 999 times yielding 999 estimation results, which

were then compared to the real model parameters underlying the simulated point

patterns. This way the stability of our statistical fitting method was assessed. The

average estimation results were in close proximity to the actual model parameters

despite the theoretical bias of some estimators. In addition, they exhibited only

small standard deviations, which were a magnitude smaller than the corresponding

means (Tab. 2). Based on the samples of estimated model parameters we conducted

Monte-Carlo tests inferring whether the actual model parameters can be regarded

as sampled from the distribution of the estimation results. The p-values in Tab. 2

indicate that all but one model parameter were not significantly different from the

estimated counterparts, thus demonstrating the stability of our fitting method. Note

that we did not correct for multiple testing, since this would have been in favor of

our method. In summary, the fitting methodology (including the cluster analysis)

recovers the model parameters rather adequately in the given setting of parameters

and for observation windows of size and number similar to the microscopy data. The

only parameter that deviated significantly from the estimation results is the intensity
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of the background points (p = 0.004), which on average exceeds the actual value by

∼ 12%. This may be related to the observation that in the model some child point

processes within the ellipses include points with nearest neighbors farther away than

ρ = 22.5µm, which is the stopping distance for the cluster analysis. These points

are hence classified as background points by the cluster analysis instead of being

associated with an ellipse.

3.6. Model validation

In order to validate the model we compared several image characteristics of

simulated and microscopy data on a descriptive level. More precisely, we investi-

gated the pair-correlation function, the nearest neighbor distance and the spheri-

cal contact distributions, which were selected on the presumable biologic relevance

of the morphological image properties they capture. The pair-correlation function

g : [0,∞) −→ [0,∞) of the point patterns monitors clustering and repulsion effects

of the points. For a mathematical definition of g we refer to Illian et al. (2008).

Heuristically interpreted, g(r) < 1 implies that point pairs of distance r are less

likely to occur in the analyzed point patterns than in a Poisson point process of

equal intensity, which indicates repulsion of points at this distance. On the other

hand, clustering of points is indicated if g(r) > 1 for some value r > 0, which means

that there are statistically more point pairs of distance r than in a Poisson process.

Since clustering of CHs is found in healthy cartilage, whereas the organization of the

cells in clusters breaks down in osteoarthritic cartilage (Rolauffs et al. (2011)), the

pair-correlation function assesses a biologically relevant morphological characteristic

which should be reproduced by a suitable point process model. Fig. 8 (a) shows
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an empirical 90% confidence band which was obtained by sampling from our model

and a distance-wise computation of empirical quantiles. One sees that the hardcore

effect of the data and the peaks of the pair-correlation functions from the three sets

of microscopy data are captured rather well. Thus, hardcore and clustering effects

are similar in the model and the image data. Moreover, the variability of the model

seems to be comparable to the real data, even if the variations of peak height for

the 8 analyzed microscopy images was slightly larger than observed in the model.

The second characteristic we considered for model validation is the nearest-neighbor-

distance distribution function (NNDDF) D : [0,∞) −→ [0, 1]. For a stationary point

processes Y = {Yn}n≥1 (without multiple points) and intensity λ > 0 observed on

an arbitrary window W of positive volume, D(r) is defined as

D(r) =
1

λ|W |
E

∑

n≥1

1I{Yn∈W, minm6=n ‖Ym−Yn‖≤r}.

From a biological point of view, the distance of the CHs to their nearest neighbor

is important for the effectiveness of fluid-flow-related or diffusion-driven chemical

signal transduction between cells. Fig. 8 (b) shows pointwise empirical confidence

intervals of the estimated model NNDDF and corresponding estimation results for

the cartilage image data. For r between 18 and 30µm the mean NNDDF of the

microscopy data is slightly larger than the upper envelope of the model NNDDF,

which nevertheless captures some of the images (corresponding to subject 4) rather

well.

As a third characteristic for model validation we estimated the spherical contact

distribution function (SCDF) H : [0,∞) −→ [0, 1] of the point patterns, which for a
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stationary point process Y = {Yn}n≥1 is defined as

H(r) = P (min
n≥1

‖Yn‖ ≤ r).

For our cartilage data, the SCDF assesses the distance distribution of an arbitrarily

chosen location on the cartilage surface to the next CH nucleus. This distribution

contains information which is biologically relevant for the transport of cytokines and

newly synthesized molecules to an arbitrarily chosen articular surface point. As

can be seen in Fig. 8 (c), the mean SCDF estimated from the data is in highly

satisfactory agreement with the model. Nevertheless, the SCDFs of subjects 1 and 4

show rather large deviations from the mean of the microscopy data, which are beyond

the variability of the model. Taking into account the pair-correlation function of

subject 1, the CH pattern in this sample seems to be relatively regular in comparison

to the other images, which explains increased values of the SCDF. Subject 4 on the

other hand exhibited a substantially decreased intensity of the CH patterns, which

naturally decreases the SCDF.

For the estimation of the three characteristics we used standard estimators, which

can e.g. be found in Illian et al. (2008). Notice that all three functions considered for

model validation have not been used for model fitting and thus represent extrinsic

measures for the goodness of model fit.

Apart from the three characteristics discussed above, the fractions of points falling

into thick and thin ellipses and the fraction of background points are very similar

in the image data and the model simulations (Tab. 3). This should however already

be ensured by the model fitting algorithm. We finally remark that the fraction of
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real image data model simulations
Points on thick ellipses 34% 32%
Points on thin ellipses 32% 35%
Background points 34% 33%

Table 3: Fractions of different points types in the real image data and the simulations.

ellipses classified as thin was 56% in the cartilage images and 54% in the simulations,

which is another indicator that the presented model is able to adequately describe

and simulate a mean scenario of the observed organizational structure in superficial

CH patterns in silico.

4. Discussion

In this study we investigated whether the spatial organization of superficial CH

can be characterized by a point process model. Presenting a suitable point process

model that describes the CH patterns within the articular surface of intact human

knee cartilage, we conclude that these can adequately be modeled by a stochastic

point process consisting of non-overlapping elliptical point clusters. We demonstrated

that this type of model is well-suited to realistically represent the mean biological

scenario of the occurring cellular patterns. Moreover, we were able to represent the

complex morphology of the organizational structure of articular CHs by a set of 8

model parameters, which implies a substantial reduction of complexity in comparison

to the original image data. This approach opens new perspectives for a model-based

statistical analysis and classification of CH patterns in both intact and osteoarthritic

tissues. The latter is particularly important because degeneration of cartilage due

to OA has been demonstrated to coincide with spatial changes in the superficial CH

organization (Rolauffs et al. (2011)). Further elucidation of such pattern-associated
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pathology may broaden our understanding of the early events during OA onset and

may hopefully lead to the development of quantitative decision support systems in

diagnosis, which will be a subject of our future research. The link between the

geometric structure of CH patterns and functional properties of cartilage strongly

suggests using tools from statistical image analysis for quantitative decision support

systems in diagnostics of OA. This requires an interdisciplinary approach combining

capabilities in imaging, biology, and spatial statistics. Since promising novel imag-

ing techniques for the visualization of cartilage surface will likely be available in the

near future (Schenke-Layland (2008)), we started the development of an appropriate

statistical methodology by constructing a stochastic model for the morphology of

CH patterns in intact cartilage. This model may serve as a reference for a future

statistical analysis investigating deviations of cartilage image data from the healthy

state. The task to develop realistic models for point patterns frequently leads to

situations where compromises between analytical tractability of the model and the

quality of data representation need to be made. In the present study our primary

interest was to adequately represent the observed data since such emphasis is nat-

urally crucial for future model-based automated diagnostic tools. The analytical

tractability of point processes is mostly tied to the presence of Poisson components

in the model. Although generalized Matern hardcore processes, as used in our study,

are constructed by thinning of Poisson point processes, their analytical tractability

is typically limited once the geometry of the random hardcore areas around points

becomes moderately complex (see also Månsson and Rudemo (2002)). This applies

in particular to elliptical hardcore processes. Consequently, even for basic model
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characteristics explicit formulas seem hard to be obtained. On the other hand, this

type of model can be used to generate the wide range of shape variability of CH

clusters necessary to represent the biological variability occurring in different joint

surfaces and states of disease. In the present study we fitted the model to data

from the intact cartilage of the human knee joint condyles since the images of these

areas represent a rather complex morphological scenario of human cartilage exhibit-

ing a co-existence of strings, clusters, pairs, and single CHs (Rolauffs et al. (2008)).

However, we paid attention to ensure a certain versatility of our model to abet our

future efforts to model CH patterns in different types and states of cartilage other

than the scenario considered here. Preliminary experiments with data recorded from

patients with OA indicated that osteoarthritic cartilage can also be adequately de-

scribed by our point process model. This will be the subject of a forthcoming paper.

One of the main goals of the present study was to develop an appropriate fitting

methodology for the point process model. In experiments with established minimum

contrast methods for the fitting of point processes using Ripleys K-function or the

pair-correlation function (Heinrich (1992); Illian et al. (2008); Stoyan (1992)) we ob-

served that these approaches failed to satisfactorily reproduce cluster shapes. We

therefore established a method for the estimation of the cluster shape distribution

directly from the image data. For this purpose we combined a hierarchical cluster

analysis with an approach inspired by PCA to extract clusters and corresponding sur-

rounding ellipses from the images. This allowed to estimate the shape distribution of

ellipses surrounding CH clusters of at least 3 cells. Single and paired CHs were taken

into account by fitting an appropriate background point process. As pointed out,
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some theoretical properties such as the bias of certain estimators are not necessarily

ideal. However, as demonstrated, we obtained a good fit of our model. Moreover,

our refitting experiments indicate the stability of the statistical fitting methodology

for data exhibiting the structure and sample size used in our study. Our results

for model validation indicate that the point process accurately captures important

mean geometric characteristics of the observed data such as nearest neighbor dis-

tance and the spherical contact distribution. The variability of the microscopy data

suggests that future applications of the model may in particular require fitting of the

model to sample images of homogeneous intensity in the CH patterns, since intensity

variations naturally entail alterations of other structural characteristics such as the

spherical contact distribution. We chose three characteristics for model validation:

the nearest-neighbor distance distribution function (NNDDF), the spherical contact

distribution function (SCDF), and the pair-correlation function. These functions

were used for model validation, because we previously determined that changes in

the nearest-neighbor distance as well as in the type and density of the occurring

patterns were strongly associated with distinct stages of OA (Rolauffs et al. (2011)).

Thus, the 3 functions assess characteristics of presumably high biological relevance.

We would like to point out the novelty of this approach since, to the best of our

knowledge, none of the functions has been applied previously to study the cellular

organization of cartilage. However, since they examine specific characteristics of cel-

lular clusters, they seem appropriate for this task. The shapes of cellular clusters are

thought to derive from cellular proliferation and migration, and the formation and

specific organization of the ECM during joint development and maturation (Youn
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et al. (2006); Morrison et al. (1996); Chi et al. (2004)). The functional roles of CH

groups in cartilage functioning, maintenance and degeneration are not well under-

stood. In intact cartilage, CH grouping is functionally relevant because the CHs

usually share a common pericellular matrix (PCM) capsule (Hunziker (1992); Poole

(1992)) involved in maintaining the extracellular matrix necessary for resistance, ab-

sorption, and redistribution of the occurring biomechanical forces during daily life.

In OA, the term cluster is widely used to describe the increased numbers and sizes of

cell groups that are an OA hallmark feature detectable near fissures and clefts of the

articular surface in the majority of specimens (Lotz et al. (2010))). Importantly, the

clearly defined organizational patterns of intact cartilage are lost in osteoarthritic

cellular clustering, in which an unordered proliferation resulting in hypercellular ar-

eas is a feature of early OA onset (Rolauffs et al. (2011)). This cell proliferation

is presumably driven by a variety of growth factors expressed in the clusters (Lotz

et al. (2010)) resulting in differences in shape, location, number, and biosynthetic

activity of cells within particular groups suggesting that two types of groups with

different functions are present in the two tissues. Further joint studies planned in our

research groups will attempt to link biologically relevant characteristics utilizing the

presented model. We strongly believe that, if these attempts will succeed, a need for

statistical classification tools of cartilage image data will arise. Point process models

providing realistic descriptions of articular CH patterns may become key ingredients

in future model-based statistical analyses of microscopy data and the development

of quantitative diagnostic tools.
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5. Appendix

5.1. Cluster analysis

Clusters of CH nuclei in the microscopy data were identified by hierarchical cluster

analysis using the single linkage method (see e.g. Arabie et al. (1996); Jobson (1992)).

In the initial step of this algorithm each point is considered as a single cluster. Then

an iterative procedure is started, which merges clusters of minimum distance to

enlarge the clusters, where for the single linkage method the distance of two clusters

is defined as the minimum distance of two points taken from the two sets. In principle

the merging procedure is continued until all points form a single cluster. Nevertheless,

in order to obtain a meaningful result, the process is stopped when the distance of the

clusters to be merged in the next step exceeds a certain threshold ρ. In our dataset we

defined ρ = 3.5r, where r denotes the hardcore radius. The cluster analysis identified

between 65 and 110 clusters with at least 3 points per image. Slight variations of ρ

did not substantially alter the result. Bounding ellipses were constructed for clusters

containing at least 3 points (Fig. 2). In principle, the method also identifies single

and paired CHs .

5.2. Elliptical Matérn hardcore processes

In the following we introduce the construction principle of elliptical Matérn

hardcore processes, which are a special case of so-called generalized Matérn hard-

core processes as studied in Månsson and Rudemo (2002). We consider a sequence

{(An, Bn)}n≥1 of independent and identically distributed (iid) random vectors on

[0,∞)2 satisfying Bn ≤ An and EA2
n < ∞. Moreover, {Θn}n≥1 denotes an iid se-

quence of random angles which is independent of {(An, Bn)}n≥1, where we assume
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that Θn ∼ U [−π/2, π/2), i.e., Θn has a uniform distribution on [−π/2, π/2). This

defines a sequence of random ellipses {Ξn}n≥1, where

Ξn = E(An, Bn,Θn).

In order to define an elliptical Matérn hardcore process, we consider the random

set,

Ξ =
⋃

n≥1

(Ξn +Xn), (6)

where the random locations {Xn}n≥1 are given by a stationary Poisson process X =

{Xn}n≥1 in R
2 with intensity λ0. The system of ellipses in (6) may contain overlaps.

In order to construct a system of points surrounded by non-overlapping ellipses,

we apply a random thinning procedure deciding which of the overlapping ellipses

are retained and which are removed. The technical details are as follows. If we

introduce a sequence of independent random variables {Un}n≥1, which are uniformly

distributed on the interval (0, 1) and independent of X and {Ξn}n≥1, the elliptical

Matérn hardcore process X̃ is defined as

X̃ =
{
Xn : Un = min{Ui : (Ξi +Xi) ∩ (Ξn +Xn) 6= ∅}

}
.

Thus, a Poisson point Xn marked by Un is only retained if the shifted ellipse Ξn+Xn

is not intersected by another shifted ellipse Ξi+Xi with a smaller mark Ui < Un. The

retaining probability of an ellipse is clearly shape and size dependent. Therefore, the

joint distribution of the typical axis length pair (Ã0, B̃0) of the ellipses after thinning

differs from the distribution of the typical axis length pair (A0, B0) before thinning.
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6. Figures

Figure 1: Chondrocyte patterns in the superficial zone of the condyle of the human knee joint.
Representative fluorescence microscopy image showing cell nuclei stained with propidium iodide.
A: example of a small 4-cell chondrocyte cluster, B: chondrocyte pair, C: single chondrocyte, D:
string of chondrocytes based on (Rolauffs et al. (2008)). Fig. 2 (top left) shows the corresponding
coordinate plot. Scale bar, 100 µm.
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Chondroyte Pattern Simulation

Figure 2: Chondrocyte patterns on the surface of human cartilage from the knee observed by
microscopy (left) in comparison to model realizations (right). Rows correspond to a high, medium,
and small intensity of the point patterns. The ellipses in the images showing microscopy data
(left) were constructed from point clusters identified by hierarchical cluster analysis with at least
3 points, those in the model realizations (right) are defined by the underlying elliptical Matérn
hardcore process. Note that the point process model whose realizations are shown on the right has
been fitted to a total of 8 images including the three data sets on the left. The remaining images
are provided as supplementary material.
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Figure 3: Empirical conditional means µ(â), µ(b̂), µ(θ̂) and standard deviations σ(â), σ(b̂), σ(θ̂)
for the estimators of the parameters a, b, and θ of the fixed ellipse E0 = E(35, 14, 0) given that
the total number of points in E0 equals ν. Note that the ellipse E0 is rather average for the thick
ellipses in our data. The results in (a) and (b) were obtained for a Poisson process in the ellipse,
whereas in (c) and (d) we simulated a Matérn hardcore process with hardcore radius as estimated
from the chondrocyte patterns.
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Figure 4: Empirical conditional means µ(â), µ(b̂), µ(θ̂) and standard deviations σ(â), σ(b̂), σ(θ̂)
for the estimators of the parameters a, b, and θ of the fixed ellipse E0 = E(35, 4, 0) given that
the total number of points in E0 equals ν. Note that the ellipse E0 is rather average for the thin
ellipses in our data. The point patterns were obtained by realizations of linear point processes
on the major ellipse axis whose points were then independently and uniformly shifted within the
ellipse in perpendicular direction to the major axis. In (a) and (b) prior to shifting, locations
were given by Poisson processes on the major axis, whereas in (c) and (d) we simulated Matérn
hardcore processes with hardcore radius as estimated from the chondrocyte patterns. We applied
the parameter estimators given in (1), which are constructed for ordinary 2D Poisson processes on
an ellipse, which leads to a bias for the point processes considered here.
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Figure 5: Simulation of chondrocyte patterns.
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Figure 6: Fitting of the point process model to microscopy data.
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Figure 7: Semi-axis lengths of ellipses as found in the data (black points) and the simulations (red
points), by random selection of 80 ellipses. The two coordinates depict the lengths of the major
and minor semi-axes, respectively. The semi-axis lengths of the simulated data have been obtained
by sampling from a single model realization on a large sampling window.
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Figure 8: Comparison of empirical point pattern characteristics between 8 microscopy images of the
articular cartilage surface in the human knee joint and simulations. Red lines depict 90% envelope
curves of the model, the black line is the pointwise mean of the estimators for real data. The
other lines correspond to single images, where colors specify different subjects, (subject 1 =̂ blue,
subject 2 =̂ green, subject 3 =̂ turquoise, subject 4 =̂ violet).
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