
Chapter 1
Random tessellations and Cox processes

Florian Voss, Catherine Gloaguen and Volker Schmidt

Abstract We consider random tessellations T in R2 and Coxian point processes
whose driving measure is concentrated on the edges of T . In particular, we discuss
several classes of Poisson-type tessellations which can describe e.g. the infrastruc-
ture of telecommunication networks, whereas the Cox processes on their edges can
describe the locations of network components. An important quantity associated
with stationary point processes is their typical Voronoi cell Ξ ∗. Since the distribu-
tion of Ξ ∗ is usually unknown, we discuss algorithms for its Monte Carlo simula-
tion. They are used to compute the distribution of the typical Euclidean (i.e. direct)
connection length D∗ between pairs of network components. We show that D∗ con-
verges in distribution to a Weibull distribution if the network is scaled and network
components are simultaneously thinned in an appropriate way. We also consider the
typical shortest path length C∗ to connect network components along the edges of
the underlying tessellation. In particular, we explain how scaling limits and analyti-
cal approximation formulae can be derived for the distribution of C∗.

1.1 Random tessellations

In the section we introduce the notion of random tessellations in R2, where we
show that they can be regarded as marked point processes as well as random closed
sets, and we discuss some mean-value formulae of stationary random tessellations.
Furthermore, we introduce simple tessellation models of Poisson type like Poisson-
Voronoi, Poisson-Delaunay and Poisson line tessellations.
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1.1.1 Basis definitions, results and notation

To begin with, we briefly summarize the basic notation and mathematical back-
ground from point process theory which we are using throughout this chapter. For
more details and further information about these topics and stochastic geometry in
general see for example [3, 16, 17] and the other chapters of the present book. Note
that we only regard the planar case in the following, although most of the results
presented here can be generalized easily to Rd for d > 2.

Let N = N(R2) denote the family of simple and locally finite counting measures
on the Borel σ–algebra B(R2). Then we define the σ–algebra N = N (R2) on N
as the σ–algebra generated by all sets of the form {ϕ ∈ N : ϕ(B) = j} with j ∈ N0
and B ∈B0(R2), where B0(R2) denotes the family of bounded Borel sets. In the
following, tx : N→ N denotes the shift operator defined by txϕ(B) = ϕ(B + x) for
any x ∈ R2 and B ∈B(R2). Thus, tx translates all atoms of ϕ ∈ N by −x.

A measurable mapping X : Ω → N from some probability space (Ω ,A ,P) into
the measurable space (N,N ) is called a random point process in R2. There are
different ways to look at point processes. We interpret X = {Xn} either as a random
counting measure using the notation X(B) for the (random) number of atoms of X
in B ∈B(R2) or as a random (finite or countably infinite) sequence X1,X2, . . . of
(2–dimensional) random variables Xn : Ω → R2.

The probability measure PX defined on N by PX (A) = P(X ∈ A) for A ∈N is
called the distribution of X . A point process X is called stationary if PX = PtxX for
any x ∈ R2. We define the intensity measure µ : B(R2)→ [0,∞] of a point process
X by µ(B) = EX(B), B ∈B(R2). In the following we will always assume that µ

is locally finite. If X is stationary, we additionally assume that P(X(R2) > 0) = 1.
Then, for some constant λ > 0 which is called the intensity of X , we have µ(B) =
λν2(B) for any B∈B(R2), where ν2 denotes the 2-dimensional Lebesgue measure.

Point processes can be generalized by adding a (random) mark from some mark
space M to each point. Such generalizations are called marked point processes. In
the following, the mark space M is assumed to be a Polish space which is equipped
with the Borel–σ–algebra B(M) on M. Let NM = N(R2×M) denote the set of all
measures ψ : B(R2)⊗B(M)→ N0 ∪{∞} which are simple and locally finite in
the first component, i.e., ψ({x}×M) ∈ {0,1} for all x ∈ R2 and ψ(B×M) < ∞

for all B ∈B0(R2). Now let NM be the σ–algebra generated by the subsets of NM
of the form {ψ ∈ NM : ψ(B×G) = j} for B ∈B0(R2), G ∈B(M) and j ∈ N0.
We then call a measurable mapping XM : Ω → NM from some probability space
(Ω ,A ,P) into the measurable space (NM,NM) a random marked point process in
R2 with mark space (M,B(M)). Again, often alternative representations of XM are
convenient. For instance, XM can be represented as a sequence of random marked
points written as XM = {(Xn,Mn)}. Here both Xn : Ω → R2 and Mn : Ω →M are
measurable mappings. In the following we use the notation XM = {(Xn,Mn)} and
we regard XM as a random sequence of marked points or a random element of NM.

The distribution PXM of XM is given by PXM (A) = P(XM ∈ A) for any A ∈NM.
Stationarity is now defined with respect to the first component of XM , where the shift
operator tx : NM→ NM is considered with txψ = {(xn−x,mn)} for ψ = {(xn,mn)}.
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The marked point process XM is called stationary if PXM = PtxXM for all x∈R2. Then
λ = EXM([0,1)2×M) > 0 is called the intensity of XM and the probability measure
Po

XM
: B(M)→ [0,1] defined by

Po
XM

(G) =
1
λ

E#{n ∈ N : Xn ∈ [0,1)2 , Dn ∈ G} , G ∈B(M) , (1.1)

is called the Palm mark distribution of XM . A random variable M∗ : Ω →M dis-
tributed according to Po

XM
is called the typical mark of XM . It can be interpreted as

the conditional distribution of the mark at the origin o given that there is a point of
XM located at o. Moreover, for any stationary marked point process XM , the Palm
distribution P∗XM

is the probability measure on NM⊗B(M) given by

P∗XM
(A×G) =

1
λ

E#{n ∈ N : Xn ∈ [0,1)2,Mn ∈ G, tXnXM ∈ A} (1.2)

for A ∈ NM, G ∈ B(M). It can be interpreted as conditional distribution of XM
under the condition that there is a point of XM at o. A marked point process with
distribution P∗XM

(· ×M) is denoted by X∗M and called the Palm version of XM . The
next result is called the refined Campbell theorem, see e.g. Theorem 3.5.3 in [16].

Theorem 1. Let XM be a stationary marked point process in R2 with mark space
M and intensity λ > 0. Furthermore, let f : R2×M×NM→ [0,∞) be measurable.
Then ∑(x,m)∈XM f (x,m, txXM) is a well-defined random variable and

E ∑
(x,m)∈XM

f (x,m, txXM) = λ

∫
R2

∫
NM×M

f (x,m,ψ)P∗XM
(d(ψ,m))ν2(dx) . (1.3)

Ergodic and mixing marked point processes are defined in the following way. We
define the shift txA of a set A ∈NM by txA = {txψ : ψ ∈ A} for all x ∈ R2. Then,
a stationary marked point process XM is called ergodic if P(XM ∈ A) ∈ {0,1} for
all A ∈I , where I = {A ∈NM : A = txA for all x ∈ R2} denotes the σ -algebra of
shift invariant sets in NM. A stationary marked point process XM is called mixing if
lim|x|→∞ P(XM ∈ A,XM ∈ txB) = P(XM ∈ A)P(XM ∈ B) for A,B∈NM. If A∈I and
X is mixing, then P(X ∈ A) = lim|x|→∞ P(X ∈ A,X ∈ txA) = P(X ∈ A)P(X ∈ A) =
P(X ∈ A)2. This shows that X is ergodic if X is mixing.

We now state still another basic result which is a version of the individual and
statistical ergodic theorem applied to marked point processes, see Theorem 12.2.IV
and Corollary 12.2.V in [3]. It connects spatial averages of the marks of an ergodic
marked point process with statistical averages of the typical mark.

Theorem 2. Let XM be an ergodic marked point process with intensity λ and mark
space M, and let M∗ be the typical mark of XM . Then, for any convex averaging
sequence {Wn}n≥1 and for any measurable function h : M→ [0,∞), it holds that

Eh(M∗) = lim
n→∞

1
λν2(Wn)

∞

∑
i=1

1Wn(Xi)h(Mi) (1.4)
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almost surely and in L1. Furthermore, with probability 1, it holds that

Eh(M∗) = lim
n→∞

1
#{i : Xi ∈Wn}

∞

∑
i=1

1Wn(Xi)h(Mi) . (1.5)

By the result of Theorem 2 it becomes clear why we are interested in the typical
mark of ergodic marked point processes: For h = 1G, formula (1.5) implies that

Po
XM

(G) = lim
n→∞

#{i ∈ N0 : Xi ∈ [−n,n]2,Mi ∈ G}
XM([−n,n]2×M)

. (1.6)

Thus, the typical mark can be seen as the mark at a point chosen at random among
all points, i.e., at the typical point of the “unmarked” point process {Xn}.

1.1.2 Deterministic tessellations

Intuitively speaking, a tessellation is a subdivision of R2 into a sequence of convex
polygons. However, a tessellation can also be identified with the segment system
consisting of the boundaries of these polygons. Because of these different view-
points, random tessellations introduced later on in Section 1.1.3 are flexible models
which can be applied in many different fields of science.

We start with the definition of deterministic planar tessellations. A tessellation
τ in R2 is a countable family {ξn}n≥1 of convex bodies ξn fulfilling the conditions
ξ̊n 6= /0 for all n, ξ̊n ∩ ξ̊m = /0 for all n 6= m,

⋃
n≥1 ξn = R2 and ∑n≥1 1{ξn∩C 6= /0} < ∞

for any C ∈ C , where ξ̊ denotes the interior of the set ξ ⊂ R2, and C is the family
of compact sets in R2. The sets ξn are called the cells of the tessellation τ and are
bounded polygons in R2. In the following, we use the notation T for the family of
all tessellations in R2. Note that we can identify a tessellation τ with the segment
system τ(1) = ∪∞

n=1∂ξn constructed from the boundaries of the cells of τ . Thus, a
tessellation can be identified with a closed subset of R2 and hence we can regard T
as a subset of the family F of all closed subsets of R2. We use this connection in
order to define the σ–algebra T on T as the trace–σ–algebra of B(F ) in T.

With each cell ξn of τ we can associate some “marker point” in the following
way. Consider a mapping α : C \{ /0}→ R2 which satisfies

α(ξ + x) = α(ξ )+ x for all ξ ∈ C , ξ 6= /0 and x ∈ R2, (1.7)

where α(ξ ) is called the nucleus of ξ and can be e.g. the center of gravity of ξ .
There are various ways to generate tessellations based on sets of points and lines.

Particular models are Voronoi tessellations and Delaunay tessellations as well as
line tessellations which are introduced in the following.

Let x = {x1,x2, . . .}⊂R2 be a locally finite set with conv(x) = R2, where conv(x)
denotes the convex hull of the family x. Then the Voronoi tessellation τ induced by
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x is defined by the nearest–neighbor principle, i.e., the cells ξn of τ are given by

ξn = {x ∈ R2 : |x− xn| ≤ |x− xm| for all m 6= n} . (1.8)

Note that ξn =
⋂

m 6=n H(xn,xm), i.e. the cell ξn can be represented as intersection
of the half-planes H(xn,xm) = {x ∈ R2 : |x− xn| ≤ |x− xm|} for m 6= n, where the
half-planes H(xn,xm) are also called bisectors. Since x is locally finite it is clear that
the cells of τ have non–empty interior. Moreover, their union covers R2 and two
different cells can only intersect at their boundaries. Using that conv(x) = R2, it can
be shown that the cells are convex polygons which are bounded and locally finite.
Thus, the family τ = {ξn} constructed in this way is indeed a tessellation. A Voronoi
tessellation together with the generating point set is displayed in Figure 1.1(a).

(a) Voronoi tessellation (b) Delaunay tessellation (red) (c) Line tessellation

Fig. 1.1 Different types of tessellation models

Now assume that four cocircular points do not exist in x, i.e., we assume that
there are no pairwise different points xi,x j,xk,xl ∈ x which are located on a circle.
In this case, the Delaunay tessellation τ ′ induced by x can be generated uniquely as
the dual tessellation of the Voronoi tessellation τ which is induced by x. The cells of
τ ′ are triangles which are constructed in the following way. Three points xi,x j,xk ∈ x
form a triangle of τ ′ if the corresponding Voronoi cells ξi,ξ j and ξk have a common
intersection point. This rule is equivalent to the empty circle criterion: three points
of x are the vertices of a triangle of τ ′ if and only if the circumcircle of these three
points does not contain other points of x. It can be shown that the resulting sequence
of triangles forms a tessellation in R2. In Figure 1.1(b) a Delaunay tessellation is
displayed together with its generating points and the dual Voronoi tessellation.

Consider a set ` = {`1, `2, . . .} of lines in R2 and let pi ∈ R2 denote the or-
thogonal projection of o onto `i, where it is assumed that conv({p1, p2, . . .}) = R2.
Furthermore, we assume that #{i : `i∩B 6= /0}< ∞ for all B ∈ C . Then, in a natural
way, we can generate a tessellation with respect to the intersecting lines of `. Recall
that we can identify a tessellation τ with the edge set τ(1) = ∪∞

n=1∂ξn given by the
union of the cell boundaries. Thus, we define the line tessellation τ induced by ` via
the edge set τ(1) = ∪∞

i=1`i formed by the union of the lines `1, `2, . . . . If the family `
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fulfills the assumptions above, then it is ensured that the resulting cells possess the
properties of a tessellation of R2, see also Figure 1.1(c).

1.1.3 Random tessellations

Usually, a random tessellation in R2 is defined as a measurable mapping T : Ω →T,
i.e. as a sequence T = {Ξn} of random convex bodies Ξn such that P({Ξn} ∈T) = 1.
Notice that there are various ways to look at tessellations. In particular, they can be
viewed as marked point processes and random closed sets. Each of these different
points of view leads to new characteristics that can be associated with a tessellation.
The tessellation T is said to be stationary and isotropic if txT = {txΞn}

d= T for all

x ∈ R2 and ϑRT = {ϑRΞn}
d= T for all rotations ϑR around the origin, respectively.

1.1.3.1 Random tessellations as marked point processes

It is often convenient to represent a random tessellation T = {Ξn} as a marked
point process with an appropriate mark space. Note that we can associate various
point processes with T , e.g. the point processes of cell nuclei, vertices and edge
midpoints. If these point processes are marked with suitable marks, then we can
identify T with the corresponding marked point process.

We first consider the point process of cell nuclei marked with the cells. Let α :
C \{ /0} → R2 be a mapping such that (1.7) holds. Let Po denote the family of all
convex and compact polygons ξ with their nucleus α(ξ ) at the origin. Then Po ⊂
F is an element of B(F ) and we can define the σ -algebra B(Po) = B(F )∩Po.
Furthermore, the random tessellation T = {Ξn} can be identified with the marked
point process {(α(Ξn),Ξ o

n )}, where Ξ o
n = Ξn−α(Ξn) is the n-th cell shifted to the

origin. If T is stationary, then {(α(Ξn),Ξ o
n )} is also stationary and we denote its

intensity by λ (2), where we always assume that 0 < λ (2) < ∞. The typical mark
Ξ ∗ : Ω →Po of {(α(Ξn),Ξ o

n )} is a random polygon distributed according to the
Palm mark distribution of {(α(Ξn),Ξ o

n )} as defined in (1.1). We call the random
polygon Ξ ∗ the typical cell of the tessellation T , see also CALKA and HUG.

Another possibility to represent T by a marked point process is the following.
Consider the point process of vertices V = {Vn} of T . For each vertex Vn we define
the edge star En as the union of all edges of T emanating from Vn. Thus, Eo

n = En−
Vn is an element of the family L o of finite segment systems containing the origin.
Since L o ∈B(F ) we can consider the σ–algebra B(L o) = B(F )∩L o on L o.
Hence, we can represent the random tessellation T by the marked point process
{(Vn,Eo

n )} with mark space L o. If T is stationary, then {(Vn,Eo
n )} is stationary and

its intensity is denoted by λ (0), where we assume that 0 < λ (0) < ∞. The typical
edge star E∗ : Ω → L o of T is defined as a random segment system distributed
according to the Palm mark distribution of {(Vn,Eo

n )}.
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The random tessellation T can also be represented by the marked point process of
edge midpoints {(Yn,S0

n)}, where each midpoint Yn is marked with the centered ver-
sion So

n = Sn−Yn ∈L o of the edge Sn corresponding to Yn. If T is stationary, then it
is easy to see that {(Yn,So

n)} is stationary. The intensity of edge midpoints is denoted
by λ (1), where we again assume that 0 < λ (1) < ∞. The typical edge S∗ : Ω →L o

is defined as the typical mark of the stationary marked point process {(Yn,So
n)}.

1.1.3.2 Random tessellations as random closed sets

In the preceding section random tessellations have been represented as marked point
processes. Alternatively, random tessellations can be regarded as random closed
sets, see MOLCHANOV for their definition and basic properties. Recall that de-
terministic tessellations can be identified with their edge sets. Thus, in the random
setting, we can identify a random tessellation T = {Ξn} with the corresponding
random closed set of its edges which is defined by T (1) = ∪∞

n=1∂Ξn. If T is sta-
tionary and isotropic, then the random closed set T (1) is stationary and isotropic,
respectively. Since, almost surely, T (1) is a locally finite system of line segments,
we can consider the 1–dimensional Hausdorff measure ν1 on T (1). Furthermore, if
T is stationary, then it is not difficult to see that Eν1(B∩ T (1)) = γν2(B) for any
B ∈B(R2) and some constant γ which is called the length intensity of T (1). As for
the intensities λ (0),λ (1) and λ (2) regarded above, we always assume that 0 < γ < ∞.

1.1.3.3 Mean-value formulae

We now discuss mean-value formulae for stationary tessellations. These are rela-
tionships connecting the intensities of vertices λ (0), edge midpoints λ (1) and cell
nuclei λ (2), the length intensity γ = Eν1(T (1)∩ [0,1)2), the expected area Eν2(Ξ ∗),
perimeter Eν1(∂Ξ ∗) and number of vertices Eν0(Ξ ∗) of the typical cell Ξ ∗, the
expected length of the typical edge Eν1(S∗), and the expected length Eν1(E∗) and
number of edges Eν0(E∗) of the typical edge star E∗. It turns out that all these
characteristics can be expressed by e.g. the three parameters λ (0),λ (2) and γ .

Theorem 3. It holds that

λ
(1) = λ

(0) +λ
(2), Eν0(E∗) = 2+2

λ (2)

λ (0) , Eν1(E∗) = 2
λ (1)

λ (0) Eν1(S∗),

Eν0(Ξ ∗) = 2+2
λ (0)

λ (2) , Eν2(Ξ ∗) =
1

λ (2) , Eν1(∂Ξ
∗) = 2

λ (1)

λ (2) Eν1(S∗),

γ = λ
(1)Eν1(S∗) =

λ (2)

2
Eν1(∂Ξ

∗), 3≤ Eν0(Ξ ∗),Eν0(E∗)≤ 6 .

Proof. We show how some of the formulae stated above can be proven using Camp-
bell’s theorem for stationary marked point processes; see Theorem 1. For example,
consider the marked point process {(Yn,So

n)} of edge midpoints Yn marked with the
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centered edges So
n. Then, Theorem 1 yields

γ = Eν1(T (1)∩ [0,1)2) = E
∞

∑
n=1

ν1(So
n +Yn∩ [0,1)2)

= λ
(1)
∫

R2
E ν1(S∗∩ [0,1)2− x)︸ ︷︷ ︸

=
∫

S∗ 1[0,1)2−x(y)ν1(dy)

ν2(dx)

= λ
(1)E

∫
S∗

∫
R2

1[0,1)2−y(x)ν2(dx)ν1(dy) = λ
(1)Eν1(S∗) ,

thus γ = λ (1)Eν1(S∗). Furthermore,

λ
(2)Eν2(Ξ ∗) = λ

(2)E
∫

R2
1Ξ∗(−x)ν2(dx)

= E ∑
(α(Ξn),Ξo

n )∈T
1Ξo

n (−α(Ξn))︸ ︷︷ ︸
= 1Ξn(o)

= 1 ,

which yields Eν2(Ξ ∗) = 1/λ (2). The other statements can be proven similarly. For
a complete proof of Theorem 3, see e.g. [2, 13]. �

1.1.4 Tessellation models of Poisson type

In this section we consider several tessellation models of Poisson type, like Poisson-
Voronoi, Poisson-Delaunay and Poisson line tessellations. They are based on pla-
nar or linear Poisson point processes, where a point process X = {Xn} in R2

with intensity measure µ is called a Poisson process if the random variables
X(B) = #{n ∈ N : Xn ∈ B} are Poisson-distributed with X(B)∼ Poi(µ(B)) for each
B ∈B0(R2) and if X(B1), . . . ,X(Bk) are independent for any pairwise disjoint sets
B1, . . . ,Bk ∈B0(R2). Note that Poisson processes on the real line are defined in the
same way.

1.1.4.1 Poisson–Voronoi tessellation

In Section 1.1.2 the notion of a deterministic Voronoi tessellation has been intro-
duced for a certain class of locally finite point sets. Since almost every realization of
a stationary point process X = {Xn} with P(X(R2) = ∞) = 1 is a locally finite point
set such that conv(X) = R2, we can regard the random Voronoi tessellation {Ξn}
with respect to the point process {Xn}. Thus, in accordance with (1.8), the cells Ξn
are defined as the random closed sets Ξn = {x ∈ R2 : |x−Xn| ≤ |x−Xm| ∀m 6= n}.
We call T = {Ξn} the Voronoi tessellation induced by X . Note that we can consider
the point Xn as nucleus of the cell Ξn. If the underlying point process X is stationary,
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then the Voronoi tessellation induced by X is also stationary, In particular, if X is a
stationary Poisson process with intensity λ > 0, then we call the induced Voronoi
tessellation a Poisson–Voronoi tessellation (PVT). Realizations of PVT are shown
in Figures 1.2 and 1.3(a). Note that ν0(En) = 3 for all n ∈ N, λ (0) = λ , and the
intensities λ (1),λ (2) and γ can be computed in the following way.

Theorem 4. Let T be a PVT induced by a Poisson process with intensity λ . Then

λ
(0) = 2λ , λ

(1) = 3λ , λ
(2) = λ , γ = 2

√
λ .

Proof. Applying Theorem 3 with λ (2) = λ and Eν0(E∗) = 3 yields λ (0) = 2λ ,
λ (1) = 3λ , and λ (2) = λ . For the proof of γ = 2

√
λ see e.g. [16], Chapter 10. �

Consider the random Voronoi tessellation T induced by any stationary (not neces-
sarily Poisson) point process X . Then, the distribution of the typical cell of T is
given by the distribution of the Voronoi cell at o with respect to the Palm version X∗

of X . In particular, due to Slivnyak’s theorem for stationary Poisson processes (see
e.g. [16]), we get that the typical cell of a PVT is obtained as the Voronoi cell at o
with respect to the point process X∗ = X ∪{o}, see Figure 1.2(b).

(a) Realization of a PVT (b) Typical cell of PVT

Fig. 1.2 Realization of a PVT and its typical cell

1.1.4.2 Poisson–Delaunay tessellation

In the same way as in Section 1.1.2 for deterministic Voronoi tessellations, we can
construct the dual Delaunay tessellation corresponding to a random Voronoi tes-
sellation. If, almost surely, the underlying point process X is locally finite, where
conv(X) = R2 and no four points of X are cocircular, then the random Delaunay
tessellation T induced by X is well-defined. Furthermore, T is stationary if X is sta-
tionary. In particular, if X is a stationary Poisson process with intensity λ > 0, we
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can generate the Delaunay tessellation T = {Ξn} of X as the dual tessellation of the
PVT induced by X , where T is called a Poisson–Delaunay tessellation (PDT). In
Figure 1.3(b) a realization of a PDT is shown.

Theorem 5. Let T be a PDT induced by a Poisson process with intensity λ . Then

λ
(0) = λ , λ

(1) = 3λ , λ
(2) = 2λ , γ =

32
3π

√
λ .

Proof. Since λ (0) = λ and Eν0(Ξ ∗) = 3 we get with Theorem 3 that λ (1) =
3λ ,λ (2) = 2λ . For the proof of γ = 32

3π

√
λ see e.g. [16], Chapter 10. �

If T = {Ξn} is a PDT induced by the stationary Poisson process X , then the vertices
of T are given by the points of X . Moreover, due to Slivnyak’s theorem, the random
Delaunay tessellation T ∗ with respect to the Palm version X∗ of X is given by the
dual Delaunay tessellations corresponding to the Voronoi tessellations induced by
X∗ = X ∪{o}. Thus, the union of edges of T ∗ emanating from o can be regarded as
the typical edge star E∗ of T .

(a) PVT (b) PDT (c) PLT

Fig. 1.3 Realizations of tessellation models of Poisson type

1.1.4.3 Poisson line tessellation

Consider a stationary Poisson process {Rn} on the real line R with (linear) intensity
γ̃ > 0. Each point Rn is independently marked with a random angle Φn ∼U [0,π).
Then we can identify each pair (Ri,Φi) with the line `(Rn,Φn) = {(x,y) ∈ R2 :
xcosΦn + ysinΦn = Rn}. The resulting stationary random closed set

⋃
n≥1 `(Rn,Φn)

is called a Poisson line process with intensity γ̃ . It can be regarded as the edge set
T (1) =

⋃
n≥1 `(Rn,Φn) of a stationary tessellation T which is called a Poisson line

tessellation (PLT). A realization of a PLT is displayed in Figure 1.3(c).

Theorem 6. Let T be a PLT induced by a Poisson line process with intensity γ̃ . Then

γ = γ̃, λ
(0) =

1
π

γ
2, λ

(1) =
2
π

γ
2, λ

(2) =
1
π

γ
2.
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Proof. Note that γ = Eν1(B1(o)∩
⋃

n≥1 `(Rn,Φn))/π does not depend on the distri-
bution of Φ1,Φ2, . . . , where Br(x) = {y ∈ R2 : |x− y| ≤ r} denotes the ball with
midpoint x ∈ R2 and radius r > 0. Thus,

γ = Eν1(B1(o)∩
⋃
n≥1

`(Rn,0))/π = Eν1([0,1)2∩
⋃
n≥1

`(Rn,0)) = γ̃ .

Theorem 3 with Eν0(E∗) = 4 yields λ (0) = λ (2) and λ (1) = 2λ (0). Furthermore, it
holds that Eν1(S∗) = γ/λ (1) = π/(2γ), see e.g. [17]. Thus λ (1) = 2

π
γ2. �

1.2 Cox processes

In this section we introduce the notions of Cox processes and random measures
associated with this class of point processes. Particular emphasis is put on the case
that the driving measure of a Cox process {Xn} is concentrated on the edge set T (1)

of a stationary tessellation T , i.e., we assume that P(Xn ∈ T (1) for all n ∈ N) = 1.

1.2.1 Cox processes and random measures

Cox processes can be regarded as generalizations of Poisson processes, containing
them as a special case. The difference is that we now consider a random measure
instead of the deterministic intensity measure µ of Poisson processes. Thus, in order
to define Cox processes we first have to introduce the notion of (locally finite) ran-
dom measures, which can be seen as a generalization of random counting measures.

Let M = M(R2) denote the set of all locally finite measures on B(R2). On
M we define the σ–algebra M = M (R2) as the smallest σ–algebra such that
the mappings η 7→ η(B) are (M ,B(R2))–measurable for all B ∈B0(R2). Thus,
we obtain the measurable space (M,M ). The shift operator tx : M → M on M
is defined in the same way as for counting measures, i.e. txη(B) = η(B + x) for
all B ∈ B(R2) and x ∈ R2, and we define the rotation operator ϑR : M→ M by
ϑRη(B) = η(ϑ−1

R B) = η(ϑR−1B) for all rotations R : R2→ R2 around the origin.
A measurable mapping Λ : Ω → M from some probability space (Ω ,A ,P)

into the measurable space (M,M ) is then called random measure on B(R2). The

random measure Λ is called stationary if txΛ
d= Λ for all x ∈ R2. In this case

EΛ(B) = λν2(B) for B ∈ B(R2), where λ ≥ 0 is some constant which is called
the intensity of Λ . Notice that λ = EΛ([0,1]2). If 0 < λ < ∞, we define the Palm
distribution of Λ as the probability measure P∗

Λ
: M → [0,1] given by

P∗Λ (A) =
1
λ

E
(∫

[0,1]2
1A(txΛ)Λ(dx)

)
, A ∈M . (1.9)



12 Florian Voss, Catherine Gloaguen and Volker Schmidt

Assume now that a random measure Λ is given. The point process X is called a
Cox process with random driving measure Λ if

P(X(B1) = k1, . . . ,X(Bn) = kn) = E

(
n

∏
i=1

Λ(Bi)kie−Λ(Bi)

ki!

)
(1.10)

for any k1, . . . ,kn ∈ N0 and pairwise disjoint B1, . . . ,Bn ∈B0(R2). Thus, given that
Λ = η for some η ∈ M, a Cox process X can be seen as a (conditional) Poisson
process with intensity measure η , i.e., the distribution of a Cox process is a mixture
of the distributions of (not necessarily stationary) Poisson processes. This is the
reason why a Cox process is sometimes called a doubly stochastic Poisson process.

Note that the definition of Cox processes directly leads to a simulation method
based on a two step procedure. First, a realization η of Λ is generated. Then, in the
second step, a Poisson process with intensity measure η is simulated.

Now we summarize some basic properties of Cox processes. The following result
is an immediate consequence of (1.10).

Theorem 7. Let X be a Cox process with random driving measure Λ . Then X is
stationary (resp. isotropic) if and only if Λ is stationary (resp. isotropic). If X is
stationary, then its intensity is equal to the intensity λ of Λ .

Classical examples of Cox processes are the Neyman-Scott process and the modu-
lated Poisson process ([4]), see also HEINRICH (?) for further examples.

Recall that the Palm version X∗ = X ∪{o} of a stationary Poisson process X is
obtained by adding the origin o to X . This property of Poisson processes can be
generalized to get the following result, which is called Slivnyak’s theorem for Cox
processes. Namely, the Palm distribution P∗X of a stationary Cox process X with
random driving measure Λ can be characterized as follows, see e.g. [17], p. 156.

Theorem 8. Let X be a Cox process with stationary driving measure Λ . Then
P∗X (A) = P(X̃ ∪{o} ∈ A) for all A ∈ N , where X̃ is a Cox process with random
driving measure Λ ∗ distributed according to the Palm distribution P∗

Λ
of Λ .

Thus, to simulate the Palm version X∗ of a stationary Cox process X , we can use a
two-step procedure. First, we generate a realization η∗ of Λ ∗. Afterwards, adding a
point at the origin o, we simulate a Poisson process with intensity measure η∗.

1.2.2 Cox processes on the edges of random tessellations

In this section, we introduce a class of Cox processes X whose random driving
measures are concentrated on the edge sets of random tessellations. Let T be a
stationary random tessellation with length intensity γ = Eν1([0,1]2∩T (1)) and, for
some λ` > 0, define the random measure Λ : B(R2)→ [0,∞] by

Λ(B) = λ`ν1(B∩T (1)) , B ∈B(R2) . (1.11)
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Notice that Λ is stationary. Its intensity is given by

λ = λ`Eν1([0,1)2∩T (1)) = λ`γ . (1.12)

Let X be a Cox process whose random driving measure Λ is given by (1.11). Then,
a direct application of Theorem 7 yields that X is stationary with intensity λ given
in (1.12). Furthermore, X is isotropic if T is isotropic. Realizations of X can be
generated by simulating first T and then simulating Poisson processes with (linear)
intensity λ` on each segment of T (1). In Figure 1.4 realizations of Cox processes on
T (1) are shown for T being a PDT and PVT, respectively.

(a) PDT (b) PVT

Fig. 1.4 Realizations of Cox processes on PDT and PVT.

Recall that in Theorem 8 the Palm distribution of stationary Cox processes is
characterized, which is uniquely determined by the Palm version Λ ∗ of the station-
ary driving measure Λ . For Cox processes on the edge set of stationary tessellations,
the result of Theorem 8 can be specified in the following way.

Theorem 9. Let Λ be the stationary random measure given in (1.11). Then Λ ∗(B) =
λ`ν1(B∩ T̃ (1)) for each B∈B(R2), where the tessellation T̃ is distributed according
to the Palm distribution P∗

T (1) with respect to the 1-dimensional Hausdorff measure

on T (1).

Proof. Let τ ∈ T be an arbitrary tessellation. Then we can identify the measure η

given by η( ·) = λ`ν1( · ∩τ(1)) with τ , writing ητ . It is easy to see that ηtxτ = txητ for
all x ∈ R2. Furthermore, using the definition of the Palm distribution P∗

Λ
of Λ given

in (1.9), we get for each A ∈M that P∗
Λ
(A) = λ−1 ∫

M

∫
[0,1]2 1A(txη)η(dx)PΛ (dη),

i.e.

P∗Λ (A) =
1
γ

∫
T

∫
[0,1]2∩τ(1)

1A(txητ)ν1(dx)PT (dτ) = P∗T (1)({τ ∈ T : ητ ∈ A}) ,
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where the latter equality immediately follows from the definition of the Palm dis-
tribution P∗

T (1) since γ = Eν1(T (1)∩ [0,1)2). This means that the distributions of Λ ∗

and ηT̃ ( ·) = λ`ν1( · ∩ T̃ (1)) are equal. �

Note that T̃ can be viewed as the random tessellation T under the condition that
o ∈ T (1). Thus, under P∗

T (1) , there is an edge S̃ of T̃ through o with probability 1.

However, the distributions of S̃ and the typical edge S∗ do not coincide. This can be
seen as follows. Assume that h : L o→ [0,∞) is a translation-invariant measurable
function and let S(x) denote the segment of T (1) through x for x ∈ T (1). Then,

Eh(S̃) =
1
γ

E
∫

T (1)∩[0,1)2
h(S(x)− x)ν1(dx)

=
1
γ

E ∑
(Yi,So

i )∈T
h(So

i )
∫

Si

1[0,1)2(x)ν1(dx)

=
λ (1)

γ
Eh(S∗)

∫
R2

∫
S∗

1[0,1)2−y(x)ν1(dx)ν2(dy) =
1

Eν1(S∗)
Eν1(S∗)h(S∗) ,

where we used the refined Campbell theorem for stationary marked point processes
(Theorem 1) and the mean-value formulae given in Theorem 3. Thus, the distribu-
tion of S̃ can be represented as a length-weighted distribution of S∗.

For Cox processes on the edges of random tessellations the following scaling
invariance can be observed. Let T be a stationary random tessellation with length
intensity 1. Then we define the scaled tessellation Tγ as the random tessellation
whose edge set is given by T (1)

γ = 1
γ
T (1). Thus, the length intensity of Tγ is γ since

Eν1(T
(1)

γ ∩ [0,1)2) = Eν1(T (1)∩ [0,γ)2)/γ = γ due to the homogeneity of the Haus-
dorff measure ν1, see also KIDERLEN, Section 2.1.1.

Now let X = {Xn} be a Cox process on Tγ with linear intensity λ` and let
X ′ = {X ′n} be a Cox process on Tγ ′ whose linear intensity is given by λ ′`. More-
over, assume that the intensity quotients κ = γ/λ` and κ ′ = γ ′/λ ′` are equal, i.e.,
κ = κ ′. Then we get for any C ∈ C that

P(X(C) = 0) = Eexp
(
λ`ν1(C∩T (1)

γ )
)

= Eexp
(

λ`γ
′

γ
ν1
( γ

γ ′
C∩T (1)

γ ′
))

= P
(

X ′
( γ

γ ′
C
)

= 0
)

= P
((γ ′

γ
X ′
)
(C) = 0

)
,

where the scaled point process γ ′

γ
X ′ is defined by γ ′

γ
X ′ = { γ ′

γ
X ′n}. Since the dis-

tribution of a point process X is uniquely determined by its void probabilities
P(X(C) = 0),C ∈ C , we have that X d= γ ′

γ
X ′. Thus, for a given tessellation type

T , the intensity quotient κ defines the Cox process X on the scaled tessellation Tγ

with linear intensity λ` uniquely up to a certain scaling. We therefore call κ the
scaling factor of X . For numerical results it is therefore sufficient to focus on single
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parameter pairs γ and λ` for each value of κ . For other parameters with the same
scaling factor κ the corresponding results can then be obtained by a suitable scaling.

1.3 Cox-Voronoi tessellations

In this section we consider Voronoi tessellations induced by stationary Coxian point
processes. The typical cell of these so-called Cox-Voronoi tessellations can describe
e.g. the typical serving zone of telecommunication networks. Unfortunately, its dis-
tribution is not known analytically. Even for the typical cell of PVT it is hard to ob-
tain closed analytical expressions for the distribution of cell characteristics like the
perimeter, the number of vertices, or the area. On the other hand, it is often possible
to develop simulation algorithms for the typical Voronoi cell, which can be used to
determine the distribution of cell characteristics approximatively. We discuss such
simulation algorithms for two examples of Voronoi tessellations. To begin with, in
Section 1.3.1, we first consider the case of the typical Poisson-Voronoi cell. Then,
in Section 1.3.2, we show how the typical cell of a Cox-Voronoi tessellation TX can
be simulated if the random driving measure of the underlying Cox process X is con-
centrated on the edge set of a certain stationary tessellation T , where we assume that
T is a PLT, see Figure 1.6(a).

In the ergodic case, the distribution of the typical cell can be obtained as the limit
of empirical distributions of cells observed in a sequence of unboundedly increasing
sampling windows, see Theorem 2. Thus, in order to approximate the distribution of
the typical cell, we can simulate the random tessellation in a large sampling window
W , considering spatial averages of those cells whose associated points belong to
W . Alternatively, we can approximate this distribution by simulating independent
copies of the typical cell and by taking sample means instead of spatial averages.

Note that there are several advantages of the latter approach. If we simulate the
tessellation in a large sampling window, then the cells are correlated and there are
edge effects which may be significant if W is not large enough. On the other hand,
for large W , runtime and memory problems occur. However, these problems can
be avoided if independent copies of the typical cell are simulated locally, but the
challenge is then to develop such simulation algorithms. Recall that the typical
Voronoi cell Ξ ∗X of any stationary point process X can be (locally) represented as
Ξ ∗X = ∩n∈NH(o,X∗n ), where X∗ = {X∗n } is the Palm version of X . Thus, suitable
simulation algorithms for the points of X∗ have to be developed.

1.3.1 The Poisson case

We first show how stationary Poisson processes in R2 can be simulated radially.
Then, we use this result in order to develop a local simulation algorithm for the
typical cell of PVT.
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1.3.1.1 Simulation of stationary Poisson processes

In many applications it is useful to simulate the points of stationary Poisson pro-
cesses in R2 radially, i.e. with increasing distance to the origin. For this purpose,
we first consider a stationary Poisson process Z = {Zn} on the nonnegative half-
line [0,∞) denoting its (linear) intensity by λ > 0. Then, the points Zn of Z can be
given by Zn = λ−1

∑
n
i=1 Yi for each n ≥ 1, where Y1,Y2, . . . is a sequence of inde-

pendent and exponentially distributed random variables with Yi ∼ Exp(1) for each
i≥ 1. This representation of Z can be used in order to radially simulate a stationary
Poisson process in R2 with the (planar) intensity λ .

Note that each point x = (x1,x2)∈R2 can be represented by its polar coordinates,
i.e. x = (r cosϕ,r sinϕ) with r ∈ [0,∞) and ϕ ∈ [0,2π). Furthermore, consider a se-
quence Φ1,Φ2, . . . of independent and uniformly distributed random variables with
Φi ∼U[0,2π) for each i≥ 1, assuming that {Φi} and {Yi} are independent. For each
n≥ 1, put

Xn = (Rn cosΦn,Rn sinΦn) , where Rn =
√

∑
n
i=1 Yi/(πλ ) . (1.13)

Then, the following result is true, see e.g. [15].

Theorem 10. The point process X = {Xn} given by (1.13) is a stationary Poisson
process in R2 with intensity λ .

Thus, based on the statement of Theorem 10, stationary Poisson processes in R2 can
be radially simulated just by simulating U[0,2π)- and Exp(1)-distributed random
variables, respectively. Note that Theorem 10 can easily be generalized to Poisson
processes in Rd for any d ≥ 1.

Besides radial simulation, there are further algorithms to simulate stationary
Poisson processes in a sampling window W ∈B0(R2) such that 0 < ν2(W ) < ∞.
For instance, we can simulate a stationary Poisson process X with intensity λ in
W by first simulating the random variable X(W ) ∼ Poi(λν2(W )) and then, given
X(W ) = n, by simulating the n points X1, . . . ,Xn of X in the window W as inde-
pendent and uniformly distributed random variables in W . Although this procedure,
based on so-called complete spatial randomness of stationary Poisson processes,
seems to be easy, it is not suitable in order to simulate the typical cell of PVT. On
the one hand, it is not known in advance how large the sampling window W has to
be chosen in order to construct the typical cell. On the other hand, this procedure is
computationally inefficient since often too many points are simulated in advance.

1.3.1.2 Local simulation of the typical Poisson-Voronoi cell

Recall that due to Slivnyak’s theorem, the typical cell of a PVT can be regarded
as the Voronoi cell at the origin with respect to X∗ = X ∪{o}, where X = {Xn} is
the underlying stationary Poisson process. Thus, we can place a point at o, simulate
further points Xn of X radially and then construct the typical cell Ξ ∗X =∩n∈NH(o,Xn)
as intersection of the bisectors H(o,Xn) for n≥ 1.
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More precisely, we simulate the points X1,X2, . . . successively, with increasing
distance to the origin, until a bounded Voronoi cell at o can be constructed by the
simulated points. We call this cell the initial cell. Afterwards, we check for each
newly simulated point if the initial cell is influenced by points with larger distances
from o than the latest generated point. If this is not the case, we stop the algorithm.
Otherwise we simulate a further point. This local simulation algorithm of the typical
Poisson-Voronoi cell is summarized below, where the points X1,X2, . . . are sampled
using the random variables Φ1,Φ2, . . . , Y1,Y2, . . . , and R1,R2, . . . introduced in Sec-
tion 1.3.1.1. The main steps of the algorithm are visualized in Figure 1.5.

1. Put X∗ = {o}.
2. Simulate independent random variables Φ1,Φ2, . . . and Y1,Y2, . . . such that Ui ∼

U [0,2π) and Yi ∼ Exp(1) for i = 1,2, . . . .
3. Compute the points X1, . . . ,Xn by (1.13) and add them to X∗ until an (compact)

initial cell Ξ ∗X at o can be constructed from X∗.
4. If Rn ≥ rmax = 2max{|vi|}, were {vi} is the set of vertices of Ξ ∗X , then stop, else

add further points to X∗ and update Ξ ∗X .

(a) Origin (black) and radially
simulated points X1,X2,X3
(gray). Initial cell incomplete.

(b) Initial cell Ξ ∗X around o is
constructed using the radially
simulated points X1, . . . ,X7.

(c) Point X8 is simulated radi-
ally and Ξ ∗X is cut by the bisec-
tor H(o,X8).

(d) Point X9 is simulated radi-
ally and Ξ ∗X is cut by H(o,X9).

(e) Further points Xn are simu-
lated radially until |Xn| ≥ rmax.

(f) Realization of the typical
cell Ξ ∗X of PVT.

Fig. 1.5 Simulation of the typical cell of PVT

When implementing this simulation algorithm we have to take into account some
technical details. First, a rule for constructing the initial cell has to be implemented.
If for some n≥ 3 the points X1, . . . ,Xn have been generated, then we can use a cone
criterion in order to check if a bounded Voronoi cell can be constructed around o by
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these points. Once the initial cell Ξ ∗X has been generated, points of X∗ outside the
ball Brmax(o) cannot influence the typical cell anymore since the bisector between o
and any x ∈ Brmax(o)c does not intersect Ξ ∗X . Thus, the simulation stops if Rn ≥ rmax.

1.3.2 Cox processes on the edges of PLT

We now consider Cox processes X = {Xn} whose random driving measure Λ is
concentrated on the edges of a stationary random tessellation T , where we assume
that Λ is given by (1.11). In particular, the typical cell Ξ ∗X of the Voronoi tessellation
TX = {ΞX ,n} induced by X will be investigated. Recall that TX can be identified with
the marked point process {(Xn,Ξ

o
X ,n)}, where Ξ o

X ,n = ΞX ,n−Xn denotes the centered
version of the Voronoi cell ΞX ,n at Xn with respect to X , see Figure 1.6.

(a) PLT (b) PVT

Fig. 1.6 Realizations of TX for Cox processes on PLT and PVT.

If the Cox process X models the locations of network components in telecommu-
nication networks, then ΞX ,n can be regarded as the area of influence of the network
component at Xn, where ΞX ,n is called the serving zone of Xn. Thus, the typical cell
Ξ ∗X of TX is an important characteristic in global econometric analysis and planning
of telecommunication networks, because various cost functionals of hierarchical
network models can be represented as expectations of functionals of Ξ ∗X , see also
Section 1.4.

As we already mentioned at the beginning of Section 1.3, suitable simulation
algorithms for the points of the Palm version X∗ of X have to be developed in order
to locally simulate the typical cell Ξ ∗X of the Cox-Voronoi tessellation TX . However,
in contrast to the situation discussed in Section 1.3.1.2, we do not simulate the points
of X∗ radially, at least not at once, when considering Cox processes on PDT, PLT
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and PVT, respectively. But we simulate the points of the Poisson process radially
which induces the Palm version of the underlying tessellation (regarded as random
Hausdorff measure), alternatingly with the points of the (linear) Poisson processes
on the edges of this tessellation. As an example, we show how this can be done for
Cox processes on PLT.

1.3.2.1 Palm version of PLT

Let X be a stationary Cox process with linear intensity λ` on a stationary PLT T with
length intensity γ . Note that due to Theorems 8 and 9 it holds that X∗ = X̃ ∪{o},
where X̃ is a Cox process on the Palm version T̃ of T regarded as the random
Hausdorff measure ν1( · ∩T (1)) on T (1). Thus, in a first step, T has to be simulated
according to its Palm distribution with respect to ν1( · ∩T (1)), i.e., under the condi-
tion that o ∈ T (1). It turns out that the edge set T̃ (1) of this conditional PLT can be
constructed just by adding an isotropic line through o to T (1).

Theorem 11. Let T (1) be the edge set of a stationary PLT with intensity γ and let
`(Φ) be a line through the origin with random direction Φ ∼ U [0,π) which is

independent of T (1). Then T̃ (1) d= T (1)∪ `(Φ).

Proof. Since the distribution of a random closed set is uniquely determined by its
capacity functional (MOLCHANOV), we show that the capacity functionals of T̃ (1)

and T (1)∪ `(Φ) coincide. With the notation T (1) =
⋃

n≥1 `(Rn,Φn) introduced in Sec-
tion 1.1.4.3, the definition of the Palm distribution of stationary random measures
(see (1.9)) gives that for each C ∈ C

P(T̃ (1)∩C 6= /0) =
1

πγ
E
∫

T (1)∩B1(o)
1{⋃n≥1(`(Rn ,Φn)−x)∩C 6= /0} ν1(dx) .

Note that the number N of lines of a Poisson line process which intersect a convex
compact set W ⊂ R2 is Poi(λ )-distributed with λ = γν1(∂W )/π and, given N = k,
these k lines `1, . . . , `k are independent and isotropic uniform random (IUR), see
KIDERLEN. Thus, for W = BR(C)+1(o), where R(C) = supx∈C{|x|}, we get

P(T̃ (1)∩C 6= /0) =
∞

∑
k=0

P(N = k)
πγ

k

∑
i=1

E
(∫

`i∩B1(o)
1{⋃k

i=1(`i−x)∩C 6= /0}ν1(dx) | N = k
)

=
1

πγ

∞

∑
k=0

e−λ λ k

k!
k E
(∫

`1∩B1(o)
1{⋃k

i=1(`i−x)∩C 6= /0}ν1(dx) | N = k
)

=
λ

πγ

∞

∑
k=0

e−λ λ k

k!
E
(∫

`1∩B1(o)
1{⋃k+1

i=1 (`i−x)∩C 6= /0}ν1(dx) | N = k +1
)
.

Since the lines `1, `2, . . . , `k+1 are independent and IUR, we can consider `1 sepa-
rately, where the remaining `2, . . . , `k+1 still are independent of each other, IUR, and
independent of `1. This gives
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P(T̃ (1)∩C 6= /0) =
λ

πγ
P
(
(T (1)∪ `(Φ))∩C 6= /0

)
Eν1(`1∩B1(o))

= P
((

T (1)∪ `(Φ)
)
∩C 6= /0

)
,

where in the last equality we used that Eν1(`1 ∩ B1(o)) = π2/ν1(∂W ), see e.g.
KIDERLEN, formula (2.5). �

1.3.2.2 Local simulation of the typical Cox-Voronoi cell

Using Theorem 11, we are able to briefly describe the main idea of an algorithm
for local simulation of the typical cell Ξ ∗X of the Voronoi tessellation TX = {ΞX ,n}
induced by the Cox process X on PLT.

We first put a line `(Φ) with direction Φ ∼ U[0,π) through the origin o and
then, on both half-lines of `(Φ) seen from o, we simulate the nearest points to
o of a Poisson process with intensity λ`. Next, we simulate independent random
variables Φ1 and R1 (= Y1) with Φ1 ∼ U[0,2π) and R1 ∼ Exp(2γ) and construct
the line `(R1,Φ1) = {(x,y) ∈ R2 : xcosΦ1 + ysinΦ1 = R1}. Note that `(R1,Φ1) is the
closest line to the origin of a Poisson line process with length intensity γ . Then, on
`(R1,Φ1), we simulate points of a Poisson process with intensity λ`. In the next step,
we simulate independent random variables Φ2 and Y2 with Φ2 ∼ U[0,2π) and Y2 ∼
Exp(2γ) constructing the line `(R2,Φ2) = {(x,y) ∈ R2 : xcosΦ2 + ysinΦn = R2},
where R2 = R1 +Y2, and so on.

In this way, similar to the algorithm discussed in Section 1.3.1.2, we simulate
points of X∗ in a neighborhood of the origin until a bounded Voronoi cell at o can be
constructed by the simulated points. Afterwards, we check for each newly simulated
point if this initial cell is influenced by points with larger distances from o than the
latest generated point. If this is not the case, we stop the algorithm. Otherwise we
continue to alternatingly simulate lines and points on them respectively. For further
technical details of the simulation algorithm we refer to [6].

Similar algorithms can be constructed for local simulation of the typical Voronoi
cell of stationary Cox processes on PVT and PDT, respectively, see [5, 19].

1.4 Typical connection lengths in hierarchical network models

We now consider two Cox processes simultaneously. The leading measures of either
one or both of these Cox processes are concentrated on the edge set of a stationary
tessellation, where we assume that the Cox processes are jointly stationary. We dis-
cuss representation formulae which have been derived in [19] for the distribution
function and density of the typical Euclidean (i.e. direct) connection length D∗ be-
tween certain pairs of points, chosen at random, one from each of the Cox processes.
Furthermore, the typical shortest path length C∗ is considered which is needed to
connect such pairs of points along the edges of the underlying tessellation. A useful
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tool in investigating these characteristics is Neveu’s exchange formula (see e.g. [14])
for jointly stationary marked point processes, which is stated in Section 1.4.1. Then,
in Section 1.4.2, we give a motivation of our investigations, where we explain how
the results can be applied e.g. in econometric analysis and planning of hierarchical
telecommunication networks.

1.4.1 Neveu’s exchange formula

Let X (1) = {(X (1)
n ,M(1)

n )} and X (2) = {(X (2)
n ,M(2)

n )} be jointly stationary marked
point processes with mark spaces M1 and M2, respectively, and let NM1,M2 =
NM1 ×NM2 denote the product space of the families of simple and locally finite
counting measures with marks in M1 and M2, respectively, equipped with product-
σ -algebra NM1 ⊗NM2 . We then put Y = (X (1),X (2)) which can be regarded as a
random element of NM1,M2 . Let λ1 and λ2 denote the intensities of X (1) and X (2),
respectively, and assume that the shift operator tx is defined by txY = (txX (1), txX (2))
for x ∈ R2. Thus, tx shifts the points of both X (1) and X (2) by −x ∈ R2. Note that
txY

d= Y for each x ∈ R2 since X (1) and X (2) are jointly stationary. The Palm distri-
butions P(i)

Y , i = 1,2 on NM1⊗NM2⊗B(Mi) with respect to the i-th component of
Y are probability measures defined by

P(i)
Y (A×G) =

1
λi

E#{n : X (i)
n ∈ [0,1)2,M(i)

n ∈ G, t
X(i)

n
Y ∈ A} (1.14)

for A∈NM1⊗NM2 and G∈B(Mi). In particular, for A∈NMi ,G∈B(Mi), we get
P(1)

Y (A×NM2×G) = P∗
X(1)(A×G) if i = 1, and P(2)

Y (NM1×A×G) = P∗
X(2)(A×G) if

i = 2, where P∗
X(1) and P∗

X(2) are the ordinary Palm distributions of the marked point
processes X (1) and X (2), respectively, introduced in (1.2).

Note that we also use the notation P∗
X(i) for the Palm distribution P(i)

Y of the vector
(X (1),X (2)) in order to emphasize the dependence on X (i) for i = 1,2. With the defi-
nitions and notation introduced above, and writing ψ = (ψ(1),ψ(2)) for the elements
of NM1,M2 , Neveu’s exchange formula can be stated as follows, see e.g. [11].

Theorem 12. For any measurable f : R2×M1×M2×NM1,M2 → [0,∞), it holds
that

λ1

∫
NM1,M2×M1

∫
R2×M2

f (x,m1,m2, txψ) ψ
(2)(d(x,m2))P(1)

Y (d(ψ,m1))

= λ2

∫
NM1 ,M2×M2

∫
R2×M1

f (−x,m1,m2,ψ) ψ
(1)(d(x,m1))P(2)

Y (d(ψ,m2)) .

Neveu’s exchange formula given in Theorem 12 allows to express the (condi-
tional) distribution of functionals of a vector (X (1),X (2)) of jointly stationary point
processes, seen from the perspective of the Palm distribution P∗

X(1) , by the distribu-
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tion of the same functional under P∗
X(2) . This means that we can switch from the

joint distribution of (X (1),X (2)) conditioned on o ∈ {X (1)
n } to the joint distribution

of (X (1),X (2)) conditioned on o ∈ {X (2)
n }.

1.4.2 Hierarchical network models

Models from stochastic geometry have been used since more than 10 years in order
to describe and analyze telecommunication networks, see e.g. [1, 8, 22]. However,
the infrastructure of the network, like road systems or railways, has been included
into the model rather seldom.

In this section we introduce spatial stochastic models for telecommunication net-
works with two hierarchy levels which take the underlying infrastructure of the net-
work into account. In particular, we model the network infrastructure, e.g. road sys-
tems or railways, by the edge set T (1) of a stationary tessellation T with (length)
intensity γ = Eν1(T (1)∩ [0,1]2) > 0. The locations of both high and low level com-
ponents (HLC, LLC) of the network are modelled by stationary point processes
H = {Hn} and L = {Ln}, respectively, where H is assumed to be a Cox process on
T (1) whose random driving measure is given by (1.11), with linear intensity λ` > 0
and (planar) intensity λ = λ`γ . Regarding the point process L we distinguish be-
tween two different scenarios. On the one hand, we consider the case that L is a
stationary (planar) Poisson process with intensity λ ′ which is independent of T and
H. On the other hand, we assume that L is a Cox process whose random driving
measure is concentrated on the same edge set T (1) as H and given by (1.11), but
now with linear intensity λ ′`. Furthermore, we assume that L is conditionally inde-
pendent of H given T . Thus, in the latter case, the planar intensity λ ′ of L is given
by λ ′ = λ ′`γ .

1.4.2.1 Typical serving zone

Each LLC of the network is connected with one of the HLC, i.e., each point Ln of L
is linked to some point Hn of H. In order to specify this connection rule, so–called
serving zones are considered, which are domains associated to each HLC such that
the serving zones of distinct HLC do not overlap, but their union covers the whole
region considered. Then a LLC is linked to that HLC in whose serving zone it is
located. In the following, we assume that the serving zones of HLC are given by the
cells of the stationary Voronoi tessellation TH = {ΞH,n} induced by H. Thus, the
point Ln is linked to the point H j iff Ln ∈ ΞH, j, i.e., all LLC inside ΞH, j are linked
to H j, see Figure 1.7. The typical cell Ξ ∗H of TH is called the typical serving zone.

However, note that more complex models for (not necessarily convex) serving
zones can be considered as well, like Laguerre tessellations ([10]) or aggregated
Voronoi tessellations ([18]).
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Fig. 1.7 Cox process H on PDT with serving zones (black) and direct connection lengths (dashed)
for L Poisson (left) and Cox (right)

Furthermore, we define the stationary marked point process HS = {(Hn,So
H,n)},

where the marks are given by So
H,n = (T (1)∩ΞH,n)−Hn. Thus, each point Hn of H

is marked with the segment system contained inside its serving zone. If L is a Cox
process on T , then the point Ln of L is connected to H j iff Ln ∈ So

H, j +H j. It is easy to
see that HS is a stationary marked point process with intensity λ whose mark space
is given by the family of finite segment systems L o which contain the origin. In
particular, the typical mark S∗H : Ω →L o of HS is a random segment system which
contains the origin, where S∗H is called the typical segment system within the typical
serving zone Ξ ∗H , see also Section 1.3.2.

1.4.2.2 Typical connection lengths

So far, we introduced the four modelling components T , L, HS and TH . They can be
used in order to define the stationary marked point process LD = {(Ln,Dn)}, where
Dn = |Ln−H j| is the Euclidean distance between Ln and H j provided that Ln ∈ΞH, j.
We are then interested in the distribution of the typical mark D∗ of LD which we call
the typical direct connection length or, briefly, the typical Euclidean distance.

Realizations of the distances Dn for two different models of L are displayed in
Figure 1.7, where the underlying tessellation T is a PDT; see also Figure 1.8. Note
that realizations of the marked point process LD can be constructed from realizations
of L and HS if L is a Cox process and from realizations of L and TH if L is a Poisson
process. Hence, instead of LD, we can consider the vectors Y = (L,HS) and Y =
(L,TH), respectively, together with the Palm distribution P∗L of Y with respect to the
first component L introduced in (1.14).

Suppose now that (L∗, H̃S) and (L∗,TH̃), respectively, are distributed according
to the Palm distribution P∗L , where we use the notation H̃ = {H̃n}, H̃S = {(H̃n, S̃o

H,n)}
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(a) PVT (b) PLT

Fig. 1.8 Euclidean distances and shortest paths along the edge system.

and T̃ (1) =
⋃

n≥1
(
S̃o

H,n + H̃n
)
. Then D∗ can be regarded as the distance from o to the

point H̃n of H̃ in whose serving zone o is located. Note that L∗ \{o} is a stationary
Poisson process resp. a Cox process on T̃ if L is a Poisson process resp. a Cox
process on T . In the same way we regard the vectors (L̃,H∗S ) and (L̃,T ∗H) which are
distributed according to the Palm distributions P∗HS

and P∗TH
, respectively. Here we

denote with T ∗(1) the edge set of H∗S . On the one hand, if L is a Cox process on T ,
then L̃ is a (non-stationary) Cox process on T ∗(1) with linear intensity λ ′`, which is
conditionally independent of H∗ given T ∗(1). On the other hand, if L is a stationary
Poisson process which is independent of T and H, then L̃ d= L.

If L is a Cox process on T , then besides LD = {(Ln,Dn)}, we consider the point
process LC = {(Ln,Cn)}, where Cn is the shortest path length from Ln to H j along
the edges of T , provided that Ln ∈ ΞH, j, see Figure 1.8. We are interested in the
distribution of the typical shortest path length, i.e., the typical mark C∗ of LC.

1.4.3 Distributional properties of D∗ and C∗

We show that the distribution function and density of the typical (direct) connection
length D∗ can be expressed as expectations of functionals of the typical serving zone
and its typical segment system. Furthermore, the density of the typical shortest path
length C∗ is considered.

Applying Neveu’s exchange formula stated in Theorem 12 we can represent the
distribution function of D∗ in terms of the typical Voronoi cell Ξ ∗H of H if L is a
planar Poisson process, and in terms of the typical segment system S∗H if L is a Cox
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process on T (1). This shows that the distribution of D∗ is uniquely determined by
TH and HS, respectively.

1.4.3.1 Distribution function of D∗

Note that the representation formulae stated in Theorem 13 below do not depend
on L at all. The random closed sets Ξ ∗H ∩Bx(o) and S∗H ∩Bx(o) occurring on the
right-hand sides of (1.15) and (1.16) are illustrated in Figure 1.9.

(a) Ξ ∗H ∩Bx(o) (blue) (b) S∗H ∩Bx(o) (black)

Fig. 1.9 Typical serving zone and its typical segment system intersected by Bx(o).

Theorem 13. (i) If L is a planar Poisson process that is independent of T and H,
then the distribution function FD∗ : [0,∞)→ [0,1] of D∗ is given by

FD∗(x) = λ` γ Eν2(Ξ ∗H ∩Bx(o)) , x≥ 0 , (1.15)

where ν2(Ξ ∗H ∩Bx(o)) denotes the area of Ξ ∗H intersected with the ball Bx(o)⊂ R2.
(ii) If L is a Cox processes on T (1) which is conditionally independent of H given T ,
then the distribution function of D∗ is given by

FD∗(x) = λ` Eν1(S∗H ∩Bx(o)) , x≥ 0 . (1.16)

Proof. Let us first assume that L is a planar Poisson process with intensity λ ′ and
regard the vector Y = (LD,TH) as a random element of N[0,∞),Po , where we use the
notation (L∗D,TH̃) and (L̃D,T ∗H) introduced in Section 1.4.2.2 for the Palm versions of
Y distributed according to P∗LD

and P∗TH
, respectively. For some measurable function

h : [0,∞)→ [0,∞) we consider f : R2× [0,∞)×Po×N[0,∞),Po → [0,∞) defined by

f (x,m,ξ ,ψ) =

{
h(m) if o ∈ ξ + x,
0 otherwise.
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Then, applying Theorem 12, we get

Eh(D∗) =
∫
N[0,∞),Po

∫
R2×Po

f (x,ξ ,m,ψ)ψ
(2)(d(x,ξ ))P∗LD

(d(ψ,m))

=
λ

λ ′

∫
N[0,∞),Po

∫
R2×[0,∞)

f (−x,ξ ,m, txψ)ψ
(1)(d(x,m))P∗TH

(d(ψ,ξ ))

=
λ

λ ′

∫
N[0,∞),Po

∫
R2×[0,∞)

h(|x|)1ξ (x)ψ
(1)(d(x,m))P∗TH

(d(ψ,ξ ))

=
λ

λ ′
E
(

E
(

∑
L̃n∈Ξ∗H

h(|L̃n|) | Ξ ∗H
))

.

Since L and H are independent, we get that T ∗H and L̃ are also independent and in

addition that L̃ d= L. Thus, given Ξ ∗H , we get that L̃ is a stationary Poisson process of
intensity λ ′. Using Campbell’s formula (see Theorem 1), we obtain

E
(

∑
L̃n∈Ξ∗H

h(|L̃n|) | Ξ ∗H
)

= λ
′
∫

Ξ∗H

h(|u|)ν2(du)

which yields for h(|u|) = 1[0,x](|u|) that FD∗(x) = E1[0,x](D∗) = λ Eν2(Ξ ∗H ∩Bx(o)).
On the other hand, if L is a Cox process on T (1), then we regard the vector
Y = (LD,HS) as a random element of N[0,∞),L o . Recall that we use the notation
(L∗D, H̃S) and (L̃D,H∗S ) for the Palm versions of Y with respect to the Palm distri-
butions P∗LD

and P∗XS
, respectively. Similar as above, an appropriate application of

Neveu’s exchange formula stated in Theorem 12 yields

Eh(D∗) =
λ

λ ′
E
(

E
(

∑
L̃n∈S∗H

h(|L̃n|) | S∗H
))

.

Note that L̃ is independent of H∗S under P∗HS
given S∗H . Furthermore, λ ′ = λ ′`γ and

L̃∩S∗H is a Cox process whose random intensity measure is given by λ ′`ν1(B∩S∗H)
for B ∈B(R2). Thus, Campbell’s formula (see Theorem 1) yields

E
(

∑
L̃n∈S∗H

h(|L̃n|) | S∗H
)

= λ
′
`

∫
S∗H

h(|u|)ν1(du)

and, for h(|u|) = 1[0,x](|u|), formula (1.16) follows. �

1.4.3.2 Probability density of D∗

Using Theorem 13 we can derive analogous representation formulae for the proba-
bility density of D∗.
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Theorem 14. (i) If L is a planar Poisson process, which is independent of T and H,
then the probability density fD∗ : [0,∞)→ [0,∞) of D∗ is given by

fD∗(x) = λ` γ Eν1(Ξ ∗H ∩∂Bx(o)) , x≥ 0 , (1.17)

where ν1(Ξ ∗H ∩∂Bx(o)) denotes the curve length of the circle ∂Bx(o) inside Ξ ∗H .
(ii) If L is a Cox processes on T (1) which is conditionally independent of H given T ,
then the probability density of D∗ is given by

fD∗(x) = λ` E
(
∑

N∗x
i=1

1
sinα∗i

)
, x≥ 0 , (1.18)

where N∗x = |S∗H ∩∂Bx(o)| is the number of intersection points of the segment system
S∗H with ∂Bx(o) and α∗1 , . . . ,α∗N∗x are the angles at the corresponding intersection
points between their tangents to ∂Bx(o) and the intersecting segments.

Proof. Assuming that L is a Poisson process and using the polar decomposition of
the 2-dimensional Lebesgue measure, we get from (1.15) that

FD∗(x) = λ`γ E
∫

R2
1Ξ∗H∩Bx(o)(y)ν2(dy)

= λ`γ E
∫ x

0

∫ 2π

0
r1Ξ∗H

((r cos t,r sin t)))dt dr

=
∫ x

0
λ`γEν1(Ξ ∗H ∩∂Br(o))dr ,

i.e., (1.17) is shown. If L is a Cox process on T (1), then we get from (1.16) that

FD∗(x) = λ` Eν1(S∗H ∩Bx(o))

= λ` E
∫

∞

0

N∗y

∑
i=1

1
sinα∗i

1[0,x](y)dy

=
∫ x

0
λ` E

(
∑

N∗y
i=1

1
sinα∗i

)
dy ,

decomposing the Hausdorff measure ν1 similarly as in the proof of (1.17). �

1.4.3.3 Representation formulae for C∗

Theorem 15. Let L be a Cox processes on T (1) which is conditionally independent
of H given T . Then, for any measurable function h : R→ [0,∞) it holds that

Eh(C∗) = λ`E
∫

S∗H
h(c(y))ν1(dy) , (1.19)
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where c(y) is the shortest path length from y to o along the edges of the Palm version
H∗S of HS and S∗H is the (typical) segment system of H∗S centered at o.

The proof of Theorem 15 is similar to the proof of Theorem 13. Note that formula
(1.19) can be written as

Eh(C∗) = λ`E
N

∑
i=1

∫ c(Bi)

c(Ai)
h(u)du ,

where the segment system S∗H is decomposed into line segments S1, . . . ,SN with
endpoints A1,B1, . . . ,AN ,BN such that S∗H =

⋃N
i=1 Si, ν1(Si ∩ S j) = 0 for i 6= j, and

c(Ai) < c(Bi) = C(Ai)+ν1(Si). Furthermore, putting h(x) = 1B(x) for any Borel set
B⊂ R, we get that P(C∗ ∈ B) =

∫
B λ` E∑

N
i=1 1[c(Ai),c(Bi))(u)du. Thus, the following

formulae for the probability density fC∗ : R→ [0,∞) of C∗ are obtained:

fC∗(x) =
{

2λ` if x = 0,
λ` E∑

N
i=1 1[c(Ai),c(Bi))(x) if x > 0. (1.20)

1.5 Scaling limits

In this section we assume that L is a Cox process on T (1)
with random driving mea-

sure given by (1.11). We investigate the asymptotic behavior of the distributions of
the typical connection lengths D∗ and C∗ as the parameters of the stochastic network
model introduced in Section 1.4.2 tend to some extremal values. The resulting limit
theorems for the distributions of D∗ and C∗ can be used in order to derive parametric
approximation formulae for the distribution of C∗, see Section 1.6.

1.5.1 Asymptotic behavior of D∗

We consider the asymptotic behavior of the distribution of D∗ = D∗(γ,λ`) if the
scaling factor κ = γ/λ` introduced in Section 1.2.2 tends to ∞, where we assume that
γ → ∞ and λ`→ 0 such that λ`γ = λ is fixed. This means that the planar intensity
λ of H is constant, but the edge set of Tγ gets unboundedly dense as κ → ∞; see
Figure 1.10 for realizations of the network model for extremely small and large
values of κ . In particular, we show that D∗ converges in distribution to the (random)
Euclidean distance Z from the origin to the nearest point of a stationary Poisson
process in R2 with intensity λ .

Theorem 16. Let T be ergodic and Z∼Wei(λπ,2) for some λ > 0. If κ→∞, where
γ → ∞ and λ`→ 0 such that λ = γλ`, then

D∗(γ,λ`)
d→ Z . (1.21)
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(a) κ = 1 (b) κ = 1000

Fig. 1.10 Realizations of the network model for extreme values of κ

In the proof of Theorem 16 given below, we use two classical results regarding weak
convergence of point processes, which are stated separately in Section 1.5.1.1. For
further details on weak convergence of point processes, see e.g. [3, 9, 12].

1.5.1.1 Weak convergence of point processes

A sequence of point processes X (1),X (2), . . . in R2 is said to converge weakly to a
point process X in R2 iff

lim
m→∞

P(X (m)(B1) = i1, . . . ,X (m)(Bk) = ik) = P(X(B1) = i1, . . . ,X(Bk) = ik)

for any k ≥ 1, i1, . . . , ik ≥ 0 and for any continuity sets B1, . . . ,Bk ∈B0(R2) of X ,
where B∈B(R2) is called a continuity set of X if P(X(∂B) > 0) = 0. If the sequence
X (1),X (2), . . . converges weakly to X , we briefly write X (m) =⇒ X .

Now let X = {Xn} be an arbitrary ergodic point process in R2 with intensity
λ ∈ (0,∞). Then the following limit theorem for independently thinned and appro-
priately re-scaled versions of X can be shown. For each p ∈ (0,1), let X (p) denote
the point process which is obtained from X by an independent thinning, where each
point Xn of X survives with probability p and is removed with probability 1− p
independently of the other points of X . Furthermore, assume that Y (p) is a re-scaled
version of the thinned process X (p), which is defined by Y (p)(B) = X (p)(B/

√
p) for

each B ∈B(R2). Thus, for each p ∈ (0,1), the point processes Y (p) and X are both
stationary with the same intensity λ since EY (p)([0,1)2) = EX (p)([0,1/

√
p)2) = λ .

Theorem 17. Let Y be a stationary Poisson process in R2 with intensity λ . Then,

Y (p) =⇒ Y as p→ 0. (1.22)
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For a proof of this result, see e.g. Section 11.3 of [3] or Theorem 7.3.1 in [12].
Intuitively, the statement of Theorem 1.22 can be explained as follows. The de-

pendence between the points of X in two sets A,B∈B0(R2) decreases with increas-
ing distance between A and B. Thus, if the point process is thinned independently
only points far away of each other survive with high probability which in the limit
yields a point process with complete spatial randomness, that is a Poisson process.

The following continuity property with respect to weak convergence of Palm
distributions of stationary point processes holds.

Theorem 18. Let X, X (1),X (2), . . . be stationary point processes in R2 with intensi-
ties λ , λ1,λ2, . . ., respectively. If λm = λ for all m ≥ 1 and in addition X (m) =⇒ X
as m→ ∞, then the Palm versions X (1)∗,X (2)∗, . . . of X (1),X (2), . . . converge weakly
to the Palm version X∗ of X, i.e.,

X (m)∗ =⇒ X∗ as m→ ∞. (1.23)

For a proof of Theorem 18, see e.g. Proposition 10.3.6 in [12].

1.5.1.2 Proof of Theorem 16

We now are able to prove Theorem 16 using the auxiliary results stated above, where
we first show that the Cox process H on T (1) converges weakly to a stationary
Poisson process with intensity λ if κ → ∞ provided that λ`γ = λ is constant. This
result is then used in order to investigate the asymptotic behavior of the typical
Euclidean distance D∗ = |H̃0|, where H̃0 denotes that point of H̃ = {H̃n} which is
closest to the origin (see Section 1.4.2.2).

Lemma 1. If κ = γ/λ` → ∞, where λ`γ = λ for some constant λ ∈ (0,∞), then
H =⇒ Y , where Y is a stationary Poisson process in R2 with intensity λ .

Proof. For each γ > 1, let H = H(γ) be the Cox process on the scaled version Tγ of T
with linear intensity λ`, where λ` = λ/γ for some constant λ ∈ (0,∞). Then the Cox
process H(γ) can be obtained from H(1) by an independent thinning with survival
probability p = 1/γ followed by a re-scaling with the scaling factor

√
1/γ , i.e.,

H(γ) d= H(1)(p). Furthermore, the Cox process H(1) is ergodic since the underlying
tessellation T and hence the random intensity measure of H(1) is ergodic. Thus we
can apply Theorem 17 which yields H(γ) =⇒ Y as γ → ∞. �

Lemma 2. Let Z ∼Wei(λπ,2) for some λ > 0. Then D∗ d→ Z as κ → ∞ provided
that γ → ∞ and λ`→ 0 such that λ`γ = λ .

Proof. Assume that H∗ = H∗(γ) is the Palm version of the stationary point process
H = H(γ). Furthermore, assume that Y is a stationary Poisson process in R2 with
intensity λ . Then the distribution of Y ∪{o} is equal to the Palm distribution of Y
due to Slivnyak’s theorem. Thus, Lemma 1 and Theorem 18 yield that
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H∗(γ) =⇒ Y ∪{o} (1.24)

if γ → ∞ and λ`→ 0 with λ`γ = λ . Since both L and H are Cox processes on T (1)
γ

conditionally independent given Tγ , we get that H̃ ∪{o} and the Palm version H∗

of H have the same distributions. This is a consequence of Slivnyak’ theorem for
stationary Cox processes, see Theorem 8. Thus, using (1.24), for each r > 0 we get

lim
γ→∞

P(|H̃0|> r) = lim
γ→∞

P(H̃(Br(o)) = 0)

= lim
γ→∞

P((H̃ ∪{o})(Br(o)) = 1)

= lim
γ→∞

P(H∗(Br(o)) = 1)

= P((Y ∪{o})(Br(o)) = 1)
= P(Y (Br(o)) = 0) .

Hence, limγ→∞ P(|H̃0| > r) = P(Y (Br(o)) = 0) = exp(−λπr2) for each r > 0,

which shows that D∗ = |H̃0|
d→ Z ∼Wei(λπ,2). �

1.5.2 Asymptotic behavior of C∗

The results presented in the preceding section can be extended to further cost func-
tionals of the stochastic network model introduced in Section 1.4.2. For instance, if
T is isotropic, mixing and Eν2

1 (∂Ξ ∗) < ∞, where ν2
1 (∂Ξ ∗) denotes the circumfer-

ence of the typical cell Ξ ∗ of T , then it can be shown that

C∗ d→ ξ Z (1.25)

as κ = γ/λ` → ∞ provided that λ = γλ` is fixed. Here, Z ∼ Wei(λπ,2) and ξ ∈
[1,∞) is some constant which depends on type of the underlying tessellation T . In
the proof of (1.25), the result of Theorem 16 is used. This is then combined with
fact that under the additional conditions on T mentioned above, one can show that
C∗−ξ D∗ converges in probability to 0. Moreover, it can be shown that

C∗ d→ Z′ (1.26)

as κ = γ/λ`→ 0, where λ` is fixed and Z′ ∼ Exp(2λ`). For further details, see [20].

1.6 Monte Carlo methods and parametric approximations

The representation formulae (1.15) – (1.17) can easily be used to obtain simulation-
based approximations for the distribution function and probability density of D∗,



32 Florian Voss, Catherine Gloaguen and Volker Schmidt

see Section 1.6.1. These estimates can be computed based on samples of Ξ ∗H and
S∗H which are generated by Monte Carlo simulation, using algorithms like those
discussed in Section 1.3.2.2. Note that we do not have to simulate any points of L.

Similarly, we can use formula (1.20) to get a Monte Carlo estimator for the den-
sity of C∗. However, note that the density formula (1.18) for D∗ is not suitable in
this context, because it would lead to an estimator which is numerically instable.

Moreover, the scaling limits for C∗ stated in (1.25) and (1.26) can be used in
order to determine parametric approximation formulae for the density of C∗, which
are surprisingly accurate for a wide range of (non-extremal) model parameters, see
Section 1.6.2.

1.6.1 Simulation-based estimators

Assume that Ξ ∗H,1, . . . ,Ξ
∗
H,n and S∗H,1, . . . ,S

∗
H,n are n independent copies of Ξ ∗H and

S∗H , respectively. If L is a stationary Poisson process in R2, then we can use (1.15)
and (1.17) to define the estimators for FD∗(x) and fD∗(x) by

F̂D∗(x;n) =
λ` γ

n ∑
n
i=1 ν2(Ξ ∗H,i∩Bx(o)) (1.27)

and

f̂D∗(x;n) =
λ` γ

n ∑
n
i=1 ν1(Ξ ∗H,i∩∂Bx(o)) , (1.28)

respectively. If L is a Cox process on T (1), then we can use (1.16) to define an
estimator for FD∗(x) by

F̂D∗(x;n) =
λ`

n ∑
n
i=1 ν1(S∗H,i∩Bx(o)) . (1.29)

Similarly, using formula (1.20), we can define an estimator for fC∗(x) by

f̂C∗(x;n) =
λ`

n ∑
n
j=1 ∑

N j
i=1 1

[c(A( j)
i ),c(B( j)

i ))
(x , (1.30)

where the independent copies S∗H,1, . . . ,S
∗
H,n of S∗H are decomposed into the line seg-

ments S( j)
1 , . . . ,S( j)

N j
with endpoints A( j)

1 ,B( j)
1 , . . . ,A( j)

N j
,B( j)

N j
. It is not difficult to see

that the estimators given in (1.27) – (1.30) are unbiased and in addition strongly con-
sistent for fixed x ≥ 0. However, if L is a Cox process, then it is not recommended
to construct an estimator f̂D∗(x;n) for fD∗(x) based on equation (1.18) by just omit-
ting the expectation in (1.18). This estimator is numerically unstable since infinitely
small angles can occur. In this case, it is better to first compute the distribution func-
tion F̂D∗(x;n) using formula (1.29) and afterwards considering difference quotients
obtained from this estimated distribution function as estimator f̂D∗(x;n) for fD∗(x),
see [21]. Some examples of estimated densities are shown in Figures 1.11 and 1.12,
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Fig. 1.11 Estimated density of D∗ if L is a stationary Poisson process in R2
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Fig. 1.12 Estimated density of D∗ if L is a Cox process on T (1)

together with the corresponding (scaling) limit as κ = γ/λ` → ∞ with λ`γ (= λ )
fixed., i.e. the density of the Wei(λπ,2)-distribution.

1.6.2 Parametric approximation formulae

For practical applications it is useful to have parametric approximation formulae for
the distribution of C∗, where the parameters depend on the model type of T and
the scaling factor κ . Therefore, the problem arises to fit suitable classes of paramet-
ric densities to the densities of C∗ which have been computed by the simulation-
based algorithm discussed in Section 1.6.1. In [7] truncated Weibull distributions
were used for this purpose since the scaling limits for the distribution of C∗, i.e.
the exponential and Weibull distributions mentioned in Section 1.5.2, belong to this



34 Florian Voss, Catherine Gloaguen and Volker Schmidt

(a) Typical serving zone for κ'1000
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(b) Densities of connection lengths

Fig. 1.13 (a) Typical serving zone for κ = 1000 and (b) parametric density of C∗ for PVT fitted to
infrastructure data (solid line), compared to histogram of connection lengths estimated from real
network data, showing that the assumption of direct physical connections (dashed line) is incorrect.

parametric family. It turned out that the fitted densities approximate the estimated
densities surprisingly well for different types of T and for a wide range of κ . These
parametric densities can be used in order to efficiently analyze and plan telecommu-
nication networks. In a first step, a suitable tessellation model has to be fitted to real
infrastructure data. Afterwards, the scaling factor κ must be estimated computing
length intensity of the infrastructure and the number of HLC in the network per unit
area. Then the distribution of the typical shortest path length C∗ is directly available
via the parametric densities in order to analyze connection lengths of existing or
planned telecommunication networks. In Figure 1.13 the parametric density chosen
in this way is compared to a histogram of connection lengths of real network data of
Paris. One can see that there is a quite good fit, see [7] for details and further results.
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