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Abstract 
FIB/SEM tomography represents an indispensable tool for the characterization of three-dimensional 

nanostructures in battery research and many other fields. However, contrast and 3D 

classification/reconstruction problems occur in many cases, which strongly limits the applicability of 

the technique especially on porous materials, like those used for electrode materials in batteries or 

fuel cells. Distinguishing the different components like active Li storage particles and carbon/binder 

materials is difficult and often prevents a reliable quantitative analysis of image data, or may even lead 

to wrong conclusions about structure-property relationships. In this contribution, we present a novel 

approach for data classification in three-dimensional image data obtained by FIB/SEM tomography and 

its applications to NMC battery electrode materials. We use two different image signals, namely the 

signal of the angled SE2 chamber detector and the Inlens detector signal, combine both signals and 

train a random forest, i.e. a particular machine learning algorithm. We demonstrate that this approach 

can overcome current limitations of existing techniques suitable for multi-phase measurements and 

that it allows for quantitative data reconstruction even where current state-of the art techniques fail, 

or demand for large training sets. This approach may yield as guideline for future research using 

FIB/SEM tomography. 
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1 Introduction 
Unlike naked-eye observations might suggest most natural materials such as rocks, tissue or plants are 

porous, i.e. have a reduced apparent density and contain voids of various sizes. Pores might allow for 

mass transport, enlarge the surface area of the material significantly and lead to mechanical properties 

differing from those of bulk materials. Many functional materials have a complex three-dimensional 

pore structure that determines their properties and strongly influences their overall functionality. 

Erosion, degradation, growth or even flexural strength are only a few properties defined by the 

porosity of materials. This influence of the porous structure on functionality is also found and most 

often intended in many manufactured materials, for example electrodes, catalyzers, filters or 

concrete 1-3. A better understanding of the relationships between the morphology of pore space and 

the functionality of various materials can help optimizing their functionality. Understanding can be 

improved by investigating the 3D morphology of the pore space.  

This is especially important when studying materials in systems for energy storage like battery 

electrodes where the spatial distribution of active material and binder-additives and the resulting pore 

morphology strongly influence the transport of ions and electrons and thus the performance of the 

battery 4,5. Resolving the structure of the electrode by means of 3D imaging allows for a detailed 

characterization of the morphology by statistical image analysis 6-9, where structural descriptors can 

be computed which are not accessible by experiments. Using 3D image data as an input for numerical 

simulations of transport and electrochemical properties, the microstructure influence on these 

properties can be quantified 10-12. Combining numerical simulations with stochastic modeling for the 

generation of digital twins based on tomographic image data 13,14, a large database of virtual, but 

realistic electrode structures can be generated to analyze structure-property relationships. However, 

for such a resource-efficient investigation of structure-property relationships, it is of great importance 

that high-quality tomographic image data is available as a basis. 

A powerful tool for three-dimensional investigations of nano-porous materials is the focused ion beam 

(FIB) in combination with a high-resolution scanning electron (SEM) or helium-ion microscope. Nearly 

any material can be investigated, even non-conducting (with helium ions) or fluids (with a cryogenic 

stage).  However, due to technical limitations such as the stability of the ion gun, FIB/SEM tomography 

has an upper limit regarding the size of examined volumes. For the analysis of volumes larger than 50³ 

- 100³ µm³, X-ray computed tomography (CT) becomes the technique of choice 15. CT allows for 

operando measurements but is limited to resolutions of just below 1 µm (without X-ray optics). For 

the analysis of typical energy material structures ranging from the nanometer scale to the micrometer 

scale such as hierarchical energy materials, both techniques can be combined 16,17, even though the 

contrast mechanisms are very different. Higher-level material distributions and transport paths are 

thus covered by X-ray tomography, while for imaging the fine local details using FIB/SEM tomography 

is essential. 

During FIB/SEM tomography a sample is stepwise sliced by the ion beam while, after every cut, an SEM 

image is taken of the sliced section. By stacking such images a 3D image of the entire volume – called 

tomographic reconstruction – is created. However, for porous materials this technique has a major 

drawback: When taking an SEM image of a sliced sample where pores have been opened, the 

background of the pore space is illuminated. This background does not belong to the respective slice 

but to a slice that will appear in later cutting steps. Therefore, this background signal has to be 

separated from the foreground in the tomographic 3D reconstruction. In order to address this 

problem, the pore space can be filled with a material like epoxy resin or other 18. If the sample is very 

stable (both chemically and mechanically), this technique is well suited and 3D reconstruction of the 

acquired slices works well. However, the 3D structure of sensitive 3D pore systems may be altered 
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either by the mechanical forces that have to be applied to infiltrate the open volume and the curing 

process of the infiltrant itself or by chemical reactions with the solvents used. 

This may especially be the case for fine agglomerations of light materials like carbon in battery or fuel 

cell electrodes. This makes filling of such porous materials and the search for suited infiltrants a rather 

complex field of scientific research. Finally, closed pore systems or pores that are not sufficiently 

connected to the rest of the pore volume are inaccessible to the infiltrant and cannot be investigated 

with this method. In such cases, infiltrants have to be avoided. Instead, approaches have to be 

developed that allow for a separation of foreground and background in FIB/SEM images. This is a quite 

challenging task and many methods have been proposed recently. The approaches range from pure 

automatic thresholding (like Otsu 19), advanced iterative and optic-flow based algorithms that utilize 

the pore development during milling 20-22, to neural network driven approaches 23-25. These approaches 

work well for a specific application only. Most of them either differentiate between two phases (pore 

and material) 20,24,26, which is suitable for, e.g., concrete, stone or polymer samples, or even for samples 

with more phases, but with lower accuracy 21, and are thus not suitable for electrode materials 

comparable to the ones studied in the present paper. Moreover, the workflow required for successful 

segmentation varies between the different methods described in the literature. In contrast to 

specialized machine learning approaches such as the mentioned neural networks, the advanced 

iterative or optic-flow based approaches by Salzer et al. 20 and Moroni and Thiele 21 – from now on 

called “z-gradient based approaches” – do work without prior training but require an adjustment of 

the underlying parameters. Furthermore, the ability to deal with additional artefacts caused by the 

open-pore nature of the sample varies between the different approaches. Neither the gradient-based 

approaches nor trained machine learning models utilizing simulated data sets can deal with re-

deposited material. Depending on the size of the pores within areas of milled material, some of the 

material removed will redeposit in the pores and result in increasing amounts of additional material 

over the time. Thus, only training on real data can deal with these measurement-induced morphologic 

changes. Currently, no simulation-based trainings does account for such artefacts. 

The present paper proposes and evaluates a new approach that exploits information gained from 

multiple signals during ion milling to train a machine learning algorithm, which in turn allows for an 

improved FIB/SEM-dataset semantic segmentation and then classification of multiple phases – from 

now on called classification. This implies the advantage of dealing additionally with artefacts like 

curtaining effects or image gradients simultaneously and even enables multiphase reconstruction 

without the need of Raw-data preprocessing. Several methods for pore segmentation in images of a 

lithium ion battery cathode material are compared and an optimized approach is proposed. The 

investigated cathode consists of highly structured nickel manganese cobalt (NMC) active material with 

a carbon-based conducting matrix. Counting the voids as a phase implies three different phases.  

2 Experimental 

2.1 Materials 
The hierarchically structured cathode material investigated in this study was manufactured with 

enhanced power and energy density in mind 9,27-30. The active material was obtained by grinding, spray 

drying and calcination of pristine Li(Ni1/3Mn1/3Co1/3)O2 powder (NM-3100,Toda America) 31.The 

resulting NMC particles had a mean particle size of 11.8 µm, a BET surface of 2.52 m2/g and an internal 

porosity of 40.6%. The carbon-based binder matrix consisted of a polyvinylidene difluoride (PVDF) 

binder (Solef5130, Solvay Solexis), carbon black (Super C65, Imerys Graphite & Carbon), graphite (KS6L 

Imerys Graphite & Carbon). These two components were dispersed in N-methyl-2-pyrrolidone (Sigma 

Aldrich) resulting in a slurry with about 87 wt% NMC, 5 wt% graphite, 4 wt% carbon black and 4 wt% 
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PVDF binder. The slurry was cast on a 20-µm thick aluminum foil and dried. The final active material 

loading of the electrode was 24 mg/cm². 

2.2 Methods 

2.2.1 FIB/SEM tomography 
A 3x3 mm² area of the NMC cathode was cut out and fixed on a standard (12.5 mm Ø) aluminum pin 

stub using conductive silver. After a resting time of 8 h, the sample was transferred into a ZEISS 

Crossbeam 340. This dual beam machine combines a gallium liquid metal ion source for sample 

manipulation (in our case milling), a field emission scanning electron microscope (FE-SEM) with 

GEMINI® optics for high-resolution imaging and a multi-channel gas injection system (GIS) for material 

deposition.  

A 0.5-µm thick protective layer of platinum of 15x15 µm² area was deposited onto the sample in the 

region of interest using the GIS. The platinum was heated up to 50 °C. In the first 10 minutes, the 

platinum precursor was reduced to metallic platinum only by the electron beam set to a current of 

250 pA at 5 keV. Then, the procedure was continued using a gallium current of 300 pA at 30 keV for 30 

minutes. For tomography, the gallium current was set to 700 pA at 30 keV. The plane spacing was 

10 nm over an area of 13x13 µm² resulting in 1300 slices and a total dwell time of 3 h. 

High-resolution imaging was done using the InLens and the SE2 detector located off to the side in the 

microscope chamber – from now on called InLens detector and SE2 detector – simultaneously. The 

electron current was set to 250 pA at 1 keV. Image acquisition took 21 s per frame resulting in a total 

measure time of 11 h. 

Drift correction was applied to the obtained raw data focusing on shine-through artefacts (pore-

background). Considering the coordinates X as the width and Y as the height of each SEM image, then 

Z can be defined as the depth of the measurement. When examining the image stack in the Z-Y 

direction (the image stack re-slice) that drift correction results in horizontal structures in background 

areas.  

After the drift correction, tomographic image data was de-noised using a non-local means filter with a 

photometric distance equal to the standard deviation of homogeneous sample areas. The described 

computations for image processing have been performed using the open source software Fiji 32. 

2.2.2 Classification testing 
Six different classification approaches detecting the three classes: voids (back ground and pores), 

active material (NMC) and carbon-binder matrix were evaluated. As we want to reduce the amount of 

additional processing required for the final result we perform no further image processing. Although 

the selected threshold-based methods in particular would benefit from further image preprocessing, 

such as advanced background correction, these processing steps were omitted to keep the processing 

effort uniform. 

For the comparison of the different classifications, one slice (#530) of the tomography was completely 

labeled by hand for each pixel. This manual classification, serving as a ground truth, is used as test 

data. The machine learning based algorithms tested utilize image information from the vicinity of the 

voxel to be determined. To avoid an overlap of the test region with the training region, a distance in Z-

direction of 300 nm (30 slices) was chosen. This means that no training was performed on slices 501-

560. For training, the open source software Ilastik 33 was used (version 1.2.2 in the debug mode). The 

training data was generated within the Ilastik user interface by manual labelling. However, in contrast 

to the densely-labeled test slice #530 the training annotation was very sparse. Two annotated slices 

are shown as examples in Fig. S1 of the supplementary material. 
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In order to validate the goodness-of-fit for each classification approach, the intersection over union 

(IoU) 34 was calculated for each class (𝑖), namely for voids, NMC, and the carbon-binder matrix. The IoU 

was calculated on the full field of view and also just on a small region in the center of the NMC particle 

in the center of the tomographed volume where no carbon was present. The investigated areas and a 

cross section of the particle in question are shown in Fig. 1. With that, we wanted to compare the more 

classical challenge of a binarization between the milled single phase surface (here NMC) and pores, 

exhibiting low size variations, and material with a multiphase classification, where a large variety of 

pores and different materials occur. From the IoU𝑖 for each class we then calculated an average 

weighted error (awe)  

awe = (1 − ∑ IoU 𝑖 ∙ 𝑝 𝑖

𝑛

𝑖=1

) ∙ 100 % (1) 

 

for each of the classification approaches  where 𝑝𝑖  represents the volume fraction of class 𝑖. We chose 

to use the weighted over the non-weighted error to take volume differences per class into account 

and avoid an overestimation of errors on small classes. 

We chose not to use simulations for the evaluation of classification because of the complexity of the 

multiphase FIB/SEM tomography measurements. We wanted artefacts like curtaining, gradients and 

re-depositioning to be included in our datasets and there exists no model tool allowing for a 

simultaneous simulation of all these artefacts.  

3 Results of image classification 
Fig. 1 shows a comparison of the tested classification approaches expressed by the resulting average 

weighted errors from Eq. 1. The different methods will now be further motivated and explained. For 

the methods utilizing data from one detector, the SE2 signal was used because this signal yields more 

relevant data for classification as shown in Fig. 3.  

Fig. 1: Accuracy comparison of the different classification approaches tested, sorted by their full field-of-view averaged 
weighted error (awe). Slice number 530 is shown on the left. The full and the reduced investigated field of view are marked. 
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3.1 Double-threshold based 
The most straight-forward approach of thresholding a three-phase dataset is a combination of two 

thresholds. We applied two thresholds based on the carbon peak of the SE2-dataset histogram shown 

in Fig. 2 (at the gray values 34 and 55, respectively). Voxels with greyscale values below 34 are classified 

as pores/void, those between 34 and 55 are classified as carbon binder domain, and values above 55 

are interpreted as NMC. A weighted error of 60.8 % was accomplished for the whole field of view. The 

calculated weighted error inside the cropped field of view containing only NMC material and small 

pores was 30.8 %. Thresholds like the Otsu threshold were ruled out from the beginning as they are 

designed for binarization and are therefore not suitable for three-phase classification. Local 

approaches did not work either, as they cannot deal with large variations of pore sizes or large textural 

variety inside pores. 

 

3.2 Triple-threshold based 
In Fig. 2, an exemplary histogram of 

slice number 530 is shown. Based on 

the manually labeled classes (the 

ground truth shown in Fig. 4 a), the 

histogram is separated into the 

representing gray values per class. The 

peaks marked 2 and 3 in Fig. 2 show 

that a third threshold has to be 

considered to take bright parts of the 

background into account, especially 

when not using the InLens detector. 

The new threshold was set accordingly: 

0-27 representing void, 28-48 

representing carbon, 49-76 

representing NMC and 76-255 

representing void again. The 

thresholds were determined by 

reducing the information entropy 35 per class to its minimum. However, to find the optimal thresholds 

for the slice to be tested: slice #530, the entropy was not based on the histogram of the complete 3D 

image 36,37 but on the labels of the ground truth. The thresholds were calculated by training a decision 

tree with a depth of two, using the ground truth as a label and only the SE2 signal image as an input. 

A weighted error of 30.8 % was achieved, significantly improving the results from Section 3.1. With a 

weighted error of 24.9 % for the internal region inside the NMC particle, the improvement is smaller 

compared to Section 3.1. This is presumably due to the optimization for the whole field of view and all 

three classes. Even though (at least on the slice #530) the results improved, having the histogram of 

Fig. 2 in mind, it becomes clear that a simple classification using global thresholds is not sufficient to 

separate the classes with high accuracy. As shown in Fig. 4 b), this entropy-based optimization also 

leads to an unrealistic classification at the boundary between classes such as at the boundary between 

NMC and pores. This observation is in good accordance with the literature 36, where it has been shown 

that a classification of three-phase materials by global thresholding is error-prone at the boundary 

between the phases. 

Fig. 2: Histogram of the manually annotated slice (#530) of the 
FIB/SEM-dataset. 
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3.3 Z-gradient based algorithms 
Algorithms such as the one suggested by Salzer et al. 20 do not simply use thresholds to separate 

different classes. Additionally, they take the pore cutting progress into account. As it compares slices 

before and after the slice to be classified, it exploits that shine-through artefacts do change gradually 

during milling until the actual cutting edge is reached. Unfortunately, that approach is designed for 

binary classification distinguishing between the milling edge and the pore space. It does not work well 

with re-depositioning, the platinum on top of the sample or multiphase materials in general. This 

algorithm classifies the void phase in a first step. The remaining area is then separated again using a 

threshold. Here, the threshold was applied using the InLens-Signal. Each voxel, which has not been 

classified as void by the z-gradient based algorithm, was either classified as carbon if the InLens-Signal 

was between 0 and 89 or otherwise, as NMC. With this method, a weighted error of 23.2 % is achieved, 

again improving overall accuracy. In addition, the error for the reduced field of view is markedly 

reduced to 16.5 %. 

3.4 Random forest based classification (one input signal) 
The next logical step was to test, whether a machine learning algorithm can outperform any of the 

previously mentioned approaches. Due to the implementation of 3D filtering for feature generation in 

Ilastik 33, this method does not only take the pore evolution during milling into account but also deals 

well with image artefacts in the other dimensions such as image gradients or curtaining. The machine 

learning algorithms – in our case we choose the random forest classifier – generally work better the 

more non-correlated input data is used per voxel. Only with the SE2 signal and its 60 standard Ilastik 

filter varriations called features, the weighted error already dropped to 12.3 %. However, the weighted 

error for the cropped sub volume inside one NMC particle was 17.6 %, thus larger than the error 

obtained by the approach based on that of Salzer et al.20  
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3.5 Random forest based classification (two input signals) 
In a next step, we carried out the same classification including both the SE2 and the InLens signal and 

the difference of both signals, which leads to a number of 183 features in total. In doing so, the 

weighted error was reduced to 10.3 %, which is more than two times better than the approach 

presented in Section 3.3. On the cropped volume, with a weighted error of 16.2 %, the algorithm that 

was trained for the whole dataset was slightly better than for the approach presented in Section 3.3. 

Fig. 3 shows the resulting importance of different features based on the variable importance 33 in 

detail. The different filters used are divided into the three categories edge, smooth, and texture. The 

group of edge-based filters includes filters that emphasize edges such as derivative-based filters. 

Smoothing filters are characterized by denoising and blurring of image information. Texture filters such 

as the Hessian filter help to distinguish between different shapes in the image data. Even though the 

angled SE2 detector shows a higher relevance for the classification compared to the InLens SE2 

detector in the most cases, the subtraction of both is of high importance concerning the classification 

of carbon. The texture-based filters show an overall low impact on the classification. 

Fig. 3: Box diagram of the importance of the filter for the random forest classification based on two input signals. The different 
filters are divided into three classes (edge detecting filters, smoothing filters and texture detecting filters). These filter classes 

are further separated into their importance concerning the different image classes respectively. 
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3.6 Random forest based classification (tailored features) 
For the final classification approach, we designed features mainly depending on the evolution of pore 

space during milling. The idea behind that approach is to make use of the knowledge gained by the 

method described in Section 3.3 but to let the algorithm learn by itself. Thereby the random forest is 

trained to interpret the obtained data which turns out to be advantageous compared to the model-

based interpretation of the approach in Section 3.3. More precisely, the resulting  

classification did outperform all the other approaches considered in the present paper by far with a 

weighted error of 6.1 % on the total data set, which is haft of that of the pure single detector approach 

(3.4). This result represents another case of a classification algorithm where a hybrid approach 

combining machine learning with classical image analysis leads to improved results 38. 

Fig. 4 e) shows detailed results of this classification approach in comparison to the manually 

segmented test data as well as to other approaches described in Sections 3.2 to 3.6. The region where 

re-deposition and platinum deposition accrued was well classified. Note that the carbon material can 

also be classified. No curtaining correction was done but the classifier was also able to compensate for 

that. Next to the large size variation of the pore areas, the carbon material is also very sparse and 

varies in size. We found that this was the most challenging aspect of the classification and only the 

random forest trained on the tailored feature set was able to classify these structures.  

Fig. 4: Direct comparison of the classification on slice number 530: a) SE2 scan in the middle of the tomography with the ground 
truth mask (yellow NMC, green carbon matrix), b) Triple-threshold based segmentation (3.2), the white line delimits the border 

of the ground truth, the white arrow marks wrongly classified redeposited areas, the blue arrow the wrongly classified pore 
space), c) Random forest segmentation using the angled SE2 signal only (3.4), d) Random forest segmentation using the 

SE2-signal, the InLens-signal and the difference of both signals (3.5) as an input, the red arrow marks the still wrongly classified 
carbon phase, e) Random forest segmentation using tailored features taking all detectors and especially the sample 

development in cutting direction into account (3.6). 
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With a weighted error of 11.0 %, this approach also outperformed the other approaches in the cropped 

volume within a single NMC particle. Again, the accuracy is inferior to the overall accuracy because the 

algorithm was trained and specialized on classifying three phases with a large variety in pore sizes. 

A precise multiphase classification of porous materials allows for a large variety of analyses. Fig. 5 

shows an analysis of the size distribution of the primary NMC particles, some paths of the electrons as 

they are conducted through the NMC material starting from the carbon-connected surfaces and some 

ion paths through the pores of the material. The trajectories of the electrons represent the shortest 

path through the NMC phase, starting from uniformly distributed starting points within the NMC to 

geodesic closest contact point of the NMC and carbon. Since the tomographed particle was on top of 

the electrode material foil, only one side of the entire particle was connected to the electron 

conducting carbon matrix. Thus, the lengths of the electron paths are partly larger than the average 

diameter of the aggregated NMC particle, which is 6.7 µm. On the other side, the path analysis 

underlines the effectiveness of the particle’s porous structure. The inner pores of the particle, meaning 

the pores enveloped by the particle’s convex hull, all can be reached directly without the need of 

diffusion through the active bulk material as is described in more detail in Section 3.7. The 3D rendering 

shown in Fig. 5 was done using VG Studio, Paraview 39 and Blender 3D. The analysis of pathways and 

the segmentation of primary particles was performed using Fiji/morpholibJ 40. Supplementary video 1 

features a full revolution around the volume and shows the fine nature of the carbon matrix. It is 

obvious that post processing like open-filtering and close-filtering would be rather harmful for the final 

result. 

3.7 Further statistical analysis of segmented image data 
In this section, we present a further statistical analysis of the image data based on its semantic 

segmentation by random forests as described in Section 3.6. The focus is on volume fraction of the 

solid phase as well as on characteristics related to the shortest transportation paths and bottleneck 

effects in the pore space. The analysis in this section is based on the individual NMC particle, which 

has been resolved completely by tomographic imaging, i.e., the particle from which the cutout for the 

small FOV is taken, see Fig. 1.  

3.7.1 Volume fraction of the solid phase 
To compute the volume fraction of the solid phase of the considered NMC particle – in the following 

volume fraction – we determine the inner pore voxels by means of the so-called rolling ball algorithm. 

This algorithm has also been used to determine the inner pores of battery electrodes 41 and paper-

based materials 42. This means that all voxels of the void space are classified as inner pore voxels of the 

particle, which cannot be reached by a ball intruding from outside with a predefined radius r. Here we 

choose 𝑟 = 0.15 µm. This gives reasonable results compared to what would visually be determined as 

Fig. 5: Renders of the 3D classification: a) shows the particle size distribution, b) shows the electron path through the NMC 
particle whereas the transparency represents the current density and the color the path length and c) shows the ionic path 

through the particle pores whereas the transparency represents the current density and the color the path length. 
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inner pores having determined the inner pore space, we obtain a global NMC volume fraction of the 

particle of 0.66. 

A more detailed analysis reveals a gradient of the local volume fraction. The blue line in Fig. 6 a) shows 

the local volume fraction as a function of the distance to the particle boundary. More precisely, we 

compute the local volume fraction for all subvolumes that include voxels having a distance to the 

boundary between 𝛿 and 𝛿 + 10 nm, for 𝛿 = 0 nm, …, 2840 nm, in steps of 10 nm. The resulting local 

volume fractions (blue curve) is higher near the boundary of the particle. Note that the uncertainty of 

the local volume fraction increases with the distance to the boundary due to a decreasing considered 

volume of the corresponding subvolumes. The red line in Fig. 6 a) shows a cumulative version of the 

local volume fraction. For a given distance 𝛿 to the boundary, the red line at position 𝛿 represents the 

volume fraction of all voxels having a distance of less than 𝛿 to the boundary. This red curve indicates 

that besides the gradient at the boundary of the particle, no further spatial gradients of the volume 

fraction are present in the considered NCM particle. Moreover, it shows that—as stated above—

deviations observed for large distances to the boundary in the blue curve do not affect the global 

volume fraction of the solid phase.

 

Fig. 6: a) Volume fraction depending on the distance to the boundary. At position x, the blue curve represents the volume 
fraction of all voxels with a distance between 𝛿 and 𝛿+ 10 nm to the boundary and the red curve represents the volume 

fraction of all voxels with a distance of less than 𝛿 to the boundary. b) Volume fractions estimated from 2D cross-sections 
compared to global volume fraction. Cross-sections in xy-, xz-, and yz-plane are considered. 
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Under certain assumptions on the homogeneity of the microstructure, it is possible to estimate the volume 

fraction based on 2D cross-sections, see, e.g., Ch. 10 in Chiu et al. 43. These assumptions are not fulfilled 

here due to the gradient in the volume fraction. Even though some generalizations are available in the 

literature to describe microstructures with structural gradients 44, in our case the following problem 

occurs: When observing the 2D cross-section of an NMC particle we cannot determine the distance to the 

boundary in 3D and can thus not deal with this particular gradient. Fig. 6 b) shows the volume fractions 

estimated from 2D cross-sections, where cross-sections in the xy-, xz-, yz-planes are considered. The 

volume fraction is overestimated if the cross-section is too far away from the centroid* of the particle. 

Nevertheless, when considering the mean values of the estimated values between slices 150 and 550, we 

obtain a volume fraction of 0.66 for all cross-sections in xy-, xz-, yz-plane, which coincides with the global 

volume fraction. The corresponding standard deviation of 0.02 does also not depend on the cross-section. 

This implies that the volume fraction can be reliably estimated from 2D image data, if the considered slice 

is sufficiently close to the centroid of the particle. To determine what is sufficient 3D information is 

necessary.

3.7.2 Characteristics related to the length of transportation paths and bottleneck effects 
Besides volume fraction, the descriptors “mean geodesic tortuosity” – measuring the length of 

transportation paths – and “constrictivity” – measuring bottleneck effects – are of crucial importance for 

the characterization of microstructures, in which transport processes take place 45,46. The computation of 

these quantities requires 3D image data, cannot be estimated from 2D cross-sections and is very sensitive 

to the quality of segmentation. In this section, we quantify the length of transportation paths and 

bottleneck effects based on the concept of mean geodesic tortuosity and constrictivity, but slightly 

adapted to the spherical shape of the NMC particles. 

 

Fig. 7: a) Distribution of geodesic tortuosity τ for different values of dI. b) Volume fraction that can be filled by an intrusion of 
spheres with a predefined intrusion radius r. 

For the quantification of the length of transportation paths, we compute a geodesic tortuosity τ for each 

inner pore voxel located at the boundary of the NMC particle. This means that we compute the length of 

the shortest path starting at the considered voxel and going through the pore space to the set of those 

                                                           
* We write centroid here, since the NMC particles are not perfect spheres. In case of a perfect sphere, the centroid 
would coincide with the midpoint.  
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voxels with a distance dI to the boundary. Then, we define τ as the ratio of the obtained path length and 

dI. For given dI, we obtain a distribution for τ, see Fig. 7 a). 

The mean values (and corresponding standard deviations in brackets) of τ are 1.26 (±0.22), 1.19 (±0.11), 

1.17 (±0.07) and 1.17 (±0.06) for dI = 0.5 µm, 1.0 µm, 1.5 µm and 2.0 µm, respectively. The decrease in 

the mean values of τ can be explained by the gradient in volume fraction of the solid phase. Close to the 

boundary there are less pores, the paths can go through. Thus, for smaller dI, the paths become more 

tortuous, which leads to larger mean values of τ. The decreasing standard deviations with increasing dI 

underline the observation in Fig. 7 a) that for small dI, more outliers of rather tortuous paths are 

observed. This effect becomes less pronounced for increasing values of dI. 

In order to measure bottleneck effects, we compute the amount of pores that can be filled by an intrusion 

of spheres with a predefined radius r, where intrusion starts at the boundary of the particle, see Fig. 7 b). 

This is the same concept as used for the determination of constrictivity 47. Doing so, it is possible to see 

that the microstructure within the NMC particles exhibits a characteristic bottleneck between 0.08 µm 

and 0.10 µm. While 63 % of the pores can be filled by an intrusion of spheres with radius 0.08 µm, only 

17 % can be filled if the radius is increased to 0.10 µm. 

4 Discussion 
We found that the machine learning approach 

outperforms all the traditional approaches for 

analyzing complex data. For simple 

classification tasks as the segmentation of a 

region inside an aggregated NMC particle, 

however, machine learning might not be the 

best choice as classical gradient-based 

approaches can achieve comparable results 

without the need for time consuming training. 

In particular, this holds true, as the results can 

be improved for those regions by merely 

focusing on binarization tasks and by applying 

further pre-processing. For more difficult 

classification tasks, machine learning 

approaches are more robust when dealing with 

artefacts and multiple phases and, in addition, they identify pores with high accuracy. By using machine 

learning for the classification of 3D FIB/SEM data, the main drawback of non-infiltrated measurements 

– the lack of finale classification accuracy – becomes manageable. In addition, machine learning 

approaches are also able to incorporate and learn information that is not directly encoded in the measured 

gray values but lies in further a priori information such as shapes or arrangements. Without infiltration, 

much less pre- and post-processing has to be done and the desired region of interest on the sample can 

be found much easier. As a result, the time per sample at the instrument is reduced, thus allowing for a 

higher yield of FIB/SEM. In addition, sample alteration e.g. deformations caused by the infiltration and the 

hardening process can be ruled out and materials that were not accessible due to chemical or contrast 

reasons are now detectable. The only materials that do not eligible for non-embedded measurements are 

samples that need the structural support of an embedding material during milling in order to avoid 

crumbling. For such samples, the approach discussed in the present paper is not applicable. 

Fig. 8: 3D render of the sample shown in Fig. 4.  
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Without infiltration, a sample can be inserted directly into the FIB/SEM after fixation. In some cases there 

is not even the necessity of pre-milling material to reach the desired location. After image acquisition, 

rather few filtering and image cleaning is required, and the same applies after the classification. In the case 

of random forest classifiers, training and classifying can be computationally demanding, but for similar 

datasets, the classifiers can be reused and no further training is required. Except for the data acquisition 

software, use of software can be limited to open access sources (ImageJ/Fiji 32, Ilastik 33 and 

Blender 48/Paraview 39). These software packages are readily available, well documented and easy to use. 

5 Conclusions 
In the present paper, a random forest classifier was used for the classification of structures in FIB/SEM 

tomography images of porous multi-phase materials. We show that the technique is capable to take 

non-infiltrated pores of different sizes into account while dealing with several material phases and 

identifying re-depositioning artefacts occurring especially in larger pores. We compare the accuracy of 

different random forest approaches with current state-of-the art techniques. We found that machine-

learning based approaches outperform traditional approaches. Furthermore, we show that with specialy 

filtered input for the random forest and the use of two different detector signals, i.e. the InLens detector 

and the chamber SE2 detector, the accuracy of the classification can be further improved. Finally, we 

perform a detailed morphological analysis of the classification involving extracting gradient density, 

gradient tortuosity, gradient constrictivity and porosity information.  
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8 Supplementary material 
 

 

 

Fig. S1: Two examples of sparsely annotated slices: (a) slice number 164 and (b) slice number 500. The void phase annotation is 
marked in blue, the carbon phase is marked in green and the NCM phase is marked in yellow. While most slices contained none 
or very few labelled voxels, slice number 500 contained the most labelled voxels.  
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