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Abstract. Li-ion battery performance is strongly influenced by their cathodes’ properties

and consequently by the 3D microstructure of the particles the cathodes are comprised of.

During calendaring and cycling, cracks develop within cathode particles, which may affect

performance in multiple ways. On the one hand, cracks reduce internal connectivity such that

electron transport within cathode particles is hindered. On the other hand, cracks within

particles can increase the cathode reactive surface. Due to these contradictory effects, it is

necessary to quantitatively investigate how battery cycling effects cracking and how cracking

in-turn influences battery performance. Thus, it is necessary to characterize the 3D particle

morphology with structural descriptors and quantitatively correlate them with effective battery

properties. Typically, 3D structural characterization is performed using image data. However,

informative 3D imaging techniques are time-consuming, costly and rarely available, such that

analyses often have to rely on 2D image data. This paper presents a novel stereological approach

for generating virtual 3D cathode particles that exhibit crack networks that are statistically

equivalent to those observed in 2D sections of experimentally measured particles. Consequently,

more easily available 2D image data suffices for deriving a full 3D characterization of cracked

cathodes particles. In future research, the virtually generated 3D particles will be used as

geometry input for spatially resolved electro-chemo-mechanical simulations, to enhance our

understanding of structure-property relationships of cathodes in Li-ion batteries.
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1. Introduction7

Li-ion batteries are vital to modern technology and transportation [1, 2]. Current research8

initiatives in Li-ion technology aim to increase battery energy density while simultaneously9

extending cycle-life [3, 4]. To that end, high-voltage LiNixMnyCozO2 (NMCxyz) cathodes are10

increasingly integrated into energy-dense cells due to their high average voltages (≈ 3.7V vs. Li)11

and high theoretical specific capacities (185 − 278mAh g−1) [5–9]. Additionally, when cycled12

within appropriate voltage windows (≤ 4.3V vs. Li), these cathodes can reach upwards of a13

thousand cycles with high capacity retention [3]. Currently, NMC chemistries are the primary14

candidates for cathode materials that lead to energy-dense Li-ion batteries, spanning both liq-15

uid [10–14] and solid-state [15–19] electrolyte systems. However, NMC cathodes can exhibit16

capacity-fade mechanisms including transition-metal dissolution [20, 21], surface reconstruc-17

tion [8, 10], electrolyte reactivity and gassing [8, 22, 23], and particle cracking [24, 25]. These18

fade mechanisms are highly coupled [9, 12, 15, 26–30]. For example, in liquid systems, particle19

cracking can expose uncoated active material to liquid electrolyte, resulting in increased elec-20

trochemical side reactions and surface reconstruction [8, 27]. In solid systems, cathode cracking21

1Institute of Stochastics, Ulm University, Helmholtzstraße 18,89069 Ulm, Germany
2National Renewable Energy Laboratory, 15013 Denver W Parkway, Golden, CO 80401, USA

1
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can result in reduced surface area to either the solid-state electrolyte or the electron-conducting22

phase, resulting in increased charge transfer and ohmic resistance, respectively [17–19].23

Because a significant amount of cathode capacity-fade mechanisms are related to secondary-24

particle cracking, researchers typically evaluate cathode “aging” through qualitative crack anal-25

ysis [12, 28]. Cathode particle cracking can occur for different reasons. First, during manu-26

facturing, cathode cracking can occur during the calendaring process [7, 31, 32]. The cracks27

formed during calendaring typically originate at particle/particle or particle/current-collector28

contacts and tend to form long cracks that cleave particles. Second, cathode cracking can oc-29

cur during formation cycles due to non-ideal primary particle grain orientations. These initial30

“break-in” cracks tend to be small and are significantly influenced by the grain shapes, sizes, and31

orientations [33, 34]. Break-in cracking is currently the primary focus for physics-based chemo-32

mechanical models [33, 35–38]. Finally, cracks can form during operation when the cathodes are33

cycled at higher voltage ranges, either due to increased voltage bounds or due to voltage slip-34

page [12, 39]. At high voltages or during high delithiation demands, the lithium concentration35

on the cathode surface can drop below a minimum concentration threshold causing irreversible36

reconstruction of the host crystal. This reconstruction reduces the specific capacity and induces37

significant local stain, leading to secondary-particle cracking [29, 33].38

Currently, structural post-mortem analysis of cathode particle fracture is primarily conducted39

using 2D scanning electron microscope (SEM) images and X-ray techniques [11, 12, 29, 40–42].40

Since a quantitative analysis of such 2D images can be difficult, the comparison of differently41

aged post-mortem cathodes is often performed by means of visual inspection [11, 12, 30]. Such a42

qualitative analysis is typically accompanied by quantitative electrochemical analysis (e.g., elec-43

trochemical impedance spectroscopy, incremental capacity analysis [12, 29]) and post-mortem,44

atomistic-scale surface-sensitive techniques [11, 20, 29, 42, 43]. However, relying on qualita-45

tive cracking-extent assessments introduces subjectivity in the analysis, highlighting the need46

for more quantitative and reproducible methods to characterize cathode-particle fracture. A47

quantitative analysis of cracks in 2D SEM data has been conducted, e.g., in [40, 41]. However,48

2D images of cracked particles depict only planar sections of the actual 3D microstructure. In49

other words, a 2D slice of a cathode electrode represents just a small portion of the 3D system,50

which includes out-of-plane features such as tortuous crack connections.51

In contrast to 2D crack analysis, it is significantly more difficult to segment and identify crack52

structures in 3D images [44, 45] and to reassemble fragments of fractured particles [46]. This53

increased difficulty is due to the fact that 3D imaging (e.g., via nano-CT) is often accompanied54

with a lower resolution than 2D microscopy techniques (e.g., SEM), which produce image data55

on a similar length scale—i.e., fine structures caused by cracks often exhibit a bad contrast in 3D56

image data. Moreover, a quantitative crack analysis requires computation of metrics to describe57

cracks in 3D [47]. Unfortunately, the necessary 3D imaging equipment is expensive and often58

less available than comparable 2D imaging equipments and their analysis tools [20, 48, 49]. A59

potential remedy is provided by stochastic 3D modeling, which can generate countless virtual60

NMC particles exhibiting statistically similar properties as the relatively low number of particles61

that have been imaged in 3D [50]. In general, realizations of stochastic 3D models for material62

microstructures, such as those proposed in [51, 52], can serve as geometry inputs for mechanical63

and electrochemical simulations. These simulations can help to investigate properties like crack64

propagation in materials and their elastostatic or -plastic responses [33, 53–55]. By performing65

such simulation studies on generated morphologies quantitative structure-property relationships66

can be derived [56, 57].67
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As mentioned above, measured 3D image data is not always accessible. Therefore approaches68

have been developed to calibrate stochastic 3D models utilizing only 2D image data [58]. Re-69

cently, a stochastic nanostructure model based on generative adversarial networks (GAN) was70

introduced, which mimics the 3D polycrystalline grain architecture of non-cracked NMC parti-71

cles [59] by only using 2D electron backscatter diffraction (EBSD) cross sections for calibration.72

In the present paper, a stochastic 3D model is proposed that can generate realistic cracks in73

virtual polycrystalline NMC particles, which propagate along grain boundaries. Similar to the74

approach considered in [60], our model is based on random tessellations, where certain facets are75

dilated to mimic cracks. In this work, a facet between two grains is either intact or fully cracked76

without intermediate case (that is all surface elements of the facet are either intact or cracked.77

The model is calibrated and validated by comparing planar cross sections of the stochastic 3D78

crack network model with 2D SEM image data, utilizing several geometric descriptors charac-79

terizing the morphology of the crack phases. Additionally, to emphasize the strength of our80

stereological modeling approach, geometric descriptors related to effective battery properties81

are determined, which cannot be reliably derived from 2D images.82

2. Materials and image processing83

The focus of this section is to describe the materials considered in the present paper, as84

well as on the processing of 2D SEM image data of these materials. First, in Section 2.1,85

the cathode materials and their cycling history are discussed. Then, in Section 2.2, several86

image processing techniques are described, where gray-scale images of planar cross sections87

of the cathodes, obtained by SEM imaging, are phasewise segmented using a 2D U-net and,88

afterwards, particlewise segmented utilizing a marker-based watershed transform. Additionally,89

morphological operations are used to denoise the crack phase. Finally, in Section 2.3, the set of90

segmented 2D images is decomposed into two subsets, based on the predominance of short or91

long cracks. Later on, in Section 4 the introduced crack model is calibrated to both subsets, to92

reproduce the wide structural variability of cracked NMC particles.93

2.1. Electrode materials and cycling history. The active electrode material used in the94

present paper consisted of LiNi0.5Mn0.3Co0.2O2 (NMC532) and was taken from the same batch95

of cells cycled in our previous work [41], where the particles had similar polycrystalline archi-96

tectures as those shown in [61]. The electrodes consisted of 90 wt% NMC532, 5wt% Timcal97

C45 carbon and 5wt% Solvay 5130 PVDF binder. The coating thickness was 62 µm with 26.1%98

porosity.99

The cell was formed by charging to 1.5V, holding at open-circuit for 12 hours, and then100

cycling 3 times between 3V and 4.1V using a protocol consisting of C/2 constant-current and101

constant-voltage at 4.1V until the current dropped below C/10. The cells were then degassed,102

resealed, and prepared for fast charging at 20 ◦C. Subsequently, the cells were cycled using a103

protocol of fast charging at 6C constant current between 3V and 4.1V followed by constant-104

voltage hold until 10 minutes total charge time had elapsed. Charge was followed by 15 minutes105

of open circuit and discharge at C/2 to 3V, followed by a final rest for 15 minutes. The materials106

used in this paper were cycled 200 times under these conditions.107

2.2. Preprocessing and analysis of 2D SEM image data. The NMC electrode material108

was removed from the cells and a small sample cut from the electrode sheet. The sample was109
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then cross sectioned using an Ar-ion beam cross-sectional polisher (JOEL CP19520). The cross-110

sectioned face was then imaged in an SEM system with a pixel size of 38.5 nm. A representative111

cross section, derived by SEM imaging, is presented in Figure 1 (top).112

For image processing, we first describe the image processing steps which were performed113

in [41] to segment the 2D SEM image data of the cross sections with respect to phases and114

particles, i.e., each pixel is classified either as solid phase, crack phase or background, where115

each particle is assigned with a unique label. Note that the raw image data depicted scale bars116

for indicating the corresponding length scales (which have been produced by the microscope’s117

software). Since the scale bars can adversely impact subsequent image processing steps, the118

inpainting biharmonic method of the scikit-image package in Python [62] has been utilized to119

remove scale bars. Then, a generative adversarial network [63] has been deployed to increase the120

resolution (super-resolution) such that pixel sizes of 14.29 nm have been achieved, facilitating121

the assignment of pixels to phases (i.e., solid phase, crack phase, background).122

To obtain a phasewise segmentation, a 2D U-net was deployed to classify the phase affiliation123

for each pixel in 2D SEM cross sections. More precisely, the network’s output is given by124

pixelwise probabilities of phase membership. By deploying thresholding techniques onto these125

pixelwise probabilities, a phase-wise segmentation has been obtained, see [41] for further details.126

In particular, Figure 1 indicates that the data has been segmented reasonably well, i.e., only127

a low, statistically negligible number of particles (see bottom left) exhibits larger misclassified128

areas.129

The particle-wise segmentation was obtained by means of a marker-based watershed trans-130

form on the Euclidean distance transform, denoted by D in the following. More precisely,131

D : W → R+ = [0,∞) is a mapping, which assigns each pixel x ∈ W its distance to the back-132

ground phase. Here, W ⊂ Z2
ρ represents the sampling window, where Zρ = {. . . ,−ρ, 0, ρ, . . .}133

and ρ > 0 denotes the pixel length. Note that the watershed function of the Python package134

scikit-image [62] was deployed on −D, where the markers (i.e., the positions of particles to135

be segmented) are obtained by thresholding D at some distance level r > 0, where r is set136

equal to 50 pixels. After the application of the watershed algorithm, truncated particles were137

removed in order to avoid edge effects. In addition, we removed regions within the segmented138

image that may have resulted from oversegmentation or falsely segmented phases, which can139

occur due to shine-through effects during SEM imaging. To identify such regions, we first used140

the GaussianMixture method from the scikit-learn package in Python [64]. This method was141

employed to fit a mixed bivariate Gaussian distribution (with two components) to the pairs of142

area-equivalent diameters and eccentricity values of the segmented regions in the image [62].143

Note that the eccentricity of a segmented region is defined as the eccentricity of a fitted ellipse144

that has the same first and second moments. After fitting the mixed Gaussian distribution,145

its first component, i.e., a bivariate Gaussian distribution, exhibited a mean value vector com-146

prising a relatively large area-equivalent diameter and low eccentricity (which corresponds to147

circular regions). We assumed that this component corresponds to correctly segmented par-148

ticles in the image. In contrast, the second component, characterized by a mean vector with149

smaller area-equivalent diameters and higher eccentricity, was assumed to represent incorrect150

segmentations. Consequently, we removed regions from the segmentations for which the vector151

of area-equivalent diameter and eccentricity was more likely to belong to the second component,152

as determined by the fitted Gaussian mixture model.153

Note that a few particles affected by shine-trough effects from SEM imaging remain. However,154

their small proportion has a negligible impact on the overall statistical properties of the particle155
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set. This procedure is performed on 13 SEM cross sections, each consisting of 5973×3079 pixels,156

which corresponds to approximately 85 µm×44 µm with a resolution of ρ = 14.29 nm. Note that157

these 13 cross sections are derived from the same cathode and are partly overlapping. In each158

cross section, between 43 and 60 particles were detected. An exemplary phasewise segmented159

cross section is shown in Figure 1 (bottom).160

Figure 1. 2D SEM image (top) and its phasewise segmentation (bottom),
where each pixel is classified as background (white), solid (gray) or crack (black).
Note that truncated and small particles with a large eccentricity have been re-
moved.

In addition to the preprocessing procedure explained above and proposed in [41], the following161

data processing steps have been carried out. First, since some SEM images depict overlapping162

areas, duplicates were removed. More precisely, all pairs of particles from overlapping images163

were registered, i.e., for each pair of particles a rigid transformation is determined which max-164

imizes the correspondence of the first particle after application of the transformation with the165

second particle, where the agreement is measured by means of the cross correlation in scikit-166

image [62]. If pairs of registered particles exhibit a large correspondence, a duplicate is detected,167

which is omitted in further analysis. Furthermore, to reduce the number of very small cracks,168

e.g., caused by noise or by several connected components of the crack phase that actually belong169

to the same crack, morphological opening, followed by morphological closing, was performed170

on the crack phase. For both morphological operations, a disk-shaped structuring element with171

radius ro = 1 for opening and rc = 3 for closing was used.172
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In summary, the image processing procedure described above resulted into 506 images depict-173

ing the phasewise segmentation of NMC particles in planar sections, i.e., each pixel is classified174

either as solid (active NMC material), crack, or background. Each of these images depicts a175

single cross section of a NMC particle, which shows a certain network of cracks. In the following176

sections, an individual particle is denoted by Pex.177

2.3. Decomposition of the set of segmented particles into two subsets. In this section178

we explain how the set of segmented particles, described in Section 2.2, is decomposed into two179

subsets with predominantly long and short cracks, respectively. This subdivision is motivated by180

the structural heterogeneity observed in the crack networks of segmented particle cross sections.181

In Section 4, the stochastic crack model that is introduced in Section 3, is fitted separately to182

both subsets.183

For this classification, for each particle Pex, we consider a continuous representation in the184

two-dimensional Euclidean space R2, denoting its solid phase by Ξ
(ex)
solid ⊂ R2 and its crack phase185

by Ξ
(ex)
crack ⊂ R2, where each pixel of Pex is considered as patch (i.e., as a square subset of R2).186

Thus, in the following we will write187

Pex =
(
Ξ
(ex)
solid,Ξ

(ex)
crack

)
(1)

for the continuous representation of a particle. Furthermore, by G we denote the set of continu-188

ous representations of all 506 particles. The dataset G is comprised of particles with sizes ranging189

from 1.39 µm to 13.62 µm (in terms of their area-equivalent diameters, denoted by aed(Pex)).190

By visual inspection of segmented particles, it becomes appearant that the crack networks191

of some particles consist predominantly of short and others of long cracks, see Figures 1 and 2.192

Motivated by these morphological differences, the set G is subdivided into two disjoint subsets,193

Gshort and Glong. To decide for a given particle Pex if it belongs to Gshort or Glong, a skeletonization194

algorithm [65] was applied to the crack phase of Pex, where each connected component of the195

crack phase Ξcrack is represented by its center line, which we refer to as a skeleton segment. The196

family of all skeleton segments of a particle Pex is called skeleton and denoted by S(Pex).197

If the longest crack skeleton segment of a particle Pex is shorter than or equal to t · aed(Pex)198

for some threshold t > 0, then Pex is assigned to Gshort, otherwise Pex is assigned to Glong. Note199

that the area-equivalent diameter aed(P ) of particle Pex is given by200

aed(Pex) =

√
4 ν2(Ξsolid ∪ Ξcrack)

π
,

where ν2(A) denotes the 2-dimensional Lebesgue measure, i.e., the area of a set A ⊂ R2. Thus,201

formally, the sets Gshort and Glong can be written as202

Gshort = {Pex ∈ G : max
S∈S(Pex)

H1(S) ≤ t · aed(Pex)} and Glong = G \ Gshort

where H1(S) denotes the 1-dimensional Hausdorff measure of a skeleton segment S ∈ S(Pex),203

which corresponds to the length of S 1. It turned out that t = 0.55 is a reasonable choice,204

which splits G into two subsets Gshort and Glong, each containing particles from the entire range205

of observed particle sizes, where Gshort comprises 423 particles and Glong consists of 83 particles.206

For larger values of t the statistical representativeness of Glong diminishes, whereas for smaller207

values of t we observed that the resulting set Glong was comprised of particles with relatively small208

cracks—which would have made the decomposition of particles into Gshort and Glong redundant.209

1The length of a skeleton segment was approximated by the number of pixels multiplied with the resolution of
ρ = 14.29 nm.
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Figure 2. Segmented NMC particles together with their skeletons (yellow),
where the skeleton segment of the longest crack is highlighted in red. The particle
on the left-hand side belongs to Gshort, consisting of predominantly short cracks,
while the particle on the right-hand side belongs to Glong, exhibiting long cracks.

3. Stochastic 3D model for cracked NMC particles210

In this paper, a stochastic 3D model is proposed, which generates cracks in (simulated) pris-211

tine MNC particles hierarchically on different length scales. Two different kinds of data are used212

as model inputs. First, to generate pristine NMC particles in 3D, exhibiting a polycrystalline213

inner structure, we draw samples from the stochastic particle model introduced in [50]. Then,214

we use 2D SEM image data to stereologically calibrate a stochastic 3D model for adding cracks,215

where we assume that cracks propagate along the polycrystalline grain boundaries through the216

particles without having a preferred direction. It is important to emphasize that the proposed217

stochastic crack model generates virtual, but realistic cracked NMC particles in 3D, even though218

it is calibrated using only 2D image data.219

In Section 3.1, the main features of the stochastic 3D model proposed in [50] are summa-220

rized, which is used to generate the virtual, pristine NMC particles. To efficiently represent221

the neighborhood relationships of individual grains of a particle, in Section 3.2 a graph-based222

data structure is introduced by means of Laguerre tessellations. Subsequently, in Section 3.3, a223

stochastic model is presented, which incorporates single cracks into the (previously simulated)224

pristine NMC particles, utilizing the graph-based representation via tessellations stated in Sec-225

tion 3.2. Then, in Section 3.4, it is shown how the single-crack model can be applied multiple226

times to generate a random crack network consisting of several cracks within a given parti-227

cle. Finally, in Section 3.5, an extended stochastic crack network model is presented, which is228

deployed for modeling the entire crack phase of NMC particles in 3D.229

3.1. Stochastic 3D model for pristine polycristalline NMC particles. In [50] a spatial230

stochastic model for the 3D morphology of pristine polycristalline NMC particles has been231

developed and calibrated by means of tomographic image data. More precisely, nano-CT data232

depicting the outer shell of NMC particles has been leveraged to calibrate a random field model233

on the three-dimensional sphere, whose realizations are virtual outer shells of NMC particles234

that are statistically similar to those observed in the nano-CT data. Furthermore, a random235

Laguerre tessellation model for the inner grain architecture of NMC particles (which lives on a236

smaller length scale) has been calibrated using 3D EBSD data.237
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Note that a Laguerre tessellation in R3 is a subdivision of the three-dimensional Euclidean238

space (or some sampling window within R3) that is given by some marked point pattern239

{(sn, rn), n ∈ N}, where sn ∈ R3 is called a seed or generator point, and rn ∈ R is an (ad-240

ditive) weight, for each n ∈ N = {1, 2, . . .}, see [66, 67]. The interior of the grain generated by241

the n-th marked seed point (sn, rn) of a Laguerre tessellation is defined as set of points x ∈ R3,242

which are closer to sn than to all other seed points sk, k ̸= n, with respect to the “distance243

function” d : R3 × R4 → R given by d(x, (s, r)) = |x− s| − r for all x, s ∈ R3 and r ∈ R, where244

| · | denotes the Euclidean norm in R3.2 Thus, formally, the grain gn ⊂ R3 generated by the245

n-th marked seed point (sn, rn) is given by246

gn =
{
x ∈ R3 : d(x, (sn, rn)) ≤ d(x, (sk, rk)) for all k ̸= n

}
. (2)

To compute grains gn for a given set of marked seed points we use the GeoStoch library [68].247

Both stochastic models mentioned above, i.e., the random field model for the outer shell and248

the random tessellation model for the inner grain architecture, have been combined in [50],249

to derive a multi-scale 3D model for pristine NMC particles with full inner grain architecture.250

Thus, in the first modeling step of the present paper, we will draw realizations from the multi-251

scale 3D model of [50] for the generation of virtual pristine NMC particles, to which cracks will252

be added in the subsequent modeling steps. Using an analogous notation like that considered253

in Eq. (1), the simulated pristine NMC particles will be denoted by Ppr = (Ξ
(pr)
solid, ∅), where254

Ξ
(pr)
solid =

⋃

n∈I
gn ⊂ R3

for some index set I ⊂ N. The stochastic crack model introduced later on (in Sections 3.3 to 3.5)255

assigns facets, i.e. planar grain boundary segments, of the pristine particle Ppr with crack widths256

to introduce a crack network. To do so, we first derive an alternative graph representation of257

the Laguerre tessellation {gn, n ∈ I} which describes the grain architecture of Ppr.258

3.2. Graph representation of pristine grain architectures. In the literature, a Laguerre259

tessellation in R3 is usually given by a collection of grains gn ⊂ R3 as defined in Eq. (2).260

However, alternatively, such a tessellation can be represented as a collection of planar facets261

given by262

gn ∩ gk = {x ∈ R3 : d(x, (sn, rn)) = d(x, (sk, rk))}
for n, k ∈ N with n ̸= k and H2(gn ∩ gk) > 0, where H2(gn ∩ gk) is the 2-dimensional Hausdorff263

measure of gn ∩ gk ⊂ R3, which corresponds to the area of gn ∩ gk. Thus, the sets gn ∩ gk are264

convex plane segments being the intersection of neighboring grains, the union of which is equal265

to the union of the boundaries ∂gn of the convex polyhedra gn considered in Eq. (2).266

Furthermore, to describe the neighborhood structure of the facets, we consider the so-called267

neighboring facet graph, denoted by G = (F,E). The set F of its vertices is the collection of268

planar facets of the Laguerre tessellation, and E is its set of edges, where two facets f, f ′ ∈ F269

are connected by an edge e ∈ E if they are adjacent, which means that f ∩ f ′ is a line segment270

with positive length, i.e., H1(f ∩ f ′) > 0, see Figures 3a and 3b.271

3.3. Single crack model. In this section, we describe the stochastic model which will be272

used for the insertion of single cracks into virtual NMC particles, whose polycristalline grain273

architecture is given by a Laguerre tessellation within a certain (bounded) sampling window274

2In the mathematical literature, the grains of a Laguerre tessellation are often called “cells”. However, for
modeling the polycrystalline materials considered in the present paper, the wording “grain” is used.
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W ⊂ R3, as stated in Section 3.1, and represented by the neighboring facet graph G = (F,E)275

introduced in Section 3.2.276

Assuming that cracks propagate along grain boundaries [27], we will model cracks as collec-277

tions of dilated adjacent facets. With regard to the graph-based representation of tessellations278

stated in Section 3.2, this means that a subset C ⊂ F will be chosen such that for each pair279

f, f ′ ∈ C with f ̸= f ′, there exists a sequence of adjacent facets f1, . . . , fn ∈ C such that280

f1 = f and fn = f ′. This allows generating, if desired, particles with a relatively low quantity281

of cracked facets, but with relatively long contiguous cracks, which would be not possible with282

a stochastic approach not considering sequences of adjacent facets.283

(a)

(b)

n = 1

(c)

n = 6

(d)

Figure 3. 2D scheme of the workflow to generate an individual crack along grain
boundaries. For a (Laguerre) tessellation within a bounded sampling window
(a), the neighboring facet graph is determined, i.e., facets are considered to be
vertices of the graph (black rectangles), which are connected by edges (blue) if
the underlying facets are adjacent (b). An initial facet (red) is chosen at random
and assigned to the set C of crack facets (c). Iteratively, the n-th neighboring
facet which is aligned “best” with the set C is assigned to it (d).

More precisely, to generate a set of dilated crack facets as described above, an algorithm is284

proposed consisting of the following steps:285

(i) Initialize the set of crack facets, putting C = ∅.286

(ii) Generate the number nfacets ∈ N of crack facets, drawing a realization n̂facets > 0 from287

a Weibull distributed random variable Nfacets with some scale parameter λW > 0 and288

shape parameter kW > 0, and putting nfacets = round(n̂facets), where289

round(n̂facets) =

{
⌊n̂facets⌋ if n̂facets − ⌊n̂facets⌋ < 0.5,

⌊n̂facets⌋+ 1 else,
(3)

which means rounding to the closest integer, with ⌊n̂facets⌋ denoting the largest integer290

being smaller than n̂facets.291

(iii) Choose an initial facet f ∈ F at random and assign it to the set of crack facets C.292

Furthermore, let g : F → R3 denote a function, which maps a facet f ∈ F onto its293

normal vector v = (v1, v2, v3) with length 1 and v1 ≥ 0.294
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(iv) Compute the average normal vector vC =
∑

f∈C g(f)
∣∣∑

f∈C g(f)
∣∣−1

, to control the295

alignment of the next facet, to be assigned to C.296

(v) Determine the set A = {f ∈ F \ C : f ∩ f ′ ∈ E for some f ′ ∈ C} ⊂ F \ C, containing297

the facets that are adjacent to C, but not contained in C.298

(vi) Add the facet f ∈ A given by299

f = argmax
f∈A

|⟨g(f), vC⟩| (4)

to C, for which the normal g(f) has the best directional alignment with the average300

normal vector vc computed in step (iv), where ⟨·, ·⟩ denotes the dot product.301

(vii) Repeat steps (iv) to (vi) until #C = nfacets, where # denotes cardinality.302

(viii) Draw a realization δ > 0 from a gamma distributed random variable ∆ with some shape303

parameter kΓ > 0 and scale parameter θΓ > 0.304

(ix) Dilate each crack facet f ∈ C using the structuring element Bδ = {x ∈ R3 : |x| ≤ δ/2},305

and determine the set
⋃

f∈C(f ⊕ Bδ), where ⊕ denotes Minkowski addition. Note that306

the set
⋃

f∈C(f⊕Bδ) represents a crack where each facet f ∈ C is dilated with the same307

thickness δ.308

This algorithm is visualized in Figure 3.309

In summary, the stochastic model for single cracks described above is characterized by the310

4-dimensional parameter vector θ1 = (λW, kW, kΓ, θΓ) ∈ R4
+, where λW and kW control the311

length of cracks, whereas kΓ and θΓ affect their thickness.312

Recall that in Section 3.1 we introduced the notation Ppr = (Ξ
(pr)
solid, ∅) for simulated pristine313

NMC particles. Analogously, for a given pristine particle Ppr = (Ξ
(pr)
solid, ∅), a particle with314

a single crack will be denoted by Pθ1 = (Ξ
(θ1)
solid,Ξ

(θ1)
crack), where Ξ

(θ1)
solid ∪ Ξ

(θ1)
crack = Ξ

(pr)
solid, with315

Ξ
(θ1)
solid,Ξ

(θ1)
crack ⊂ R3 being the solid and crack phase of Pθ1 , respectively. More precisely, it holds316

that317

Ξ
(θ1)
crack =

{
x ∈ Ξ

(pr)
solid : dist(x, f) ≤ δ

2
for some f ∈ C

}

and Ξ
(θ1)
solid = Ξ

(pr)
solid \ Ξ

(θ1)
crack, where dist(x, f) = min{|x − y| : y ∈ f} denotes the Euclidean318

distance from x ∈ R3 to the set f ∈ C.319

Note that the spatial orientation of the random crack depends solely on the initial facet f ,320

which is chosen at random (uniformly) from the set of facets F . Since the orientation of a facet321

of a Laguerre tessellation is uniformly distributed on the space of possible facet orientations, the322

single crack model is isotropic. A potential anisotropy of the crack network could be modeled323

by modifying the selection criterion formulated in Eq. (4).324

3.4. Crack network model. Typically, the crack phase of particles observed in experimental325

2D SEM data consists of more than one crack and forms complex crack networks, see Figure 1.326

Thus, to model the crack phase of particles consisting of multiple cracks, we draw a realization327

ncracks ∈ N ∪ {0} from a Poisson distributed random variable Ncracks with some parameter328

λP > 0. Furthermore, let Pθ1,1, . . . , Pθ1,ncracks
with Pθ1,i = (Ξ

(θ1,i)
solid ,Ξ

(θ1,i)
crack) for i = 1, . . . , ncracks329

denote independent realizations of the single crack model introduced in Section 3.3, applied to330

one and the same pristine particle Ppr = (Ξ
(pr)
solid, ∅). Overlaying these realizations results in a331

realization of the crack network model Pθ2 = (Ξ
(θ2)
solid,Ξ

(θ2)
crack) with parameter vector332

θ2 = (θ1, λP) = (λW, kW, kΓ, θΓ, λP) ∈ R5
+, (5)
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where Ξ
(θ2)
crack =

⋃ncracks
i=1 Ξ

(θ1,i)
crack and Ξ

(θ2)
solid = Ξ

(pr)
solid \ Ξ

(θ2)
crack.333

By visual inspection of the SEM data, see Figure 1, it is obvious that the distributions of334

the random number Ncracks and size Nfacets of individual cracks should depend on the size of335

the underlying pristine particle Ppr, i.e., small particles tend to have less and shorter cracks,336

whereas large particles exhibit more and longer cracks. Therefore, we assume that the scale337

parameters λP, λW > 0 considered in Eq. (5) are given by338

λP = λP(cP, cdim) = cPν3
(
Ξ
(pr)
solid

)cdim , λW = λW(cW, cdim) = cWν3
(
Ξ
(pr)
solid

)1−cdim (6)

for some constants cP, cW > 0 and cdim ∈ [0, 1], where ν3 denotes the 3-dimensional Lebesgue339

measure, i.e., ν3
(
Ξ
(pr)
solid

)
is the volume of Ppr. This implies that the porosity340

p =
Eν3

(
Ξ
(θ2)
crack

)

ν3
(
Ξ
(pr)
solid

) ,

of the crack network model Pθ2 does not (or only slightly) depend on the volume ν3
(
Ξ
(pr)
solid

)
of341

the underlying pristine particle Ppr, which can be shown as follows. Since the random variables342

Ncracks, Nfacets,∆ are assumed to be independent, it holds that3343

p =
Eν3

(
Ξ
(θ2)
crack

)

ν3
(
Ξ
(pr)
solid

) ≈ αENcracksENfacetsE∆
ν3
(
Ξ
(pr)
solid

) =
αλPλW γkWE∆

ν3
(
Ξ
(pr)
solid

) , (7)

where α > 0 is the mean area of planar facets of the Laguerre tessellation describing the grain344

architecture of Ppr and γkW = Γ(1 + 1
kW

) with the Gamma function Γ: (0,∞) 7→ R+ given by345

Γ(x) =
∫∞
0 tz−1e−tdt. Thus, inserting Eq. (6) into Eq. (7), we get that346

p ≈ α cPν3
(
Ξ
(pr)
solid

)cdim cWν3
(
Ξ
(pr)
solid

)1−cdim γkWE∆

ν3
(
Ξ
(pr)
solid

)

= ν3
(
Ξ
(pr)
solid

) α cP cW γkWE∆
ν3
(
Ξ
(pr)
solid

) = α cP cW γkWE∆,

i.e., the porosity p of the crack network model Pθ2 does not (or only slightly) depend on the347

volume ν3
(
Ξ
(pr)
solid

)
of the underlying pristine particle Ppr.348

Finally, we remark that from now on, utilizing the representation of the scale parameters λP349

and λW introduced in Eq. (6), the following modified form of the parameter vector θ2 of Pθ2350

given in Eq. (5) will be used:351

θ2 = (cW, kW, kΓ, θΓ, cP, cdim) ∈ R5
+ × [0, 1]. (8)

3.5. Extended crack network model. Recall Section 2.3, where the set of experimentally352

measured 2D SEM images G was split into two classes, Gshort and Glong, containing particle cross353

sections showing either predominantly short or long cracks. Nevertheless, each crack network354

exhibited on these cross sections, still consists of both, (relatively) short as well as (relatively)355

long cracks, see Figure 2.356

This is the reason why the crack network model that was introduced in Section 3.4 turns out357

to be insufficiently flexible. Therefore, we extend this model by realizing it twice on the same358

pristine particle Ppr = (Ξ
(pr)
solid, ∅), with two different parameter vectors359

θ
(1)
2 = (c

(1)
W , k

(1)
W , k

(1)
Γ , θ

(1)
Γ , c

(1)
P , c

(1)
dim) and θ

(2)
2 = (c

(2)
W , k

(2)
W , k

(2)
Γ , θ

(2)
Γ , c

(2)
P , c

(2)
dim).

3Note that this approximation does not take the overlap of cracked facets into consideration.
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In this way we obtain two independently cracked particles360

P
θ
(1)
2

= (Ξ
(θ

(1)
2 )

solid ,Ξ
(θ

(1)
2 )

crack ) and P
θ
(2)
2

= (Ξ
(θ

(2)
2 )

solid ,Ξ
(θ

(2)
2 )

crack ),

which are used to get the extended crack network model Pθ = (Ξ
(θ)
solid,Ξ

(θ)
crack) with θ = (θ

(1)
2 , θ

(2)
2 ),361

exhibiting a sufficiently large variety of short and long cracks, where362

Ξ
(θ)
crack = Ξ

(θ
(1)
2 )

crack ∪ Ξ
(θ

(2)
2 )

crack and Ξ
(θ)
solid = Ξ

(pr)
solid \ Ξ

(θ)
crack. (9)

By visual inspection of the segmented SEM data, see Figure 2, it seems clear that short363

and long cracks exhibit similar thicknesses. This observation motivates a reduction of model364

parameters by setting kΓ = k
(1)
Γ = k

(2)
Γ and θΓ = θ

(1)
Γ = θ

(2)
Γ . Furthermore, we assume that the365

influence of the volume ν3
(
Ξ
(pr)
solid

)
of the underlying pristine particle Ppr on the distributions366

of the number and size of cracks is the same for short and long cracks, i.e., we assume that367

c
(1)
dim = c

(2)
dim = cdim. Thus, the number of model parameters is reduced from 12 to 9, leading to368

the parameter vector369

θ = (c
(1)
W , k

(1)
W , c

(1)
P , c

(2)
W , k

(2)
W , c

(2)
P , kΓ, θΓ, cdim) ∈ R8

+ × [0, 1] (10)

of the extended crack network model, where c
(i)
W , k

(i)
W control the length, c

(i)
P the number and370

kΓ, θΓ the thickness of cracks for i ∈ {1, 2}, whereas cdim controls the influence of the volume371

ν3
(
Ξ
(pr)
solid

)
of Ppr on the distributions of the number and size of cracks.372

It is important to note that the crack network model as well as the extended crack network373

model inherit isotropy from the single crack model.374

4. Model calibration375

The calibration of the extended crack network model proposed in Section 3.5 is organized376

as follows. First, in Section 4.1, we formulate a minimization problem to determine optimal377

values of the parameter vector θ given in Eq. (10). For this, in Section 4.2, three different378

geometric descriptors of image data are introduced. These geometric descriptors are used in379

Section 4.3 to define a loss function, which measures the discrepancy between experimentally380

imaged particle cross sections and those drawn from the crack network model. Finally, in Section381

4.4, a numerical method is described for solving the minimization problem stated in Section 4.1.382

4.1. Minimization problem. The extended crack network model parameters introduced in383

Section 3.5 are separately fitted to both partitions, Gshort and Glong, of the experimental data set384

G considered in Section 2.3. Thus, the optimization of the parameter vector θ given in Eq. (10)385

is performed twice, for Gshort and Glong, where the discrepancy between geometric descriptors386

of experimental image data and simulated image data drawn from the extended crack network387

model is minimized. Figures 4 and 5 illustrate cross section realizations of virtual particles388

drawn from the extended crack network model fitted to Gshort and Glong, respectively, alongside389

experimentally imaged cross sections.390

Furthermore, it is important to note that the crack network morphology may significantly391

vary across different cross-section sizes, see Figure 1. To avoid systematic errors arising from392

comparing experimental and simulated cross sections of different sizes, we introduce several393

cross-section size classes. Thus, experimental and simulated cross-sections are only compared394

if they are approximately of the same size. More specifically, a simulated particle cross-section395

is compared to the average of all experimental cross-sections in the same size class.396
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Figure 4. Particle cross sections across various size classes, drawn from the
extended crack network model calibrated to Gshort (top row) and corresponding
representatives of Gshort (bottom row). The cross sections were scaled to the same
size, while their actual sizes are indicated by their area-equivalent diameters.
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Figure 5. Particle cross sections across various size classes, drawn from the
extended crack network model calibrated to Glong (top row) and corresponding
representatives of Glong (bottom row). The cross sections were scaled to the same
size, while their actual sizes are indicated by their area-equivalent diameters.

For the sake of simplicity, we will use the following abbreviating notation, writing G instead of397

Gshort and Glong. Furthermore, for each d > 0, let G
∣∣
d
be the restriction of G to all particle cross398

sections Pex whose area-equivalent diameter aed(Pex) belongs to the intervalBℓ(d) = [jℓ, (j+1)ℓ)399

with given length ℓ > 0, where the integer j ∈ N ∪ {0} is chosen such that d ∈ [jℓ, (j + 1)ℓ). It400

turned out that an interval length of ℓ ≈ 1.29 µm balances a reasonable number of experimental401

cross sections in each bin and, simultaneously, preserves a sufficiently fine subdivision of the402

entire dataset G, where this subdivision results into 11 size intervals [0, ℓ), . . . [10ℓ, 11ℓ), with403

11ℓ ≈ 14.1 µm.4 However, since the stochastic 3D model for pristine NMC particles, described404

in Section 3.1, has been calibrated to 3D nano-CT data [50], it happens that for some randomly405

oriented planes E ⊂ R2, the cross sections Pθ∩E of 3D particles drawn from the extended crack406

network model Pθ are larger than the ones observed in the dataset G, which were measured by407

the 2D SEM technique. Thus, if the area-equivalent diameter of Pθ∩E is larger than 11ℓ, which408

4The interval length of ℓ ≈ 1.29µm corresponds to approximately 90 pixels of the experimental data.
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is the upper bound of the largest size class Bℓ(10) of the experimental data set G (for both cases409

G = Gshort and G = Glong), then Pθ ∩ E is not considered in the minimization procedure.410

This leads to the minimization problem411

θ̂ = argmin
θ∈R8

+×[0,1]

EL
(
Pθ ∩ E,G

∣∣
aed(Pθ∩E)

)
, (11)

where the expectation in Eq. (11) extends over cross sections Pθ∩E such that aed(Pθ∩E) ≤ 11ℓ,412

and L(·, ·) is some loss function, which measures the discrepancy between the cross section Pθ∩E413

of the extended crack network model Pθ and particle cross sections belonging to the restriction414

G
∣∣
aed(Pθ∩E)

of G.415

4.2. Geometric descriptors of 2D image data. In this section, three different geometric416

descriptors of 2D image data are considered: the two-point coverage probability function, the417

crack-size distribution and the distance-to-background distribution. They will be determined418

on (measured and simulated) particle cross sections, denoted by P = (Ξsolid,Ξcrack), where419

Ξsolid,Ξcrack ⊂ R2. Furthermore, these descriptors will be employed in Section 4.3 to determine420

the loss function considered in Eq. (11).421

Since the extended crack model is isotropic, we did not consider structural descriptors of422

generated crack networks that could take directional dependencies into account.423

Two-point coverage probability. For each h ∈ [0, hmax], where hmax > 0 is some maxi-424

mum distance, the so-called the two-point coverage probability, denoted by probΞ(h), is the425

probability that two randomly chosen points x1, x2 ∈ Ξsolid ∪ Ξcrack of distance h belong to426

the particle phase Ξ ∈ {Ξsolid,Ξcrack}. This probability will be estimated by the number of427

pixel pairs x1, x2 ∈ Ξ ∩ Z2
ρ separated by distance h, divided by the total number of pixel pairs428

x1, x2 ∈ (Ξsolid ∪ Ξcrack) ∩ Z2
ρ of distance h, i.e.,429

probΞ(h) ≈
#{x1, x2 ∈ Ξ ∩ Z2

ρ : |x1 − x2| = h}
#{x1, x2 ∈ (Ξsolid ∪ Ξcrack) ∩ Z2

ρ : |x1 − x2| = h} ,

where | · | denotes the Euclidean norm in R2, see e.g., [67] for further details.430

For the data considered in the present paper, the two-point coverage probabilities probΞsolid
(h)431

and probΞcrack
(h) are estimated for all possible distances h ∈ [0, hmax] on the pixel grid, where432

hmax ≈ 850 nm, because it turned out that the values obtained for probΞsolid
(h) and probΞcrack

(h)433

are typically constant for h > 850 nm. These probabilities are then interpolated utilizing cubic434

splines and evaluated for 30 equidistant values of h, corresponding to a step size of approximately435

28 nm, which leads to the vectors of relative frequencies436

probsolid(P ) =
(
probΞsolid

(h0), probΞsolid
(h1), . . . ,probΞsolid

(h29)
)
∈ [0, 1]30 (12)

and437

probcrack(P ) =
(
probΞcrack,

(h0), probΞcrack,
(h1), . . . ,probΞcrack

(h29)
)
∈ [0, 1]30, (13)

where hi = i hmax/29 for i = 0, 1, . . . , 29.438

Crack-size distribution. The probability distribution of the size of a randomly chosen crack439

within a particle cross section P = (Ξsolid,Ξcrack) will also be incorporated into the loss function440

introduced in Eq. (11). Formally, a crack is considered to be a connected component of the441

crack phase Ξcrack, where the crack size will be represented by the area-equivalent diameter of442

the crack.443
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Recall that aed(ξ) denotes the area-equivalent diameter of a set ξ ⊂ R2. Furthermore, let444

ξ1, . . . , ξn ⊂ Ξcrack denote the connected components of the crack phase Ξcrack. The probability445

density of the random crack size will then be estimated by a histogram with some bin width446

w > 0, which is given by the relative frequencies447

probsize(k) =
#
{
ξ ∈ {ξ1, . . . , ξn} : aed(ξ) ∈ [kw, (k + 1)w)

}

n

for k = 0, 1, . . . , 49, where we put w = 50nm. Altogether, this leads to the vector of relative448

frequencies probsize(P ) =
(
probsize(0),probsize(1), . . . ,probsize(49)

)
∈ [0, 1]50.449

Distance-to-background distribution. Consider a randomly chosen point X ∈ Ξcrack within450

the crack phase Ξcrack of a particle cross section P = (Ξsolid,Ξcrack), and the random (minimum)451

distance D from X to the background R2 \ (Ξsolid ∪ Ξcrack) surrounding P , i.e.,452

D = min{|X − y| : y ∈ R2 \ (Ξsolid ∪ Ξcrack)}.
The probability distribution of the random variable D will be taken into account as a third453

component in the loss function introduced in Eq. (11). Like for the crack sizes considered454

above, the probability density of D will be estimated by a histogram with some bin width455

w > 0, which is specified by the relative frequencies456

probdist(k) =
#{x ∈ Ξcrack ∩ Z2

ρ : min{|x− y| : y ∈ R2 \ (Ξsolid ∪ Ξcrack)} ∈ [kw, (k + 1)w)}
#Ξcrack ∩ Z2

ρ

for k = 0, 1, . . . , 119, where we put w = 50nm. In summary, we obtain the vector of relative457

frequencies probdist(P ) =
(
probdist(0),probdist(1), . . . ,probdist(119)

)
∈ [0, 1]120.458

4.3. Loss function. We now specify the loss function L(· , ·) considered in Eq. (11), utilizing459

the geometric particle descriptors stated in Section 4.2. Recall that the purpose of the loss460

function is to measure the discrepancy between experimentally imaged particle cross sections461

and those drawn from the extended crack network model stated in Section 3.5. In particular,462

the loss function will be utilized in Section 4.4 to solve the minimization problem introduced in463

Eq. (11).464

Let G denote some set of experimentally imaged particle cross sections, e.g. G = Gshort.465

Furthermore, let466

probsolid(G) =
1

#G
∑

P=(Ξsolid,Ξcrack)∈G

probsolid(P ).

be the componentwise average of the vector of relative frequencies given in Eq. (12). The aver-467

ages probcrack(G), probsize(G) and probdist(G) for the two-point coverage probability of the crack468

phase, crack-size distribution and distance-to-background distribution are defined analogously.469

The loss function considered in Eq. (11) is then given by470

L
(
Pθ ∩ E,G

∣∣
aed(Pθ)

)
= error

(
probcrack(Pθ ∩ E),probcrack

(
G
∣∣
aed(Pθ∩E)

))

+ error
(
probsolid(Pθ ∩ E),probsolid

(
G
∣∣
aed(Pθ∩E)

))

+ error
(
probsize(Pθ ∩ E), probsize

(
G
∣∣
aed(Pθ∩E)

))

+ error
(
probdist(Pθ ∩ E),probdist

(
G
∣∣
aed(Pθ∩E)

))
,
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where error(·, ·) is an error function which quantifies the discrepancy between a random cross471

section Pθ∩E of the extended crack network model Pθ, and the set G
∣∣
aed(Pθ∩E)

of experimentally472

imaged cross sections. More precisely, we consider the truncated mean absolute error473

error(x, y) =
1

n+

n+∑

i=1

|xi − yi| (14)

for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, where n+ ≤ n is the smallest integer j ∈ {1, . . . , n}474

such that xi = yi = 0 for all i ∈ {j + 1, . . . , n}.475

Note that truncating the sum in Eq. (14) at n+ ≤ n is motivated by the fact that the476

components of the vectors of relative frequencies considered in Section 4.2 are equal to zero from477

a certain index. For the two-point coverage probabilities probsolid(·) and probcrack(·) occurring478

in Eqs. (12) and (13), respectively, this happens when the size of the particle cross section is479

smaller than hmax ≈ 850 nm. Furthermore, for probsize(·) and probdist(·), some cross sections480

may contain only features smaller than a certain threshold. Truncating the sum in Eq. (14)481

ensures that the sum of absolute values of the right-hand side of Eq. (14) is normalized with the482

actual number of non-zero components of both vectors x, y ∈ Rn. Thus, this approach prevents483

that the error considered in Eq. (14) is not appropriately weighted, which could occur if many484

components of x, y ∈ Rn are equal to zero.485

4.4. Numerical solution of the minimization problem. For solving the minimization486

problem stated in Eq. (11), a Nelder-Mead approach [69] is utilized, where a Monte Carlo487

simulation technique [70] is employed in each iteration step of the Nelder-Mead algorithm to488

approximate the expected value of the loss L
(
Pθ ∩ E,G

∣∣
aed(Pθ)

)
.489

This process involves averaging over numerous cross sections P
(i)
θ ∩ E(i), where P

(i)
θ is a490

realization of the extended crack network model Pθ, and E(i) is a realization of the randomly491

orientated plane E ⊂ R3 for each i = 1, . . . , n and some integer n ∈ N. Recall that Pθ is492

an isotropic model, i.e., the realizations of Pθ exhibit a statistically similar behavior in each493

direction. Thus, it would be sufficient, to intersect each realization P
(i)
θ of Pθ with a single plane494

Ex,v ⊂ R3, where Ex,v denotes a plane that is orthogonal to the x-axis and has a certain distance495

v > 0 from the origin o ∈ R3. However, to keep the computational effort low and, simultaneously,496

increase the robustness of averaging, each realization P
(i)
θ is intersected at multiple distances497

along the x-, y- and z- axis, respectively. Furthermore, to avoid interpolations of the pixelized498

image data, cross sections are only taken at integer heights along the coordinate axes.499

First, 100 pristine particles are drawn from the stochastic 3D model for polycrystalline NMC500

particles, which has been described in Section 3.1. Then, in each iteration step of the Nelder-501

Mead minimization algorithm, 32 out of these 100 particles, denoted by P
(i)
pr = (Ξ

(pr,i)
solid , ∅) for502

i = 1, . . . , 32, are chosen with a probability proportional to their volume-equivalent diameter.503

Note that this selection method corresponds to the probability of intersecting a particle by a504

randomly chosen plane, as this is done in 2D SEM imaging [71].505

Each pristine particle P
(i)
pr serves as input for generating a realization of the extended crack506

network model Pθ, which results in 32 realizations of Pθ, denoted by P
(i)
θ = (Ξ

(θ,i)
solid,Ξ

(θ,i)
crack) for507

i = 1, . . . , 32. Additionally, for each realization P
(i)
θ , multiple cross sections are generated by508

intersecting each simulated particle P
(i)
θ at 10%, 20%, . . . , 90% of its size along the x-,y- and509

z-axis, respectively. This yields 32 realizations of Pθ, each sliced at 9 positions along 3 axes,510

which finally results into 32× 9× 3 = 864 cross sections per iteration step.511
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More formally, for each simulated particle P
(i)
θ , we assume without loss of generality that it512

is located in the positive octant R3
+ = [0,∞)3 ⊂ R3 and touches the xy-plane, xz-plane and513

yz-plane. Furthermore, let diamx(P
(i)
θ ) denote the Feret diameter of P

(i)
θ [72] along the x-axis,514

which is given by515

diamx(P
(i)
θ ) = max

{
v > 0:

(
Ξ
(θ,i)
solid ∪ Ξ

(θ,i)
crack

)
∩ Ex,v ̸= ∅

}
, (15)

i.e., diamx(P
(i)
θ ) describes the size of P

(i)
θ in x-direction. Analogously, the Feret diameters of516

P
(i)
θ ) along the y- and z- axis will be denoted by diamy(P

(i)
θ ) and diamz(P

(i)
θ ), where the plane517

Ex,v on the right-hand side of Eq. (15) is replaced by planes Ey,v and Ez,v ∈ R3 that are518

orthogonal to the y- and z-axis, respectively, and have the distance v > 0 to the origin.519

Then, the expected loss EL
(
Pθ ∩E,G

∣∣
aed(Pθ)

)
, occurring in Eq. (11), is numerically approx-520

imated by521

EL
(
Pθ ∩ E,G

∣∣
aed(Pθ∩E)

)
≈ 1

864

32∑

i=1

∑

a∈{x,y,z}

9∑

j=1

L
(
P

(i)
θ ∩ E(a, j, P

(i)
θ ),G

∣∣
aed

(
P

(i)
θ ∩E(a,j,P

(i)
θ ),

)
)

where E(a, j, P ) = Ea,round(j/10·diama(P )) and round(·) denotes rounding to the closest integer,522

as defined in Eq. (3).523

Thus, in summary, to find the optimal parameter vector θ̂ which solves the minimization524

problem given in Eq. (11), in each iteration step of the Nelder-Mead algorithm we choose 32525

pristine particles out of a pool of 100 realizations of the stochastic 3D model described in526

Section 3.1. These selected particles serve as input for the extended crack network model Pθ,527

where the expected loss is approximated by averaging over 864 cross sections.528

Recall that the optimization procedure described above was separately applied to both data529

sets, Gshort and Glong, resulting in two calibrated models which generate particles exhibiting530

predominately short or long cracks. In the following, we will refer to the extended crack network531

model calibrated to Gshort and Glong as P
θ̂
short

and P
θ̂
long

, where samples drawn from these two532

models are called short- and long-cracked particles, respectively.533

5. Results and discussion534

In this section we first show how the extended crack network model P
θ̂
can be validated, the535

calibration of which to experimental data has been explained in Section 4. For this, further536

geometric descriptors of 2D morphologies will be introduced in Section 5.1, which have not537

been used for model calibration. Then, similarly to the model calibration approach considered538

in Section 4, the distributions of these descriptors will be determined in Section 5.2 for simulated539

2D cross sections, drawn from P
θ̂
, and compared to those computed for experimental 2D SEM540

data. Moreover, in Section 5.3, two transport-relevant particle descriptors are presented, which541

influence the performance of Li-ion batteries, but can only be determined adequately if 3D data542

is available. In Section 5.4, the distributions of these transport-relevant descriptors, namely the543

relative shortest path length of Li transport in active material, as well as the relative specific544

surface area of active material, are analyzed for simulated (pristine and cracked) 3D particles.545

5.1. Additional geometric descriptors of 2D morphologies. For validating the goodness546

of model fit, six further descriptors of 2D morphologies are taken into account to compare planar547

cross-sections of the extended crack network model P
θ̂
to experimentally measured 2D SEM548

images described in Section 2. It is important to emphasize that the descriptors considered in the549

present section are not used during the calibration process explained in Section 4. Furthermore,550
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note that these descriptors are defined for planar particle cross-sections P = (Ξsolid,Ξcrack),551

with Ξsolid,Ξcrack ⊂ R2, which are either the continuous representation of an experimentally552

measured particle cross-section, or derived by intersecting a simulated cracked 3D particle,553

drawn from P
θ̂
, with a randomly oriented plane E ⊂ R3.554

Porosity. One of the most fundamental geometric descriptors of porous 2D morphologies is555

their porosity. In the case of a planar particle cross sections P = (Ξsolid,Ξcrack), the porosity556

p ∈ [0, 1] can be given by557

p =
ν2(Ξcrack)

ν2(Ξsolid ∪ Ξcrack)
,

see also Eq.(7) in Section 3.4, where the porosity was assumed to be independent of the particle558

size. However, recall that the porosity was not used in Section 4 for calibrating the extended559

crack network model P
θ̂
to experimental data. In Section 5.2 we determine the (empirical) dis-560

tribution of p for simulated 2D cross sections, drawn from P
θ̂
, and compare it to that computed561

for experimental 2D SEM data.562

Chord length. Let v ∈ {x ∈ R2 : |x| = 1} be some predefined direction in R2. Then,563

chords within the solid phase Ξsolid can be obtained by intersecting Ξsolid with (parallel) lines in564

direction v. In general, this intersection results in multiple line segments, which are referred to565

as chords, see Figure 6a for chords in y-direction, i.e., v = (0, 1). The probability distribution566

of the lengths of these line segments is called chord length distribution. Under the assumption567

of isotropy, the chord length distribution does not depend on the chosen direction v, see [67] for568

formal definitions.569

For 2D SEM data the chord length distribution was estimated by considering chords in x- and570

y-direction. However, for simulated 3D particles, drawn from P
θ̂
, chords along the z-direction571

were additionally taken into account, which increases robustness of the estimation. For the572

computation of chord lengths, the python package PoreSpy [73] was used.573

Local entropy. The mean local entropy of a particle cross section P = (Ξsolid,Ξcrack) is a574

measure for the local heterogeneity of P . It can be defined in the by the following: First, assign575

each point x = (x1, x2) ∈ Ξsolid ∪ Ξcrack ⊂ R2 its local entropy576

E(x) = −
∑

Ξ∈{Ξsolid,Ξcrack}

εΞ(x) log2
(
εΞ(x)

)

where εΞ(x) ∈ [0, 1] denotes the local volume fraction of phase Ξ ∈ {Ξsolid,Ξcrack}, Note that577

εΞ(x) is determined by means of the 15 × 15 neighborhood K15(x) ⊂ R2 centered iat x ∈578

Ξsolid ∪ Ξcrack, and formally given by579

εΞ(x) =
ν2
(
Ξ ∩K15(x)

)

ν2
(
Ξsolid ∪ Ξcrack ∩K15(x)

) , (16)

where K15(x) = {y = (y1, y2) ∈ R2 : |x − y| ≤ 15} with |x − y| = |x1 − y1| + |x2 − y2|, being580

the so-called Manhattan metric. Then, the mean local entropy of the particle cross section581

P = (Ξsolid,Ξcrack) is given by582

E(P ) =
1

ν2(Ξsolid ∪ Ξcrack)

∫

Ξsolid,Ξcrack

E(x) dx , (17)

i.e., by averaging the local entropy E(x) over all x ∈ Ξsolid∪Ξcrack belonging either to the crack583

or solid phase.584
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K̇3

Figure 6. Geometric descriptors of 2D morphologies, including chord lengths
(a) and local entropy (b) of an elongated particle, as well as the number of
branching points within a magnified region (c) of a skeletonized crack network
(d), along with the number and length of crack segments (e) in another, more
spherical particle. Note that for illustrative purposes, the skeletons in (d) and
(e) are dilated and the grain boundaries in (b), (d) and (e) are indicated.

In Section 5.2, the distribution of the mean local entropy E(P ) given in Eq. (17) will be585

estimated for 2D image data and, therefore, the local entropy εΞ(x) introduced in (16) will586

be determined pixelwise. However, note that the latter quantity is highly sensitive to changes587

of resolution, because a finer resolution corresponds to a kernel K15 containing more pixels to588

cover a predefined area, potentially resulting in a higher local heterogeneity. Therefore, the589

experimental 2D SEM data were downsampled to match the (coarser) resolution of the virtual590

pristine particles drawn from the stochastic 3D model, as described in Section 3.1. Figure 6b591

illustrates a visual impression of local entropy computed on pixelized image data.592

Number of branching points. To investigate the branching behavior of the crack phase Ξcrack593

of a particle cross section P = (Ξsolid,Ξcrack), we consider its skeleton, denoted by S(P ), see594

also Section 2.3. Recall that in Section 2.3, each connected component of the crack phase has595

been represented by its center line, called skeleton segment and denoted by S ∈ S(P ), where the596

family of all skeleton segments forms the skeleton. In the following, for each skeleton segment597

S ∈ S(P ), we say that x ∈ S is a branching point if there are at least three points y1, y2, y3 ∈ S598

such that |x− yi| = ε, where the set ε > 0 is a sufficient small distance.599

To estimate the distribution of the number of branching points from pixelized image data,600

for any S ∈ S(P ) and x ∈ S∩Z2
ρ, let K̇3(x) = (K3(x)∩Z2

ρ)\{x} denote the 3×3 neighborhood601

of x on the grid Z2
ρ, excluding the point x itself. A point x ∈ S ∩ Z2

ρ is considered a branching602

point if #(S ∩ K̇3(x)) ≥ 3, see Figure 6c, where K̇3(x) is visualized in blue color.603

The python package PlantCV has been used [74] to compute skeleton segments and branching604

points.605
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Figure 7. Exemplary clipped 3D renderings of virtually generated cracked
NMC particles, drawn from the extended crack network model. Cracks are indi-
cated in red color, whereas individual grains are visualized in randomly chosen
shades of blue. The top row, shows particles drawn from the extended crack
model calibrated to Gshort, whereas the bottom row corresponds to Glong. The
left column features a particle with a volume-equivalent diameter of ≈ 4.6 µm,
while the right column shows one of ≈ 12.5 µm.

Number and length of crack segments. By removing the branching points from a skeleton606

segment S ⊂ S(P ), we obtain various connected components of S which we refer to as crack607

segments, see Figure 6e, where crack segments are indicated in different colors. Furthermore,608

for validation of the fitted extended crack network model P
θ̂
, we determine the distributions609

of the number and length of crack segments for simulated 2D cross sections, drawn from P
θ̂
,610

and compare them to those computed for experimental 2D SEM data. Note that the notion of611

crack segment length introduced in this section is different from that of crack size, which was612

considered in Sections 4.2 to 4.4 for model fitting.613

5.2. Model validation. To validate the extended crack network model, which has been cali-614

brated to experimental image data in Sections 4.2 to 4.4, the probability densities of the geo-615

metric descriptors stated in Section 5.1 are estimated using particle cross sections of 200 model616

realizations drawn from each of the extended crack models P
θ̂
short

and P
θ̂
long

. For a visual617

impression of realizations of the fitted model, we refer to Figure 7, which presents clipped 3D618

renderings of virtually generated cracked NMC particles. To ensure comparability, only 2D cross619

sections of the 3D realizations have been taken into account, which are extracted, similarly as620

described in Section 4.4, at 10%, 20%, . . . , 90% of the particle size along x-,y- and z-direction,621

resulting into 9 · 3 · 200 = 5400 cross sections for both crack scenarios. For each of these cross622

sections, thee porosity, mean local entropy, number of branching points, as well as the number623

and length of crack segments are determined. Their probability densities, along with those624

derived from experimental 2D SEM data, have been computed via kernel density estimation,625

see Figure 8.626
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Figure 8. Probability densities of porosity, chord lengths, mean local entropy
(top row), number of branching points, number and length of crack segments
(bottom row). Blue areas indicate densities computed from SEM data, whereas
orange areas correspond to densities for planar cross sections of 3D realizations
of the extended crack network model. Within each subplot, the left column
corresponds to the data set Gshort, and the right column to Glong. The horizontal
dashed lines indicate the mean values of the respective descriptors.

When comparing the probability densities shown in Figure 8, derived for each case from simu-627

lated and experimental data, respectively, it becomes clearly visible that these pairs of densities628

exhibit similar shapes, indicating a suitable choice of model type and a quite good fit of model629

parameters, for both data sets Gshort and Glong. Even in cases where these pairs of probability630

densities are slightly different from each other, like the densities of the porosity of short-cracked631

particles (top row, left part, left pair of densities), their mean values, represented by horizontal632

dashed lines, fit very well. On the other hand, for example, the porosity distribution of long-633

cracked particles (top row, left part, right pair of densities) exhibits a slightly larger deviation634

of its mean value with respect to the corresponding mean value derived from simulated data.635

Nevertheless, qualitatively, the overall shapes of the probability densities match quite well in636

all cases.637

In summary, the probability densities derived from simulated and experimentally measured638

image data show a high degree of agreement, indicating that the crack networks observed in 2D639

SEM data are accurately represented by the stochastic 3D model introduced in Section 3.640

5.3. Transport-relevant particle descriptors in 3D. In this section, two geometric particle641

descriptors are considered, which influence the performance of Li-ion batteries, but can only be642

determined adequately if 3D image data is available. However, in general, the acquisition of 3D643

data by tomographic imaging is expensive in terms of time and costs. Therefore, in the present644

paper, these descriptors are estimated by means of a stochastic 3D model, i.e., from realizations645

of the extended crack network model Pθ, which has been introduced in Section 3 and calibrated646

by means of 2D image data in Section 4.647
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Thus, in the following, we consider a cracked particle P = (Ξsolid,Ξcrack), where Ξsolid,Ξcrack ⊂648

R3, drawn from the extended crack network model Pθ, and we consider its pristine counterpart649

Ppr = (Ξ
(pr)
solid, ∅) with Ξ

(pr)
solid = Ξsolid ∪ Ξcrack ⊂ R3, which serves as input for Pθ. Furthermore,650

by ΞBG = R3 \ Ξ(pr)
solid we denote the background of both particles, Ppr and P .651

In particular, relative shortest path lengths from active material of P to electrolyte (located652

in cracks and/or background) are considered. Note that this is an important particle descriptor,653

since during delithiation, lithium ions migrate from the active material to the surface of the654

particle, where deintercalation occurs. Moreover, we investigate the specific surface area of655

particles, showing how it is affected by cracking. Clearly, this is also a transport-relevant656

particle descriptor, because it characterizes the intercalating surface of a particle.657

Relative shortest path lengths. The paths from randomly chosen locations within the active658

material to electrolyte are analyzed to investigate the transport of Li during delithiation. First,659

the case is considered that particles are embedded in liquid electrolyte, where open porosity660

cracks are filled with electrolyte and transport path lengths may decrease. Furthermore, to661

demonstrate that the extended crack network model Pθ introduced in Section 3 is not limited662

to Li-ion batteries with liquid electrolyte, the case of solid electrolyte is considered to mimic663

the behavior of all-solid-state batteries. Then, contrary to batteries with liquid electrolyte,664

cracks caused by cycling are not penetrated with electrolyte. Thus, cracks can be considered as665

obstacles to ion transport, which may increase transport path lengths.666

A powerful tool to analyze transport paths within a given phase of a two-phase material is the667

so-called geodesic tortuosity. It is a purely geometric descriptor, see e.g. [75], which is usually668

estimated on image data by considering two parallel planes in R3, the starting plane and the669

target plane, denoted by ES and ET in the following. Then, for each x ∈ ES, the length of the670

shortest path to the target plane ET within the transport phase is determined and normalized671

by the distance between the planes ES and ET. For estimating the geodesic tortuosity in the672

formal framework of random closed sets, we refer to [76]. In the present paper, the concept of673

geodesic tortuosity is generalized by considering arbitrary starting and target sets HS, HT ⊂ R3
674

such that HS ∩HT = ∅.675

To investigate delithiation in the case of liquid electrolyte (LE), the shortest paths from676

active material to electrolyte are determined by means of simulated 3D image data. For this,677

the starting and target sets HS, HT are discretized, where HS = Ξsolid and HT = Ξcrack ∪ ΞBG.678

Note that the union Ξcrack∪ΞBG of cracks and background forms the continuous representation679

of the target set, since cracks are filled with liquid electrolyte. On the other hand, to mimic680

the behavior of so-called all-solid-state batteries with solid electrolyte (SE), where cracks serve681

as obstacle, the starting and target sets are given by HS = Ξsolid and HT = ΞBG. In Figure 9,682

examples of shortest paths are shown for the cases of liquid and solid electrolyte, alongside with683

shortest paths in the corresponding pristine (i.e. non-cracked) particle.684

For each x ∈ HS, the length of the shortest path within the active material from x ∈ HS to685

the target set HT is determined, where the transport phase is given by the set Ξ = Ξsolid for686

a cracked particle, and by Ξ = Ξ
(pr)
solid = Ξsolid ∪ Ξcrack for the corresponding pristine particle.687

To compute these shortest path lengths, denoted by γΞ(x,HT), Dijkstra’s algorithm [77] was688

utilized, as implemented in the python package dijkstra3D.689

Moreover, to investigate how cracking affects the shortest path lengths, we consider relative690

shortest path lengths, denoted by τLE(x, P ) for liquid electrolyte and by τSE(x, P ) for solid691

electrolyte. These quantities are determined by normalizing the shortest path length γΞ(x,HT),692

from x ∈ HS to the target set HT within the transport phase Ξ = Ξsolid of a cracked particle, by693
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the length of the corresponding shortest path within the solid phase Ξ
(pr)
solid of the pristine particle694

Ppr. Note that the shortest path within the pristine particle represents the shortest path from695

the x ∈ HS to the electrolyte before the particle is cracked. Thus, formally, the relative shortest696

path lengths τLE(x, P ) and τSE(x, P ) for liquid and solid electrolyte, respectively, are as follows:697

τLE(x, P ) =
γΞsolid

(
x,Ξcrack ∪ ΞBG

)

γ
Ξ
(pr)
solid

(
x,ΞBG

) , τSE(x, P ) =
γΞsolid

(
x,ΞBG

)

γ
Ξ
(pr)
solid

(
x,ΞBG

) (18)

for each x ∈ HS = Ξsolid, where Ξ
(pr)
solid = Ξsolid ∪ Ξcrack.698

From Eq. (18) we get that τLE(x, P ) ≤ 1 and τSE(x, P ) ≥ 1 for each x ∈ HS = Ξsolid. This699

indicates a decrease of shortest path lengths caused by cracking in the case of liquid electrolyte,700

and an increase for solid electrolyte, as expected.701

Color Scenario Starting set Transport phase Target set

Pristine

particle
Ξsolid Ξsolid ∪ Ξcrack ΞBG

Liquid

electrolyte
Ξsolid Ξsolid ΞBG ∪ Ξcrack

Solid

electrolyte
Ξsolid Ξsolid ΞBG

Figure 9. Shortest paths from active material (grey) to electrolyte, avoiding
cracks (black); for a cracked particle embedded in liquid (purple) and solid (blue)
electrolyte, respectively, and for the corresponding pristine particle (orange).

Finally, we consider the mean relative shortest path lengths τLE(P ) and τSE(P ), which are de-702

termined by averaging the relative shortest path lengths τLE(x, P ) and τSE(P ) given in Eq. (18)703

over all x ∈ Ξsolid. The concept of relative shortest path lengths is visualized in Figure 10 for704

both kinds of (liquid and solid) electrolyte.705

Relative specific surface area. Another descriptor related to effective properties of a particle706

P = (Ξsolid,Ξcrack) is its specific surface area σ(P ). It indicates its surface area per unit volume707

and is formally given by708

σ(P ) =
H2

(
∂Ξsolid

)

ν3
(
Ξsolid

) ,

where H2( · ) denotes the 2-dimensional Hausdorff measure, ν3( · ) the 3-dimensional Lebesgue709

measure and ∂Ξ the boundary of a set Ξ. Note that H2( · ) measures the area of a 2-dimensional710

manifold and ν3( · ) the volume of a 3-dimensional set. Recall that in the present paper model711

realizations are voxelized data. Therefore, the surface area of Ξsolid is estimated using the712

algorithm presented in [78] and the volume by counting voxels associated with Ξsolid.713

To investigate the change of the specific surface area caused by cracking, the relative specific714

surface area, given by715

σrel(P ) =
σ(P )

σ(Ppr)
,



24 RECONSTRUCTION OF CRACKED POLYCRYSTALLINE NMC PARTICLES

is considered, where Ppr denotes the underlying pristine particle corresponding to P . Note that716

the relative specific surface area σrel(P ) of P quantifies the increase of surface area per unit717

volume due to cracking. In particular, σrel(P ) = 1 indicates no change, while larger values of718

σrel(P ) represent an increase in specific surface area caused by cracking. For example, σrel(P ) =719

2 indicates a doubling of the specific surface area. Notably, in a real Li-ion battery system, the720

increase in specific surface area due to cracking is only beneficial for liquid electrolyte systems.721

Additionally, the relative activity of newly exposed surfaces to electrochemical reactions will722

depend on the availability of an electron at the surface between the electrolyte and active723

material phase, which is not considered in the present work.724

relative path lengths τLE

in liquid electrolyte
relative path lengths τSE

in solid electrolyte

Figure 10. Relative shortest path lengths τLE(x, P ) and τSE(x, P ) for liquid
(left) and solid electrolyte (right). Note that white indicates electrolyte, while
bright yellow (right) indicate obstacles, formed by cracks. Additionally, gray
within the particles corresponds to relative path lengths equal to one, indicating
no change in the shortest path length due to cracking.

5.4. Structural analysis of simulated 3D particles. We now deploy the stochastic 3D725

model P
θ̂
of cracked particles that has been calibrated by means of 2D data to investigate the726

transport-relevant descriptors stated in Section 5.3 for simulated 3D particles drawn fromP
θ̂
.727

In particular, we investigate the probability distributions of the (relative) specific surface area728

and the mean relative shortest path length (for solid and liquid electrolyte) associated with729

the stochastic 3D model P
θ̂
. More precisely, we will provide a detailed discussion of the cor-730

responding probability densities of these descriptors, separately for the stochastic 3D model731

P
θ̂
short

calibrated to the data set Gshort, and for P
θ̂
long

calibrated to Glong.732

First, we draw 200 realizations from P
θ̂
short

which we denote by P (i) for i = 1, . . . , 200. By733

computing the transport-relevant descriptors introduced in Section 5.3 for these realizations,734

we obtain four sample data sets, denoted by {τLE(P (i))}200i=1, {τSE(P (i))}200i=1, {σ(P (i))}200i=1 and735

{σrel(P (i))}200i=1. Then, by means of kernel density estimation on each of these four sets, we get736

probability densities of the corresponding transport-relevant particle descriptors, see the blue737

plots in Figures 11 and 12. Furthermore, the same procedure was applied to 200 realizations738

drawn from P
θ̂
long

to determine probability densities of the particle descriptors introduced in739

Section 5.3, see the green plots in Figures 11 and 12.740
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Figure 11. Probability densities of mean relative shortest path lengths τLE(P )
and τSE(P ) for liquid (left) and solid electrolyte (right). Each subfigure shows
two probability densities, where the green (left) areas correspond to the proba-
bility densities computed from short-cracked particles and the blue (right) areas
indicate the probability densities derived from long-cracked particles.

Note that the transport-relevant particle descriptors introduced in Section 5.3, with the741

exception of the specific surface area σ(P ), are computed by comparing descriptors of simulated742

cracked particles with those of the underlying pristine counterparts. Consequently, for pristine743

particles the mean relative shortest path length as well as the relative specific surface area744

are deterministic (i.e. non-random) quantities, being equal to 1. Therefore, when considering745

probability distributions of relative transport-relevant descriptors, only the specific surface area746

of pristine particles, see Figure 12 (left, purple), is of further interest.747

The comparison of the probability densities shown in Figures 11 and 12 provides us with748

quantitative insight into the transport behavior of cracked 3D particles, even though initially749

only 2D data was available. For example, an intuitive result is that shortest path lengths750

decrease after cracking for liquid electrolyte systems, i.e., the mean relative shortest path lengths751

are typically smaller than 1, see Figure 11 (left). This is to be expected as cracks can be flooded752

by the liquid electrolyte leading to shorter transport paths. On the other hand, shortest path753

lengths increase for solid electrolyte, even though the relative increase is marginal, i.e., only754

slightly above 1, see Figure 11 (right).755

These general trends can be observed for both variants of the calibrated stochastic 3D model,756

P
θ̂
short

and P
θ̂
long

. However, when comparing both models, we observe that—in the case of liquid757

electrolyte—mean shortest path lengths seem to decrease more significantly for long-cracked758

particles rather than for short-cracked ones. For solid electrolyte systems, the difference in759

mean shortest path lengths between short- and long-cracked particles is much smaller, taking760

into account the finer length scale of the y-axis on the right-hand side of Figure 11.761

In the case of liquid electrolyte, an explanation for the existence of shorter transport paths762

is the fact that transport paths, which are originating in the active material phase, have the763

option to end at the interface between active material and crack phases, instead of ending at764

the background. In other words, caused by cracking, the set of possible endpoints of transport765

paths originating in the active material becomes larger which possibly leads to a decrease of766

shortest path lengths. On the other hand, in the case of solid electrolyte, only a small fraction767

of shortest transport paths seems to be affected by cracking (which can cause obstacles to form).768

Consequently, we observe mean relative shortest path lengths close to 1, see Figure 11 (right).769

From the 2D illustrations of relative shortest path lengths in liquid and solid electrolyte, shown770

in Figure 10, a visual impression of this effect can be obtained.771
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With respect to specific surface area, see Figure 12 (left), we observe that both scenarios (i.e.,772

short- and long-cracked particles) lead to an increase of this geometric particle descriptor—773

an effect that is more pronounced for long-cracked particles generated by P
θ̂
long

. Moreover,774

the relative specific surface area quantifies this increase compared to the underlying pristine775

particle. Short-cracked particles exhibit an average increase in their specific surface area by a776

factor of 1.5 in comparison to their pristine counterparts, whereas this factor is equal to 2 for777

long-cracked particles, see Figure 12 (right).778

σ
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Figure 12. Left: Probability densities of the specific surface area σ(P ) for
pristine particles (purple) and for cracked particles drawn from the stochastic
3D models P

θ̂
short

(green) and P
θ̂
long

(blue). Right: Probability densities of

the relative specific surface area σrel(P ) for cracked particles drawn from P
θ̂
short

(green) and P
θ̂
long

(blue), respectively.

In summary, it is important to note that the transport-relevant particle descriptors discussed779

in this section, namely the mean relative shortest path length and the relative specific surface780

area of cracked particles, are just examples of numerous further descriptors of 3D particles, which781

cannot be adequately determined from 2D cross sections. Thus, the stereological approach to782

stochastic 3D modeling of cracked particles proposed in the present paper can be used in future783

research to provide geometry input for spatially resolved numerical modeling and simulation,784

with the goal to derive quantitative structure-property relationships of cathode materials in785

Li-ion batteries, e.g. with respect to mechanical and electrochemical properties.786

6. Conclusion787

This paper presents a novel approach for generating virtual 3D cathode particles with crack788

networks that are statistically equivalent to those observed in 2D cross-sections of experimentally789

manufactured particles, where a stochastic 3D model is developed which inserts cracks into790

virtually generated NMC particles, requiring solely 2D image data for model calibration.791

An essential advantage of our model is that it enables the generation and analysis of a large792

number of virtual particle morphologies in 3D, whose planar 2D sections exhibit similar statistics793

as planar sections of experimentally manufactured particles. This computer-based procedure794

is cheaper, faster and more reliable than analyzing just a few experimentally manufactured795

particles. One reason for this is the circumstance that the acquisition of tomographic image796

data for a statistically representative number of particles can be expensive in both time and797

resources.798

On the other hand, virtual particles generated by our stochastic 3D model allow for a more799

rigorous quantification of cracked NMC particles, i.e., by characterizing their 3D morphology800
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and, subsequently, by conducting spatially resolved mechanical and electrochemical simulations801

examining their structure-properties relationships. This supports the analysis and comparison802

of different cycling conditions such as varying C-rate, operating temperature, or number of803

cycles.804

It is important to emphasize that the stochastic model presented in this paper for the 3D805

morphology of cracked NMC particles is characterized by a small number of (nine) interpretable806

parameters. In contrast to convolutional neural networks (CNNs), which have tens of thousands807

to several million trainable parameters, our stochastic 3D model has no “black-box” behavior808

and represents a low-parametric, transparent alternative to CNNs.809

Moreover, our stochastic 3D model can be modified to involve further features that might in-810

fluence cracking, e.g., by generating cracks in dependence of the crystallographic orientation of811

adjacent intraparticular grains. For example, this can be achieved by considering the misorien-812

tation between two neighboring grains, either replacing or supplementing the spatial alignment813

of the joint grain boundary. To implement such a modified model, orientation data of NMC814

particles is required, which could be derived, e.g., from EBSD measurements. Further, the815

presented stochastic 3D crack model could be generalized by allowing for inhomogeneous and816

anisotropic crack networks, e.g., by conditioning the cracking probabilities on radial distances817

to the particle center or on the transport direction within the electrode.818

Another advantage of our stereological modeling approach is the fact that it allows for the819

estimation of chemo-mechanical properties from 2D images. More precisely, since our model820

only requires 2D images to generate realistic 3D particle morphologies, it is possible to use821

these 3D morpohologies as geometry input for spatially resolved simulations of effective particle822

properties, which would be otherwise impossible to get them on the basis of 2D image data.823
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