
3D analysis, modeling and simulation of transport processes in compressed
fibrous microstructures, using the Lattice Boltzmann method

Dieter Froninga, Jan Brinkmanna, Uwe Reimera, Volker Schmidtb, Werner Lehnerta,c, Detlef Stoltena,d
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Abstract

In this paper we combine a stochastic 3D microstructure model of a fiber based gas diffusion layer of polymer elec-
trolyte fuel cells with a Lattice Boltzmann model for fluid transport. We focus on a simple approach of compressing
the planar oriented virtual geometry of paper-type gas diffusion layer from Toray. Material parameters – permeability
and tortuosity – are calculated from simulation of one phase, one component gas flow in stochastic geometries. We
analyze the statistical spread of simulation results on ensembles of the virtual geometry, both uncompressed and com-
pressed. The influence of the compression is discussed with regard to the Kozeny-Carman equation. The effective
transport properties calculated from transport simulations in compressed gas diffusion layers agree well with a trend
based on the Kozeny-Carman equation.
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1. Introduction

Because of their high efficiency and low emissions
polymer electrolyte fuel cells (PEFC) are promising de-
vices for electrical power generation. The major com-
ponents of a typical PEFC are the membrane electrode
assembly (MEA), the flow fields, and the gas diffusion
layer (GDL) [1, 2]. The electrochemical conversion of
hydrogen takes place at the electrodes with their typi-
cal pore sizes of about 100 nm. The flow fields at the
anode and cathode side are responsible for the transport
of reacting gases to the membrane and to remove liquid
and gaseous products. A typical cross section of chan-
nels in the flow fields on the anode and cathode side is
1 mm2. The GDLs are located between the flow field
and the MEA on both the anode and the cathode side.
Their function is to enable almost homogeneous mass
transport between the channels and the MEA, not only
under the channels but also under the ribs of the flow
fields. Furthermore, the GDL has to provide electrical
contact with the bipolar plates. GDLs can be produced
as carbon paper, carbon cloth, and non-woven with typ-
ical fiber diameters of 5-10 µm. The thickness is mostly
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in the range of 100-300 µm [3, 4]. The microstructure
of paper and non-woven is of random nature. The fibers
may be glued together with binder, e.g., in case of car-
bon paper. If the GDL used in PEFCs operated below
100 ◦C at ambient pressure the hydrophobicity of the
GDL is often accomplished by PTFE which is added to
the GDL. The proper prediction of transport properties
is challenging due to the complex geometry. When the
GDL material is used in real fuel cell stacks, compres-
sion is applied by the flow field. This leads to different
microstructures of the GDL in the regions under land
and under channels. Lee et al. [5] studied the effects of
compression and GDLs on the performance of a PEFC.
The non-isotropic nature of the mass transport charac-
teristics and their strong dependency from the compres-
sion was already observed by Hussaini and Wang [6].
Under compression the GDL structure is morphed un-
der the ribs and material is intruded into the channels
[7]. This effect is 43-125 % higher for carbon cloth than
for carbon paper. Poornesh et al. [8] found a relation-
ship between the GDL’s in-plane mechanical properties
and membrane thinning. Parikh et al. [9] investigated
the relationship between fuel cell efficiency and GDL
materials by testing GDL samples from Freudenberg,
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SGL and Toray. They studied pore size distributions
but also size, shape and orientation of the pores. Many
groups concentrate their investigations on liquid water
transport [10, 11] because this is a key functionality of
the GDL when PEFCs are operated below 100 ◦C.

According to the different spatial scales of fuel cell
components – µm scale for GDL structures and mm
scale and above for flow fields – modeling approaches
often concentrate on either of these scales. In model-
ing approaches of fuel cells or even stacks the GDL is
often considered as a homogeneous medium with effec-
tive homogenized transport properties. With this ap-
proach Kvesić et al. were able to simulate the behav-
ior of entire HT-PEFC stacks by embedding user de-
fined functions for the electrochemical reactions into
commercial CFD software [12, 13]. Also based on ef-
fective transport properties, the effect of different com-
pression levels of the GDL was studied by Olesen et al.
[14] by means of CFD. In their simulations the geom-
etry was morphed under compression due to the calcu-
lated strain. The result is that inhomogeneous compres-
sion affects the local reaction rates in the active layer.
Chippar et al. [15] observed similar results also with
a CFD model. They considered the effect of compres-
sion in porous material parameters. Both – Olesen and
Chippar – assumed homogeneous properties of the GDL
material. For simulations of the GDL on µm scale we
chose the LB method. With this method it is possible
to incorporate complex spatial structures in the simu-
lation domain. The features of the method range from
single phase, single component flow [16, 17] to multi
component [18, 19, 20, 21] and/or multi phase config-
urations [18, 22, 23, 24]. Sophisticated data structures
and algorithms can be included [25, 26] as well as ex-
tended boundary conditions [27, 22, 28]. In this paper
we present a LB based method to obtain effective ma-
terial properties - permeability and tortuosity - of paper
type GDLs. Mass transport focuses on single phase, sin-
gle component flow of the anode of an HT-PEFC which
is operated at 160 ◦C. In this case the driving force for
mass transport is forced convection because hydrogen is
consumed at the electrode, which can be translated into
a pressure gradient across the GDL.

Obtaining reliable transport properties requires
knowledge both of the microstructure and of the trans-
port processes - which was demonstrated by Hossain et
al. [29]. They presented CFD simulations of a channel
pair with focus on two phase species transport and re-
ported in-plane and through-plane permeabilities of the
GDL. A significant influence of the transport properties
of the GDL on the cell voltage was observed.

Pore network models [30, 31, 32, 33, 34, 35] are

widely used for simulating mass flow in GDLs, espe-
cially with emphasis of two phase flow. These models
are very effective in order to capture the physics of mass
transport in combination with evaporation and conden-
sation. As a consequence of this approach the structure
of the solid phase is either neglected or the pore network
must be extracted from the real geometry by a separate
modeling step – which is beyond the scope of this arti-
cle.

Many groups use reconstructed GDL geometry in
their modeling approaches which can be obtained from
x-ray tomography [36, 37, 38]. Transport simulations
on those microstructures can be preferably performed
by the Lattice Boltzmann (LB) method [39]. Niu et
al. [40] combined the multiple relaxation time (MRT)
scheme of the LB method with the diffuse interface the-
ory to simulate the multi phase transport in the GDL
using reconstructed geometry of Toray paper. Ostadi,
Rama et al. investigated in LB simulations on GDL
structures which were obtained from nano-computed
tomography. They characterized the structure accord-
ing to geometric characteristics, anisotropy and effects
of compression [41, 42, 21, 43, 44, 45, 46]. As in
the macrohomogeneous approaches mentioned before
also the simulations on the reconstructed microstructure
show the evidence of the non-isotropic transport prop-
erties on the behavior of the mass transport on higher
spatial scales.

To overcome the high expenses of tomography exper-
iments virtual geometries are often generated by several
methods. All the approaches have in common that the
generated geometries show the same characteristics as
the original structure. This can be done for generic fiber
structures [47] and it can be simplified for straight fibers
as they occur in paper-type GDL. The idea of represent-
ing fiber based material by randomly distributed cylin-
ders was presented by Tomadakis and Sotirchos already
in 1993 [48]. A commonly used stochastic model for
fiber based GDLs was presented by Schladitz et al. [49].
In this model straight fibers of non-woven GDLs are
generated by a 3D dilated Poisson line process. Its de-
velopment was continued by Schulz et al. [50] and ap-
plied to characterize carbon papers. The basic assump-
tions are overlapping fibers which are long compared to
the sample size. Furthermore it is assumed that the GDL
is homogeneous on macroscopic view and isotropic in
the x,y plane.

The stochastic fiber model was developed further by
Thiedmann et al. [51, 52, 53]. An important feature of
the planar approach is the assumption of isotropy in z
direction and the validation of their model against 3D
tomographic data. They developed a method to get the
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model parameters for a 3D geometry model from one
2D electron microscopy image. This model was used
by Wang et al. [54] for numerical transport simulations
on the cathode side of a PEFC using CFD.

In our work we simulate the mass transport through
a virtual GDL. Its geometry was generated by the 3D
stochastic model from Thiedmann et al. [51] with their
extended binder model [52, 53]. The chosen geometry
model is favorable for virtual material design because of
its planar oriented structure which is nevertheless vali-
dated against 3D data.

Therefore, we developed an approach of compression
which is planar oriented. We are able to estimate the
error caused by the quasi-2D simplification. We sim-
ulated the mass transport through the GDL using the
LB method and we characterized the GDL by evaluat-
ing permeability and tortuosity, both through-plane and
in-plane. We applied our methods to uncompressed and
compressed virtual geometries. Because of the stochas-
tic nature of the generated microstructure we simulated
the mass transport on 25 realizations of the virtual ge-
ometry, combined with 4 binder models.

Hao and Cheng [55] calculated also the effect of com-
pression by applying LB simulations on fiber based
GDLs and they achieved good agreement with measure-
ments and heuristic trends. Their way of creating the
stochastic geometry is different from ours in two as-
pects.

First, Hao and Cheng created their virtual geometry
from the Schladitz model [49] whereas our approach is
based on the model from Thiedmann [51] and its exten-
sion regarding the binder [52, 53].

Second, the more pronounced difference is the way of
how the microstructure is compressed. Hao and Cheng
reconstructed a new virtual geometry once the porosity
was calculated from the rate of compression. They gen-
erated the microstructure by applying their reconstruc-
tion method with changed porosities and fiber thick-
nesses according to the compression.

In our work we compress a given microstructure in a
geometric way which represents the physical process of
compression.

The statistical spread caused by the geometry model
has to be separated from the effects due to the compres-
sion approach. We introduce a method based on the
Kozeny-Carman equation to predict the effect of com-
pression on the permeability. With this approach it was
possible to separate the impact of the compression. This
allows a validation of the compression model despite of
large statistical spread due to the stochastic geometry.

2. Methods

Based on the planar oriented geometry model we de-
veloped a compression model which is planar oriented,
too. This approach is described in detail in section 2.2.
The mass transport is simulated with the Lattice Boltz-
mann (LB) method as presented in section 2.3.

2.1. Stochastic geometry model
The virtual geometry of the microstructure of our

transport simulations are based on the model of Thied-
mann et al. [51]. This model describes fiber based GDL
material very well by a simple approach which makes it
a promising candidate for virtual material design [56].
The fibers of paper type GDLs are almost oriented in
planes which leads to the basic assumption of the Thied-
mann model [51]. The fibers of the virtual geometry are
created layer-wise by a 2D Poisson line process. Its pa-
rameter can be obtained from one SEM image of the
GDL. The three dimensional virtual fiber structure was
shown to be stochastic equivalent with real 3D mate-
rial [51]. The remaining solid material to be inserted
for achieving the known porosity of 78 % is filled with
binder. For this purpose randomly chosen pores built
from fibers in a plane are filled with binder material ac-
cording to Thiedmann’s binder model [52, 53] until the
desired porosity is reached. The binder is dilated in z
direction up to the thickness of the fiber layer.

The method of filling a particular pore with binder
either partial or completely is depicted in fig. 1. Given
a pore built by some fibers the pore is filled from the
border to the center with a constant radius. Fig. 1 shows
an example for radii br = 6 µm, 18 µm, 30 µm and ∞
which indicates a completely filled pore. Some basic
transport simulations on this kind of geometries were
presented by Froning et al. [56] where 25 realizations
were chosen because of the stochastic nature of the
geometry data. The geometry was implemented into a
coarse lattice where one fiber layer was represented by
5 lattice layers – all alike which indicates the real fibers
being represented as square fibers (5 x 5) in the virtual
geometry.

2.2. Compression model
The simplicity of the implemented fiber model in-

duced the demand for a compression model of a similar
level of abstraction. Because of the two dimensional
approach of the fiber geometry, the compression model
was developed also in a two dimensional manner. The
basic idea of this approach is that two crossing fibers
of adjacent fiber layers penetrate each other when they
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are compressed. This situation is shown in fig. 2. In
this diagram the green and red images are representing
adjacent fiber layers. Given the chosen implementation
already introduced by Froning et al. [56] the two fiber
layers are represented by 10 lattice layers. This imple-
mentation can be compressed by 10 % by merging the
two adjacent lattice layers into one layer. The result is
shown in part (c) of fig. 2. In this way 10 lattice lay-
ers are compressed to 9 lattice layers. The procedure is
repeated stepwise as shown in fig. 3. The 10 % section
of the diagram shows that the principle described above
is applied to every second pair of adjacent fiber layers.
Applying the similar method to the other pairs of fiber
layers leads to a compression of 20 %. The merged lat-
tice layers are colored blue in fig. 3. The same method
can be repeated by merging new lattice layers as shown
in fig. 3, sections labeled with 30 % to 50 %. The 50 %
compressed geometry is the extreme case of the com-
pression model. In this case the virtual geometry con-
sists only of merged lattice layers – represented by the
black and blue colors of the lines in fig. 3.

When a GDL with thickness d0 is compressed by a
compression level x the resulting porosity is

εx = 1 − (1 − ε0) ·
d0

dx
(1)

with the porosity ε0 of the uncompressed geometry and
the thickness dx of the compressed geometry.

The porosity of the virtual geometry compressed
by the algorithm described above can be calculated
by counting the fluid and solid lattice sites of the
generated geometry. Similar, as in our studies in [56],
we investigated on 25 realizations of 4 binder models.
We compressed those 100 virtual geometries by 10, 20,
30, 40 and 50 %. The deviations of the porosity of the
compressed geometries from eq. (1) are lower than 2.5
/ 4.5 / 6.5 / 9 / 12 % for the chosen compression levels
– all values averaged over 100 geometries.

2.3. Transport simulations
A virtual geometry – both original and the com-

pressed cases – is represented by a series of black/white
(BW) images specifying the solid regions as black color
and the fluid regions as white [56]. Every image repre-
sents a piece of the GDL in its planar orientation with
1.5 µm thickness. The situation is depicted in fig. 4.
We are using a lattice of 512 x 512 x 130 units to rep-
resent a GDL of 0.77 mm x 0.77 mm size and 195 µm
thickness. For the calculation of mass transport a simu-
lation domain is wrapped around the section of the GDL
with free space upstream and downstream. This allows

the specification of physical meaningful boundary con-
ditions for the gas flow as summarized in table 1. That
results in the specification of a constant velocity profile
of hydrogen at the inlet boundary (Dirichlet boundary
condition). At the outlet a constant pressure was as-
sumed which is equivalent to Neumann boundary con-
ditions on the velocity. At low Reynolds numbers be-
low 10−3 – related to the fiber diameter – it was found
that 10 lattice sites of free space upstream and down-
stream is sufficient to observe the flow through the GDL
undisturbed by the boundary conditions at the inlet and
outlet. That extends the lattice to 512 x 512 x 150
units for through-plane simulations in the uncompressed
GDL and 532 x 512 x 130 units for in-plane simulations.
At the side boundaries of the GDL section no-slip wall
boundary conditions were applied. The decision against
periodic boundary conditions was made due to the un-
derlying stochastic fiber model. The stochastic model
assumes infinite long fibers. This leads to a stochastic
parameter which determines the geometric microstruc-
ture. Periodic boundary conditions would cut the fibers
to the size of the simulation domain. Also a regular
structure of the size of the domain would be overlaid
which affects the validity of the stochastic model.

2.4. Kozeny-Carman trend
To evaluate the capability of the compression model

we refer to the Kozeny-Carman equation

κ =
ε

Kc

(
Vp

S p

)2

(2)

The Kozeny-Carman eq. (2) estimates the permeability
κ of a porous structure from geometric properties and a
remaining so-called Kozeny constant Kc. The porosity
ε, the total volume Vp, and the inner surface of the solid
structure S p can be obtained from a given microstruc-
ture. The Kozeny constant Kc represents the shape of
the objects of which the solid structure is built from.
The value of this constant cannot be calculated straight-
forward for complex microstructures. Kaviany [57] re-
ported equations for the Kozeny constant for packed
beds of spheres depending of the diameter of the spheres
and the porosity of the structure but he admitted a lim-
ited applicability of the Kozeny-Carman equation for
the calculation of the permeability of a porous structure.
Heijs and Lowe [58] calculated the permeability and the
Kozeny constant from Lattice Boltzmann calculations
on the porous structure of clay soil. They reported a
good agreement of their calculated permeabilities with
measurements for random packing of spheres. But for
real structures they observed dependencies of the cal-
culated permeabilites from the resolution of the images

4



representing their geometry and from the resolution of
their lattice.

For complex geometries it is known that the Kozeny
constant is related to the tortuosity τ [59]. This leads to

Kc = τ · K̃c (3)

where K̃c now depends only on the shape of the geome-
try. Applied to eq. (2) this leads to the relationship

κ · τ ∼ ε ·

(
Vp

S p

)2

(4)

which allows us to define a Kozeny-Carman trend

κ · τ|x% = κ · τ|0% · ε

(
Vp

S p

)2
∣∣∣∣∣∣∣
x%

/
ε

(
Vp

S p

)2
∣∣∣∣∣∣∣
0%

(5)

In eq. (5) the symbols κ, τ, ε, Vp, and S p specify prop-
erties of the uncompressed or compressed geometry de-
pending on whether |0% or |x% is written rightmost to
the symbol. The Kozeny-Carman trend estimates κ ·τ of
a compressed geometry by evaluating geometric prop-
erties of the microstructure and relating it to the calcu-
lated permeability and tortuosity of the uncompressed
geometry. We used eq. (5) to validate the simulations
on compressed geometries.

2.5. Accuracy of the results

The fibers of the stochastic model are represented in
a coarse grid with 5 lattice sites within a fiber diame-
ter. A quadratic profile of the fibers is used according to
Thiedmann et al. [51]. This resolution is according to
the resolution of the synchrotron data which was used
to validate the stochastic model [51].

From studies on the accuracy of the calculated per-
meability by Brinkmann et al. [60] it can be concluded
that the error in the permeability of our simulations in
the GDL structure is below 10 %.

The error inherent to the compression model because
of the simplified approach shown in fig. 2 is below 6.5 %
as argued in section 2.2. With the deviation of κ · τ from
the Kozeny-Carman trend it can be estimated that the
error in κ · τ caused by the compression model is in the
same order of magnitude as the model-related error in
the geometry. With this approach we are able to separate
the influence of the compression from the influence of
other parameters of the complex simulation, e.g. LB
schemes, discretization, boundary conditions, or even
size effects.

The accuracy of the LB simulation itself can be in-
creased when the underlying geometry is represented
more accurate by a finer lattice. This was shown by

Thomas et al. [61] who investigated the effect of fiber
resolution on on LB simulations.

In the present article the transport simulations are
based on a simplified geometry model with a coarse res-
olution [51]. The special approach of compressing this
type of geometry is dedicated to the assumptions of the
stochastic geometry. As a conclusion it is not useful to
enhance the spatial resolution in our case.

The accuracy of the results is in the same order
of magnitude as the coarse geometry and the simple
approach of compression. Furthermore, the Kozeny-
Carman trend (eq. (5)) allows to judge the simulations
on compressed geometries in relation to the uncom-
pressed geometry – assuming the error in the calculated
permeability being dominated by systematic effects.

3. Results

3.1. Transport simulations

For our LB simulations we used the open source soft-
ware Palabos [62]. We chose the BGK method and the
D3Q19 discretization scheme [56, 16, 63]. As a result
we get fields of

fi(ξ, ϑ), i = 0, ..., 18 (6)

where fi(ξ, ϑ) specifies the probability of finding a gas
molecule at the position ξ and time ϑ transported in the
i-th direction of the D3Q19 scheme to the neighbored
voxel within a fixed time step δt. Velocity vectors can
be calculated from a combination of the fi which results
in a field of velocities throughout the simulation domain
[16, 63]. In fig. 5 a section of the GDL is presented after
convergence of the transport simulation to steady state.
The diagram shows the simulated section of an uncom-
pressed GDL – a realization of binder type B (see fig. 1)
with binder radius br = 18 µm. In the fig. 5 the gas
flows from the bottom to the top. A plane perpendicular
to the GDL was chosen for graphical post processing.
Path lines of fixed length starting from this post process-
ing plane were calculated in upstream and downstream
direction. They were colored with the velocity of the
fluid. In this way it is demonstrated that the flow is very
irregular in its local directions and velocities.

3.2. Permeability and Tortuosity

For studies on virtual geometries we calculated two
characteristic numbers for evaluation. Like in [56] we
calculated the permeability from Darcy’s law

κ = −
q · µ
∇P

(7)
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where q is the flux through the porous structure, µ is
the dynamic viscosity of the fluid. ∇P represents the
pressure drop along the entire porous structure in flow
direction, i.e. between the planes where the fluid enters
the porous structure and where it leaves. We calculated
the tortuosity in a simplified way as presented by Kopo-
nen et al. [64]

τ =
〈|v|〉
〈vx〉

(8)

In eq. (8) 〈 〉 denotes the spatial average over the re-
gion of interest, that section namely, where the simu-
lated GDL is situated. This allows the calculation of
the tortuosity from the velocity field where |v| is the ab-
solute value of the velocity and vx is its component in
flow direction. The tortuosity calculated by eq. (8) was
proven to be correct for capillary systems [64]. For gen-
eral porous structure this approach is an approximation.

3.3. Domain size dependency

To overcome the size effect of the simulation do-
main, through-plane simulations were run at virtual
geometries of smaller sections – 100 x 100 x 150,
200 x 200 x 150, 300 x 300 x 150, and 400 x 400 x 150
instead of 512 x 512 x 150 lattice units. The statistical
spread of the tortuosity computed from simulations in
25 independent realizations of the stochastic geometry
of each size was compared. It was found that a section
of 300 x 300 is sufficient large in all cases. Depending
on the binder model even smaller sections of 100 x 100
were large enough. The size of the chosen section of the
GDL – images of 512 x 512 pixels – represents a section
of 0.77 mm x 0.77 mm.

Measurements of permeability on GDL material of
Toray were published by Gostick et al. [65, 66]. Hus-
saini and Wang reviewed the available measured data –
including Gostick – and completed the data with own
measurements [6]. The measured through-plane perme-
ability of Toray 090 is ranging from 4.4 to 12.4 µm2.
The values were obtained from different GDL thick-
nesses, different porosity and different levels of com-
pression. The permeabilites calculated from our sim-
ulations in virtual geometries are in the right order of
magnitude as shown in table 2. Simulations on uncom-
pressed geometries and 10 % compression were com-
pared with experimental values from literature.

The tortuosity of random overlapping fiber structures
was calculated analytically by Tomadakis and Robert-
son [59]. Their approach of 2-dimensiomal overlapping
fiber structures is equivalent to the Thiedmann model of

the fiber based geometry without binder. For such struc-
tures Tomadakis and Robertson calculated the tortuosity
by eq. (9).

τ =

(
1 − εp

ε − εp

)α
(9)

In this equation ε is the porosity of the fiber struc-
ture, εp = 0.11, α = 0.785 for through-plane flow and
α = 0.521 for in-plane flow. Table 3 shows a very good
agreement between the values according eq. (9) and the
tortuosities simulated in a fiber structure without binder.
The deviation between the simulations and eq. (9) of
about 4 % is due to the discretization of the fiber struc-
ture.

3.4. Results on virtual geometries

Transport simulations were run on 4 binder models as
depicted in fig. 1, A: br = 6 µm, B: br = 18 µm, C: br =

30 µm, and D: br = ∞ which is synonym to filled pores.
Because of the anisotropy of the GDL transport simu-
lations were performed through-plane and in-plane. 25
realizations of the geometry were generated from each
of the 4 binder models, resulting in 100 virtual geome-
tries in total. It has to be admitted that the flow simu-
lation through the compressed geometries did not con-
verge in some cases of the unrealistic type D geometries
especially when large pores filled with binder blocked
the fluid flow massively. In such cases less than 25
realizations were considered. Table 4 shows the sum-
marized results of the permeability and tortuosity cal-
culated from through-plane simulations on the uncom-
pressed and compressed virtual geometries.

The table contains the average values and variation
coefficients of the tortuosities and permeabilities. The
variation coefficient V = σ/x with the standard devi-
ation σ and the mean value x is a dimensionless mea-
sure of the statistical spread which can be used to com-
pare samples with different mean values [67]. The type
D simulations – GDLs with completely filled pores –
show larger variation coefficients of the tortuosity than
the others. This is conform to the intuitive expectation
because the filled pores may block the gas flow locally.

Table 5 shows the values for in-plane simulations.
The difference in the variation coefficient due to differ-
ent binder types was not observed on the in-plane sim-
ulations. This effect is induced by the layer-wise con-
struction of the geometric model. The binder is always
oriented in-plane.

Fig. 6 shows the tortuosities of the through-plane
simulations on the uncompressed geometries. The
statistical spread is large compared to the systematic
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change of the absolute values according to the binder
model. The type D model shows clearly a larger statis-
tical spread than the others. Also the statistical spread of
the permeability is large as shown in fig. 7 for through-
plane simulations. While the tortuosity is increasing
with the binder radius the permeability is decreasing.

Fig. 8 shows the calculated permeabilities of binder
model B, through-plane simulation, where the geome-
try is compressed by 10, 20, 30, 40, and 50 %. The
30 % curve represents a compression level which was
observed in fuel cells operated at Forschungszentrum
Jülich. It is clearly shown in fig. 8 that the compres-
sion of the geometry has a systematic influence on the
through-plane permeability in every realization of the
virtual geometries. It can also be observed that the vari-
ance across the stochastic geometries is significant at
every compression level. The variance represents the
inhomogeneous nature of the stochastic geometry. We
investigated also in transport simulations in smaller do-
mains [56]. We observed that the simulation domain of
512 x 512 is large enough to prevent the mean values of
the results from size effects.

In order to check if the number of realizations causes
the scattering effects of the calculated values regarding
the number of realizations we summarized the mean
values and the variation coefficients of the most sen-
sitive value – which is the permeability – for different
numbers of realizations in table 6. As the worst case
of the geometry we chose through-plane simulations on
geometries with type D binder. The high sensitivity of
the permeability compared to the other binder types and
to the tortuosity is depicted by the high values of the
variation coefficient in tables 4 and 5. It was shown that
about 20 realizations are sufficient to keep the variation
coefficient almost constant.

4. Discussion

The compression model cannot be validated by
merely evaluating the absolute values of the permeabil-
ity because of the large statistical spread. We refer also
to the Kozeny-Carman equation as shown in section 2.4.
The results of through-plane and in-plane simulations
are discussed in section 4.1 and section 4.2.

4.1. Through-plane simulations

The gas flow was simulated on uncompressed geome-
tries and also on compressed geometries with compres-
sion levels of 10, 20, 30, 40, and 50 %. 100 realizations
of virtual geometries – 25 realizations of every binder
model A, B, C, and D – were considered which are 600

virtual geometries in total. Transport simulations were
performed through-plane and in-plane.

Fig. 9 shows the averaged results of κ · τ for through-
plane simulations. The solid lines represent the Kozeny-
Carman trend estimated from eq. (5). The symbols rep-
resent transport simulations on the compressed geome-
tries. It can be observed that the simulated values of κ ·τ
agree very well with the Kozeny-Carman trend.

The deviations of the through-plane simulations pre-
sented in fig. 9 are also shown as relative deviations in
table 7. The numbers in this table are average values
taken from 25 realizations each. The realistic condi-
tions are compression levels up to 30 % as observed at
Forschungszentrum Jülich. The virtual geometry is ex-
pected to be realistic for the binder models A, B, or C,
i.e. pores are not completely filled with binder. For
these conditions the averaged deviation of κ · τ from the
Kozeny-Carman trend is below 11.4 % (through-plane).

The deviation of the simulated κ · τ from the values
estimated from eq. (5) are slightly larger in two cases.
One is the extreme case of 50 % compression. The devi-
ation is clearly higher than for smaller compression lev-
els. The 50 % compression is structural different from
the others because in this case some fibers come into
contact which were not adjacent in the uncompressed
geometry. This structural change leads to large devia-
tions of the simulations from the Kozeny-Carman trend.
The reason is not only a local change of the topology
but also a change of the inner surface S p in eq. (5).

The other extreme case is the simulation on the
binder model D representing the binder model with
filled pores. This is also an extreme case – it is ex-
pected to be far away from real GDL structures of paper
type [52, 56]. In table 7 the deviation of the 50 % com-
pressed binder type D simulations from the Kozeny-
Carman trend is significantly lower than for the other
cases. The reason is a smaller number of realizations
– as shown in table 4 – which were considered for the
evaluation because some realizations did not converge
as mentioned in section 3.4.

Though the simulated section of the GDL – repre-
sented by 512 x 512 lattice sites – is large enough to
overcome size effects in the planar oriented direction
(section 3.3) the through-plane extent might limit the
accuracy of the results. In section 2.3 we justified
the presence of free space upstream and downstream
of the GDL structure to specify physical meaningful
boundary conditions. The re-arrangement of the mass
flow at the boundaries of the GDL takes place in a
region of about 5 voxels in the free space but also in a
region of about 5 voxels inside the GDL at the chosen
operating conditions (Reynolds number below 10−3). In
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uncompressed GDLs we found that the thickness of the
GDL is sufficient large to calculate permeabilites and
tortuosities which do not change when the thickness
of the GDL is increased. But under compression the
thickness of the GDL decreases, so does the lattice.
Consequently, the region of uncertainty inside the
GDL – up to 5 voxels on both sides – becomes more
pronounced compared to the uncompressed structure.

4.2. In-plane simulations

The results of κ · τ from in-plane simulations are
shown in fig. 10. Table 8 contains the relative de-
viations of the in-plane simulation from the Kozeny-
Carman trend.

Compared to the through-plane simulations in fig. 9
the absolute deviations from the Kozeny-Carman trend
defined by eq. (5) don’t show a preference regarding the
binder model. The reason is that the filled pores can
block significantly through-plane flow but in-plane the
fluid flows along the binder.

The thickness of the GDL may possibly limit the ac-
curacy of the in-plane simulations. The size of the do-
main (512 by 512) is large enough for through-plane
simulations which was shown by simulating gas flow
through GDL sections of different size (section 3.3). For
in-plane simulations the side walls are much closer: 195
lattice units in the uncompressed simulations, and 117,
105, 92, 80, and 67 units for compression levels from
10 to 50 %. Flow simulations in such small regions do
not represent material properties which are independent
from the conditions at the boundaries of the simulation
domain.

This is conform to the simulations results from
Becker et al. [68]. They measured the permeability
of Toray GDLs through-plane and in-plane. Transport
simulations – through-plane and in-plane – were applied
to the microstructure obtained from phase contrast to-
mographic microscopy. Becker at al. achieved a good
agreement of their simulations with their through-plane
measurements but they observed deviations from the
measurements in case of in-plane simulations. Becker
admitted that the in-plane measurements were per-
formed on several GDL layers stacked on each other
to get reliable measurements. This experimental pro-
cedure was already reported by Hussaini et al. [6]. This
experimental size effect correlates to the size effect men-
tioned in section 3.3.

It can be concluded that the in-plane mass transport
cannot be described properly by material properties. In
narrow regions of compressed GDLs the conditions at

the wall boundaries may affect the mass transport sig-
nificantly.

5. Conclusion

In our paper we presented a stochastic model of fiber
based GDL microstructures. Its simplicity favors it for
virtual material design. For the existing planar oriented
geometry model we developed a compression model
which is of a similar level of abstraction as the under-
lying fiber model. We simulated single component fluid
transport through 100 realizations of the virtual geome-
tries both uncompressed and compressed. This simu-
lations enable us to evaluate the statistical impact on
effective material properties for gas flow in paper-type
GDLs used in HT-PEFCs.

Four types of binder models were considered. The
compression leads to systematic changes in the calcu-
lated permeability and tortuosity. The statistical spread
is in the same order of magnitude as the systematic
change caused by the compression.

Compression of the microstructure leads to lower per-
meabilities. The effect resulting from the transport sim-
ulations on the compressed geometries was compared
with the values estimated from the uncompressed ge-
ometries using the Karman-Cozeny equation. The prod-
uct of permeability and tortuosity κ · τ is a characteris-
tic which describes very well the behavior of effective
transport properties according to the Karman-Cozeny
equation. For configurations of practical interest the
agreement of the through-plane simulations was very
well which approves the usability of the compression
model for the desired material. The accuracy of the sim-
ulations on a 512 x 512 x 150 lattice is in the same range
as the geometric accuracy of the underlying stochastic
model.

The thickness of the GDL was too small to prevent
the simulations from a size effect introduced by the wall
boundaries. This has to be considered when results shall
be applied to larger scales. To obtain in-plane mate-
rial properties independent from the GDL thickness the
transport simulations need to be run in larger regions.
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6. Tables and Figures

Table 1: Operating conditions
average current density 1 A/cm2

volumetric flow rate H2 7 ml/min
operating temperature 160 ◦C
superficial velocity H2 1.8·10−3 m/s
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Table 2: Measured permeabilities on Toray 090 reported by Hussaini
et al.[6] vs. simulated values. TP: through-plane configuration, IP:
in-plane configuration

conf. comp. permeability origin
/ µm2

TP 10 % 9 cited in [6]
5 % 4.4 cited in [6]
9 % 12.4 ± 0.88 measured by [6]
0 % 11.7 ± 0.89 sim., binder A
0 % 11.2 ± 1.16 sim., binder B
0 % 10.5 ± 1.07 sim., binder C
0 % 8.2 ± 1.44 sim., binder D
10 % 9.64 ± 0.76 sim., binder A
10 % 9.14 ± 0.99 sim., binder B
10 % 8.55 ± 0.91 sim., binder C
10 % 6.59 ± 1.22 sim., binder D

IP 0 % 20 cited in [6]
9 % 14.6 ± 2 measured by [6]
0 % 17.6 ± 1.39 sim., binder A
0 % 18.0 ± 1.99 sim., binder B
0 % 17.8 ± 1.63 sim., binder C
0 % 16.9 ± 1.68 sim., binder D
10 % 14.4 ± 1.17 sim., binder A
10 % 14.7 ± 1.66 sim., binder B
10 % 14.6 ± 1.37 sim., binder C
10 % 13.8 ± 1.42 sim., binder D

Table 3: Tortuosity τ of GDLs without binder
No. porosity τ by eq. (9) τ simulated
1 0.863 1.140 1.187
2 0.867 1.135 1.184

Figure 1: Four types of binder with different binder radii, A) br = 6
µm, B) br = 18 µm, C) br = 30 µm, and D) br = ∞

Table 4: Through-plane characteristics of uncompressed and com-
pressed GDLs. BT are binder types A: br = 6 µm, B: br = 18 µm,
C: br = 30 µm, D: filled pores. CL is the compression level from 0 to
50 %.

BT CL Tortuosity τ Permeability / µm2 No.
/% mean var. mean var. sim.

coef. coef.
A 0 1.24 5.9 · 10−3 11.73 7.6 · 10−2 25

10 1.25 6.1 · 10−3 9.64 7.9 · 10−2 25
20 1.27 6.3 · 10−3 7.75 8.2 · 10−2 25
30 1.29 6.6 · 10−3 5.93 8.7 · 10−2 25
40 1.32 6.5 · 10−3 4.33 9.5 · 10−2 22
50 1.37 7.5 · 10−3 2.81 1.1 · 10−1 20

B 0 1.27 9.4 · 10−3 11.18 1.0 · 10−1 25
10 1.29 9.9 · 10−3 9.14 1.1 · 10−1 25
20 1.30 1.0 · 10−2 7.32 1.1 · 10−1 25
30 1.33 1.1 · 10−2 5.56 1.2 · 10−1 25
40 1.36 1.2 · 10−2 4.04 1.3 · 10−1 25
50 1.39 1.5 · 10−2 2.80 1.8 · 10−1 14

C 0 1.29 1.1 · 10−2 10.51 1.0 · 10−1 25
10 1.31 1.2 · 10−2 8.55 1.1 · 10−1 25
20 1.33 1.3 · 10−2 6.82 1.1 · 10−1 25
30 1.36 1.4 · 10−2 5.15 1.2 · 10−1 25
40 1.39 1.5 · 10−2 3.72 1.3 · 10−1 25
50 1.42 1.7 · 10−2 2.54 1.6 · 10−1 18

D 0 1.40 4.1 · 10−2 8.22 1.8 · 10−1 25
10 1.43 4.3 · 10−2 6.59 1.8 · 10−1 25
20 1.46 4.7 · 10−2 5.16 2.0 · 10−1 24
30 1.49 4.9 · 10−2 3.82 2.1 · 10−1 24
40 1.46 3.2 · 10−2 3.34 1.4 · 10−1 7
50 1.57 5.1 · 10−2 2.90 9.0 · 10−2 12

Figure 2: Merging of two adjacent grid layers (a) and (b) to one grid
layer (c)
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Table 5: In-plane characteristics of uncompressed and compressed
GDLs. BT are binder types A: br = 6 µm, B: br = 18 µm, C: br = 30
µm, D: filled pores. CL is the compression level from 0 to 50 %.

BT CL Tortuosity τ Permeability / µm2 No.
/% mean var. mean var. sim.

coef. coef.
A 0 1.12 4.8 · 10−3 17.63 7.9 · 10−2 25

10 1.12 5.1 · 10−3 14.41 8.1 · 10−2 25
20 1.13 5.7 · 10−3 11.60 8.4 · 10−2 25
30 1.15 6.6 · 10−3 8.91 8.5 · 10−2 25
40 1.17 7.9 · 10−3 6.72 8.5 · 10−2 25
50 1.22 1.4 · 10−2 4.45 9.9 · 10−2 25

B 0 1.11 6.3 · 10−3 17.98 1.1 · 10−1 25
10 1.12 6.7 · 10−3 14.70 1.1 · 10−1 25
20 1.13 7.2 · 10−3 11.85 1.1 · 10−1 25
30 1.15 8.3 · 10−3 9.08 1.1 · 10−1 25
40 1.16 9.8 · 10−3 6.84 1.1 · 10−1 25
50 1.22 1.7 · 10−2 4.45 1.3 · 10−1 25

C 0 1.11 4.4 · 10−3 17.81 9.2 · 10−2 25
10 1.12 4.8 · 10−3 14.56 9.4 · 10−2 25
20 1.13 5.4 · 10−3 11.73 9.8 · 10−2 25
30 1.14 6.4 · 10−3 9.00 1.0 · 10−1 25
40 1.16 7.7 · 10−3 6.79 1.0 · 10−1 25
50 1.22 1.3 · 10−2 4.39 1.3 · 10−1 25

D 0 1.12 4.2 · 10−3 16.93 9.9 · 10−2 25
10 1.12 4.4 · 10−3 13.82 1.0 · 10−1 25
20 1.13 4.8 · 10−3 11.10 1.1 · 10−1 25
30 1.15 1.3 · 10−2 8.49 1.1 · 10−1 25
40 1.17 6.6 · 10−3 6.37 1.1 · 10−1 25
50 1.23 1.4 · 10−2 4.13 1.5 · 10−1 25

Table 6: Scattering of through-plane permeability κ / µm2 for different
numbers of simulations. Compression level CL from 0 to 30 % for
binder type D.

CL N=5 N=10 N=15 N=20 N=25a

0 mean 7.73 8.15 8.17 8.44 8.22
var. coef. 0.13 0.22 0.19 0.18 0.18

10 mean 6.17 6.52 6.55 6.77 6.59
var. coef. 0.13 0.23 0.20 0.18 0.18

20 mean 4.82 5.11 5.14 5.28 5.16
var. coef. 0.15 0.24 0.21 0.20 0.20

30 mean 3.56 3.79 3.81 3.92 3.82
var. coef. 0.16 0.25 0.23 0.21 0.21

aN=24 for 20 and 30 % compression

Table 7: Deviation of the through-plane simulations from the Kozeny-
Carman trend (eq. (5)), average values over up to 25 simulations each.
Compression level CL from 10 to 50 % for binder types A, B, C, D.

CL 10 % 20 % 30 % 40 % 50 %
A 2.5 % 5.9 % 9.6 % 14.8 % 36.3 %
B 2.8 % 6.5 % 10.5 % 16.1 % 37.2 %
C 3.2 % 7.1 % 11.4 % 17.1 % 39.1 %
D 4.4 % 9.5 % 15.2 % 16.1 % 17.2 %

Table 8: Deviation of the in-plane simulations from the Kozeny-
Carman trend (eq. (5)), average values over 25 simulations each.
Compression level CL from 10 to 50 % for binder types A, B, C,
D.

CL 10 % 20 % 30 % 40 % 50 %
A 3.4 % 7.2 % 10.7 % 13.5 % 35.4 %
B 3.4 % 7.1 % 10.7 % 13.7 % 36.0 %
C 3.4 % 7.2 % 10.7 % 13.6 % 36.6 %
D 3.7 % 7.6 % 11.3 % 14.6 % 37.5 %

Odd no.

Even no.

Odd no.

Even no.

Boundaries
between
fiber layers

0 % 10 % 20 % 30 % 40 % 50 %

Level of compression

merge odd boundaries

merge even boundaries

merge odd boundaries

merge even boundaries

merge odd boundaries

Figure 3: Compression of the virtual geometry in steps of 10 %

Figure 4: Simulation frame of through-plane simulations

Figure 5: Path lines of a transport simulation through a type B geom-
etry. Gas is flowing upwards in x direction.
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Figure 6: Tortuosity in through-plane simulations, uncompressed
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Figure 7: Permeability in through-plane simulations, uncompressed
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Figure 8: Through-plane permeability in compressed GDLs, binder
model B, br = 18 µm
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Figure 9: Simulated through-plane permeability (symbols) and
Kozeny-Carman trend (lines) in compressed GDLs
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Figure 10: Simulated in-plane permeability (symbols) and Kozeny-
Carman trend (lines) in compressed GDLs
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