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FIB tomography has proven to be capable of imaging porous structures

on a nano-scale. However, due to shine-through artefacts, common segmen-

tation algorithms often lead to severe dislocation of individual structures in
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z-direction. Recently, a number of approaches have been developed, which

take into account the specific nature of FIB-SEM images for porous media.

In the present study, we analyse three of these approaches by comparing their

performance based on simulated FIB-SEM images. Performance is measured

by determining the amount of misclassified voxels as well as the fidelity of

structural characteristics. Based on this analysis we conclude that each algo-

rithm has certain strengths and weaknesses and we determine the scenarios

for which each approach might be the best choice.
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1 Introduction

Porous materials are of current interest within a wide range of applications such as heat

flow management and heat exchange (Clyne, Golosnoy, Tan & Markaki, 2006), drug

delivery (Khanafer & Vafai, 2006), energy storage (Less et al., 2012) and catalysis (Kor-

tunov et al., 2005) just to name a few. For all of these and many other applications the

properties of the corresponding materials are not fully determined by simple measure-

ments like the absolute porosity or average pore size. Instead, various complex structural

properties of the material, such as size and shape of individual pores (or particles) and

even more important their spatial relation to each other have to be considered.

One way to gain a better understanding of these underlying structural properties

is to reconstruct the different phases (solid phase and pore phase) from a 3D image

of the corresponding specimen. Once this is accomplished various mathematical tools

(e.g. numerical simulations or statistical analyses) can be applied either directly to the

resulting binary image, or a more advanced mathematical model can be matched to

the contained structures. For porous structures on a nano-scale, FIB-SEM tomography

(Holzer & Cantoni, 2011) has shown to be capable to adequately perform the first step

of this workflow, which is to obtain a 3D image of the corresponding microstructure.

However, due to the way FIB-SEM images are acquired, segmenting the solid phase

from the pore phase becomes a non-trivial problem. FIB-SEM images are obtained by

imaging the surface of the specimen with a scanning electron microscope (SEM) and

subsequently removing this slice with the aid of a focused ion beam (FIB). This step is

repeated until the desired amount of slices is obtained.

3



For solid materials methods developed for other imaging techniques often can be

applied successfully. For porous materials it is often possible to use an epoxy resin to

fill the pore space and thereby avoid the problems of imaging porous materials.

However, epoxy resin infiltration is not possible for closed pores and might be even

problematic for open pores since the process of infiltration might alter the underlying

structure. In these cases the problem of segmentation becomes more complex. Due

to the principle of serial-sectioning, parts of the material are visible through the pore

phase. Therefore, when applying segmentation algorithms the distance of solid material

to the sensor is often significantly underestimated. As shown in (Gunda, Choi, Berson,

Kenney, Karan, Pharoah & Mitra, 2011) errors made during the step of image processing

have a direct influence on the structural properties we seek to understand.

Therefore several new methods have been developed. Although most of these methods

have been validated against manual segmentations (Salzer, Thiele, Zengerle & Schmidt,

2014) or even simulated data (Prill, Schladitz, Jeulin, Faessel & Wieser, 2013) these

results only have a limited value. Every microstructure produces a very different com-

bination of artefacts that has to be considered. Therefore, one method might provide

good results for one data set but perform very badly on another one.

In this paper, we present a study of three algorithms that are tested on artificially

generated FIB-SEM images for multiple scenarios. This has advantages over the way

results were validated before. First, using artificially generated images allows us to

compare the results of every segmentation algorithm against a voxel-rendering of the

original random structures used for the simulation. Contrary to manual segmentation,
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which is always subjective, this provides us with objective criteria. Second, we compare

different segmentation algorithms on the same datasets. This enables us to compare

the measured performance of different algorithms which is not possible when they are

applied to different datasets. Third, we study various configurations for the underlying

stochastic models, namely different objects (cylinders and spheroids) and different de-

grees of porosity. This allows us to study the effect of the microstructure on the quality

of the obtained segmentation. Finally, we are able to combine the last two steps and

compare how well different approaches adapt to a wider range of datasets (e.g. to test

the robustness of an algorithm). The paper is organised as follows. In Section 2, we

describe the different geometric structures and how they are used to simulate FIB-SEM

images. In Section 3, we give a quick overview of the three segmentation algorithms and

how the parameters are chosen. In Section 4, we then present the analysis performed on

the obtained binary images. Finally, Section 5 provides a summary of the study and a

discussion of the results.

2 Data

In the following we give a brief overview on the different data sets used in this paper

and how they were obtained.
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2.1 Random Set Models

All geometric structures used in this study are realisations of a 3D germ-grain process

(see Matheron, 1967; Schneider & Weil, 2008; Chiu, Stoyan, Kendall & Mecke, 2013).

This is a stochastic process, where grains are placed at points of a point process. In the

data sets designated by Sp 035, Sp 060 and Sp 080 a Boolean model was used, which

means that spheres are placed on the points of the Poisson point process. The grains

were drawn from a collection of spheres with radii uniformly distributed between 8 and

12 voxels. As indicated in the designation, realisations with volume fractions of 35%,

60% and 80% respectively, were generated.

A modified version of the ’cherry-pit’ model (see Torquato, 1984) was used in the

data sets Cy 014, Cy 024 and Cy 057, with volume fractions of 14%, 24% and 57% re-

spectively. Instead of spheres, the grains were cylinders with radii uniformly distributed

between 8 and 12 and length of 1200 voxels in Cy 057 and 600 voxels for the other two.

An impenetrability parameter dHc was used to control the overlapping of the cylinders.

The cylinders were regarded as having an impenetrable core with radius (1 − dHc)r,

where r is the radius of the grain. For volume fractions higher than 0.3 it is difficult

to impossible to generate a process with non-intersecting cylinders. Thus, the param-

eters were chosen as dHc = 0 in Cy 014, which means no intersection of the cylinders

is allowed. For Cy 057 (dHc = 0.05) and Cy 024 (dHc = 0.3), more intersection was

permitted, to achieve the higher volume fractions. The direction angles θ (altitude) and

ϕ (longitude) of the cylinders follow a distribution, which is given by (see Schladitz,

Peters, Reinel-Bitzer, Wiegmann & Ohser, 2006)
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p(θ, ϕ) =
1

4π

β sin θ

(1 + (β2 − 1) cos2 θ
, θ ∈ [0, π), ϕ ∈ [0, 2π).

The anisotropy of the cylinders is characterized by the parameter β. The parameter

ranges from β = 1 for the data set Cy 014, which means that the cylinders are oriented

isotropically, to β = 0.1 in Cy 057, which corresponds to an almost perfect alignment

along the z-axis. In Cy 024 an intermediate value of β = 0.25 was chosen. All models

have been generated with the MAVIlib software (Fraunhofer ITWM, Department of

Image Processing, 2011).

2.2 FIB-SEM Forward Simulation

All synthetic image data sets were generated with the FIB-SEM simulation tool pre-

sented by Prill & Schladitz (2013). The parameters are chosen close to a typical exper-

imental setup, used for imaging geometric structures. More precisely, the beam energy

was 5 keV and pixel size, which equals the beam width, was 50 nm. Each data set

consists of 100 slices. With an edge length of 400 pixels for every image the simulated

volume is 20µm× 20µm× 5µm. For every pixel 10,000 electrons were simulated with a

structuring element multiplier m = 3. The images were simulated on a cluster, taking

between 1 and 5 hours each. The simulation covered both the BSE and the SE signal,

but only the SE signal was used for later steps. An example slice of a realisation of a

Boolean model and the corresponding simulated FIB-SEM slice is given in Figure 1.
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3 Segmentation Algorithms

In this section we give a quick introduction to the segmentation algorithms and how the

corresponding parameters were chosen.

3.1 Thresholding [Thresh]

In order to obtain a reasonable and simple reference segmentation we used global thresh-

olding with some additional postprocessing. For global thresholding a voxel (x, y, z) is

assigned to the solid phase if and only if the corresponding grey value I(x, y, z) is above

a certain threshold T . To obtain a more competitive and thus meaningful reference

segmentation we added two further steps. First, we used two thresholds (Tlower and

Tupper), instead of one. Here, all voxels whith a grey value Tlower ≤ I(x, y, z) ≤ Tupper

were assigned to the solid phase, all other voxels were assigned to the pore phase. This

significantly reduced artefacts caused by relatively high grey values that occur at the

border of particles. After this step, we applied a median filter with a radius r = 2

to compensate for small isolated clusters of misclassified voxels. The parameters were

determined by the following approach: For each Tlower ∈ [0, 255] the second parameter

Tupper was chosen so that the corresponding binary images after the median filter would

match the volume fraction optimally. For all of these sets (Tlower, Tupper) the set with

minimum error ratio was chosen as the final set of parameters.

Local thresholding as described by Sauvola & Pietikäinen (2000) has been tested but

the result did not improve significantly compared to global thresholding (for details on

the used implementation see Shafait, Keysers & Breuel, 2008). This was expected as the
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images are widely homogenous (e.g. no illumination differences throughout the images),

thus a local approach was unlikely to provide any benefits over a global one.

3.2 Local Threshold Backpropagation [LTB]

In (Salzer, Spettl, Stenzel, Smått, Lindén, Manke & Schmidt, 2012) a new approach to

automatic segmentation of FIB-SEM images has been proposed. This approach is based

on estimating a reasonable local threshold for the last slice right before the corresponding

substructure was being cut off. These thresholds are then backpropagated to earlier

slices, hence local threshold backpropagation (short: LTB). In the original description

of the algorithm only one threshold was mentioned that served as a lower bound. For

this paper we used a second theshold that serves as an additional upper bound. Again,

this removed artefacts induced by high grey values at the borders of particles. Due to

different properties of the material and the surface, these illumination effects did not

occur in the data set studied by Salzer, Spettl, Stenzel, Smått, Lindén, Manke & Schmidt

(2012). This can be considered as a generalisation where we derive the earlier version

of the algorithm by setting the upper threshold to the maximum possible grey value

(in this case 255). The postprocessing step was adapted to the datasets by manually

choosing adequate parameters for various filters and cluster detections.

3.3 Valley Detection [Valley]

The second algorithm was first described in (Salzer, Thiele, Zengerle & Schmidt, 2014).

In this approach we attempt to detect the last and first occurrences of structures by
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selecting outstanding local minima and maxima, respectively. By this we estimate the

“valley” in grey values in z-direction that represents the pore phase between two mi-

crostructures. Similar to the previously described algorithm minor modifications have

been made. For the main step we ignored all local extrema within a certain range of grey

values, determined by [Tlower, Tupper]. Further, we added a second (upper bound) thresh-

old to all steps during postprocessing that included thresholding. Like above this change

can be considered a generalisation of the original method where the upper threshold is

set to the maximum grey value. Again these and all other parameters were adjusted

manually to provide a good optical fit.

3.3.1 Median Filter [Val-Med]

During the present study we included one additional segmentation that we denote by

Val-Med. This segmentation was derived from Valley by applying a median filter

with radius r = 2 to the segmentation. This additional step of postprocessing was

not part of the original algorithm, but it removes a huge amount of small clusters of

misclassified voxels that occurred for images with spheroids and a high volume fraction.

For more details see Section 4.2.

3.4 Morphological Segmentation [Morph]

The morphological segmentation method was described in (Prill, Schladitz, Jeulin, Faes-

sel & Wieser, 2013). For experimental data the segmentation starts with a preprocessing

step, but due to the perfect alignment and the low signal to noise ratio of the simulated
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data, this was omitted here. The segmentation is based on the detection of morphological

features on the z-profiles of the images. First a thresholding excludes pixels that can be

identified as void phase from their grey value. Then a morphological half-gradient image

identifies pixels which are considered void phase due to the specific shape of the artifacts

in the FIB-SEM data set. Finally, minima of a certain minimal depth are identified by a

morphological reconstruction. Then the features are combined to generate a preliminary

segmentation which is then refined using a constrained watershed transformation on a

morphological gradient image. The detailed description and a validation with synthetic

data can be found in (Prill, Schladitz, Jeulin, Faessel & Wieser, 2013).

The segmentation algorithm has 5 free parameters which where chosen according to

the guidelines given in (Prill, Schladitz, Jeulin, Faessel & Wieser, 2013). The parameters

are threshold on the grey value (T GV in Figure 1), a threshold on the morphological gra-

dient (T MG), a minimal dynamic for the minima (D MIN), a length of the structuring

element in the morphological half-gradient (L HG) and a threshold on the half-gradient

image (T HG). The values chosen for these parameters are shown in Table 1.

4 Analysis and Results

In this section we provide a brief description of the measurements used to characterise the

various segmentations, present the corresponding results and give some interpretation.

Prior to the analysis all segmentation images were cropped and rescaled – alignment,

which is usually necessary for experimental data, was not performed as the simulated
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images did not contain any shift. The cropping aperture in z-direction was determined

by analysing the error ratio on a slice-to-slice basis. There, two general trends have been

observed. On the one hand LTB performs significantly worse for the last 5–10 slices, on

the other hand Valley and Morph show a higher error ratio for the first 10–15 slices.

Both effects are expected as LTB relies on the last occurrence and Valley/Morph on

the first occurrence of a microstructure to detect it. Thus microstructures that end or

begin (respectively) outside of the operation window cannot be detected properly. These

problems have been known before, but this is the first time we present a quantification.

Based on this analysis, we excluded the first 15 and last 10 slices from later steps. For

an example of both described trends see Figure 2.

4.1 Basic Measurements

For a first overview we considered the error for the estimated volume fraction and the

amount of misclassified voxels – the latter for each phase individually and for both

together. For the volume fractions Morph seems to provide the best fit with the lowest

number for both the mean and the maximum difference to the original data. However

with the exception of LTB and Thresh numbers are relatively similar, for more details

see Table 2.

The error ratios for misclassified voxels as shown in Table 3 are more informative (to

see how these errors are distributed amongst both phases see Table 4). When comparing

different scenarios for individual segmentation algorithms, we can observe two different

trends: For Thresh the error ratio decreases significantly with higher volume fractions.
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This effect is expected as an increasing volume fraction leads to decreasing porosity and

thereby to less porosity-related artefacts during segmentation. This effect of decreasing

error ratios for decreasing porosity can also be observed for Morph, which produces the

lowest error ratios of all algorithms for the two previously mentioned scenarios.

For LTB and Valley (Val-Med) on the other hand this does not seem to be true.

Contrary to the less-porosity-less-artefacts-trend both perform surprisingly well for the

cylinder scenario with the lowest porosity. We suspect that the corresponding mecha-

nisms to detect microstructures based in the z-profile perform better when the distance

between two subsequent microstructures (in z-direction) is larger, which is the case for

higher porosities. This effect however cannot be observed for the other scenarios (i.e.

comparing Cy 024 to Cy 057 or two of Sp 035, Sp 060 and Sp 080), which might be re-

lated to the introduction of additional thresholds as described in Section 3. Presumably

for higher volume fractions more voxels are classified based on the thresholding criteria

instead of the corresponding z-profile.

For all tested images Morph and Val-Med perform better than Thresh. Valley

outperforms Thresh for all images but one, i.e. Sp 080, which has the highest volume

fraction. LTB one the other hand outperforms Thresh for three images with the lowest

volume fraction. Although for each image one of the other approaches performs better,

LTB still might have its use for cases where huge differences in illumination occur.

All other approaches at some point rely on a global threshold. For images where it

is impossible to choose this parameter adequately, LTB still might be the method of

choice.
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4.2 Structural Analysis

Although measurements like the error ratio already give a good first impression of the

quality of segmentation these measurements are far from sufficient to judge a segmen-

tation algorithm. As mentioned in Section 1, for most applications the performance

of a certain material is determined by various structural properties of both the pore

phase and the solid phase. Thus, in order to give a meaningful judgment we have to

consider how the errors measured above influence the preservation of important struc-

tural properties. In the following we provide the results of some of the most common

structural characteristics, namely the covariance function and granulometry (Matheron,

1967). The covariance function provides information about the typical length scale in

the image and was computed in all three spatial dimensions. In order to reduce the num-

ber of plots x and y were combined into one curve. See Figures 4 and 5 and for results

of covariance function in xy- and z-direction, respectively. For granulometry a series of

morphological openings is performed before measuring the volume fraction. This yields

the distribution of particle sizes in the binary image. Results for granulometry for all

images and all algorithms (with the original Boolean model as a reference) can be found

in Figure 6.

In general, we find the trends described in Section 4.1 supported. However, it is

difficult to find a consistent interpretation, as individual artefacts have a different impact

on each measurement. For example, for Cy 014 and Cy 024 the covariance function

supports the observation that LTB performs quite well on these images. However, the

granulometry shows significant differences for Cy 014. Visual inspection shows that
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some of the misclassified voxels appear outside of partially detected cylinders. For

Morph, which has a similar error rate but a better fit for the original granulometry

function, less partially detected cylinders can be observed. Instead the errors derive from

completely missing cylinders (see Figure 7 for a visual example of both cases). While

partially detected cylinders disturb the estimation of particle size, an appropriate object

extraction algorithm might be able to reconstruct the missing part. For completely

missing cylinders this seems less likely.

Valley also performs relatively poor under granulometry for some of the images.

Similar to LTB, visual inspection shows small misclassified clusters within correctly

classified regions of foreground voxels (see Figure 8 for a visual example). Although

of relatively small size, these clusters become quite big under a morphological opening

and thus strongly influence the volume fraction measured by granulometry. In this case,

however, we were able to remove these artefacts by adding one step of postprocessing.

As these misclassified clusters mostly consist of individual voxels they are easily removed

by a small-ranged median filter. This is reflected by Val-Med performing significantly

better in all granulometries than Valley. Combined with consistent decrease for global

error rates (as shown in Figure 3) and no significant negative impact on the covariance

function this suggests that the additional postprocessing resolves the issue of misclassified

clusters without lowering other aspects of the segmentation.

Furthermore, results of granulometry help with interpretation of error ratios for Thresh.

The maximal particle size of each binary image is related to the smallest radius for which

granulometry is zero. With exception of Thresh (and Valley) this radius is roughly
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the same for all methods (including the original binary image). For Thresh, however,

we observe a significant amount of particles with a greater size and the maximal particle

size is significantly overestimated. This becomes most obvious for Cy 057 and Sp 080.

For these data sets error ratios of Thresh are close to other approaches, however, gran-

ulometry reveals that it fails to cover important structural features.

Results for covariance functions in z-direction generally seem to be more widespread

than for x and y-direction which is fitted quite well for most cases. Due to the principle

of serial-sectioning, it is more difficult to estimate the position and elongation of an

object in z-direction than in x and y direction. Therefore, it is expected that differences

in quality of segmentation primarily become visible in z-direction.

5 Summary and Discussion

In this paper we present a study comparing various segmentation algorithms for porous

media. Using the algorithm introduced in (Prill & Schladitz, 2013), FIB-SEM images

were simulated for multiple scenarios, which are based on Boolean models and cover

different geometric structures and porosities. By using such artifical images the “ground

truth” is known and we have a common base of very different data sets to be used as

input for all algorithms. Therefore, after a short explanation of the investigated seg-

mentation algorithms Thresh (based on global thresholding), Morph (Prill, Schladitz,

Jeulin, Faessel & Wieser, 2013), LTB (Salzer, Spettl, Stenzel, Smått, Lindén, Manke

& Schmidt, 2012) and Valley/Val-Med (Salzer, Thiele, Zengerle & Schmidt, 2014),
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these algorithms were applied to all simulated FIB-SEM images. The obtained binary

images were compared to the known corresponding ground truth. For a first evaluation

the amount of misclassified voxels and the volume fraction for each obtained image was

computed. Because a voxel-based comparison does not reflect the relevance or severity

of misclassifications, we also analysed the amount of structural information that was

preserved. This is achieved by comparing structural characteristics, i.e., the covariance

function and granulometry.

We conclude that different segmentation algorithms can be recommended for different

scenarios. For samples with a very low porosity Thresh might already provide sufficient

results, because the shine-through artefacts are negligible. Valley/Val-Med on the

other hand provides the best results of all approaches for highly porous samples. For

intermediate and low porosities Morph seems to be the best choice. Finally, LTB is

suitable for images where huge illumination differences prevent other approaches from

being used, because they require global thresholds at some point. In practice, such

additional artefacts depending on the experimental setup or the samples themselves

are likely to play an essential role deciding which algorithm provides the best results,

therefore our recommendations are to be seen as a general guideline.
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Captions (including Tables/Figures)

T GV T MG D MIN L HG T HG

Cy 014 39 22 7 9 1

Cy 024 37 24 7 9 1

Cy 057 26 45 25 5 1

Sp 035 43 43 12 5 1

Sp 060 37 42 10 5 1

Sp 080 42 42 13 6 1

Table 1: Choice of parameters for Morph for each data set.
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algorithm mean min–max

Thresh 9.6% 4.8%–23.3%

LTB 10.5% 4.2%–19.8%

Morph 2.3% 0.4-4.6%

Valley 3.5% 0.3%–6.7%

Val-Med 3.2% 0.4%–5.5%

Table 2: Table of the absolute errors made for the volume fractions. For each seg-

mentation algorithm the absolute difference to the correct volume fraction is

computed for each image individually and then accumulated by mean, mininum

and maximum values over all analysed images.

Im. / Algo. Thresh LTB Morph Valley Val-Med

Cy 014 15.4% 10.3% 10.7% 7.0% 6.6%

Cy 024 14.1% 12.9% 8.7% 8.5% 7.4%

Cy 057 6.6% 13.2% 4.3% 7.1% 4.5%

Sp 035 22.1% 23.0% 12.3% 15.9% 13.9%

Sp 060 18.0% 22.3% 11.7% 13.5% 11.3%

Sp 080 10.1% 19.9% 7.8% 11.7% 8.9%

Table 3: Table of error ratios for misclassified voxels.
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Im. / Algo. Thresh LTB Morph Valley Val-Med

(fg/bg) (fg/bg) (fg/bg) (fg/bg) (fg/bg)

Cy 014 58%/9% 28%/7% 38%/6% 29%/3% 28%/3%

Cy 024 40%/6% 21%/10% 31%/2% 25%/3% 23%/3%

Cy 057 5%/8% 14%/10% 4%/3% 8%/4% 6%/1%

Sp 035 28%/17% 35%/14% 17%/8% 24%/10% 22%/8%

Sp 060 14%/26% 26%/14% 7%/20% 14%/11% 12%/8%

Sp 080 6%/32% 20%/18% 2%/39% 10%/17% 7%/14%

Table 4: Table of error ratios for misclassified voxels that originally belong to the solid

phase (fg) or pore phase (bg).

Figure 1: Slice of the data set for Sp 035 (left) and its corresponding simulated SEM

slice (middle). On the right: a simulated SEM slice for Cy 024. Both SEM

slices show the SE signal of the corresponding image.
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Figure 2: Error rates in the reconstructed binary image of Sp 035 for given z-coordinates.

Peaks can be observed in the beginning (Morph and Valley) and the end

(LTB).
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Figure 3: Color table. In all of the following plots the same color is used for the corre-

sponding algorithm.
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Figure 4: Plots for covariance in x- and y-direction combined (cylinders on the left,

spheres on the right, volume fractions increasing downwards).
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Figure 5: Plots for covariance in z-direction (cylinders on the left, spheres on the right,

volume fraction increasing downwards).
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Figure 6: Plots for granulometry (cylinders on the left, spheres on the right, volume

fraction increasing downwards).
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Figure 7: Visual example for different types of segmentation errors. Left: the original

binary image as a reference. Middle: LTB with small clusters of misclassified

voxels (partly highlighted with yellow). Right: Morph with some missing

cylinders (blue). For particle size distribution (e.g. granulometry) these miss-

ing structures have little negative impact, since the distribution is estimated

based on present structures. The smaller clusters however have a significant

impact. However, they are presumably easier to remove in later processing,

including particle-extraction.
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Figure 8: Visual example for the artifacts produced by Valley. From left to right: The

original binary as a reference. Then, the binary as obtained by Valley with

small clusters of misclassified voxels. The third image shows how these small

clusters get enlarged by a morphological erosion, which is performed during

granulometry. On the right: the result of Val-Med with most of the clusters

removed.
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