Supporting Information

Unveiling the Impact of Crosslinking Redox-Active Polymers on Their Electrochemical Behavior by 3D Imaging and Statistical Microstructure Analysis

Marten Ademmer^{a,§}, Po-Hua Su^{b,c,§}, Lukas Dodell^a, Jakob Asenbauer^{b,c}, Markus Osenberg^d,

André Hilger^d, Jeng-Kuei Chang^{e,f}, Ingo Manke^d, Matthias Neumann^{a,*}, Volker Schmidt^a,

Dominic Bresser ^{b,c,*}

^a Institute of Stochastics, Ulm University, 89069 Ulm, Germany ^b Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany

^c Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany

^d Institute of Applied Materials, Helmholtz-Zentrum für Materialien und Energie, 14109 Berlin, Germany

^e Department of Materials Science and Engineering, National Yang Ming Chiao Tung University,

Hsinchu 30010, Taiwan

^f Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan

Keywords: 3D microstructure characterization; synchrotron X-ray tomography; nano-structured carbon; organic batteries; statistical image analysis

*Corresponding authors: dominic.bresser@kit.edu; matthias.neumann@uni-ulm.de [§]These authors contributed equally.

Figure S1. Synthesis scheme for yielding (crosslinked) PTMA with m = 0 for G-PTMA and $m \neq 0$ for crosslinked XG-PTMA.

Figure S2. (a) FTIR spectra of G-PTMA (blue), XG-PTMA (green) and the cross-linker, ethylene glycol dimethacrylate (EGDMA; black). (b) Comparison of the FTIR spectra of EGDMA (black) and poly-EGDMA (orange). (c) DSC data recorded for (X)G-PTMA, conducted with a scan rate of $5 \square \min^{-1}$ during the second heating cycle.

Figure S3. Example cutout of the hand-labeled training data of the sample with G-PTMA-CMK-8 on the left and the same cutout labeled by Ilastik on the right.

Figure S4. Distribution of the local surface area per unit volume of G-PTMA-CMK-8 (left) and XG-PTMA-CMK-8 (right)

Figure S5. (a) Galvanostatic cycling of XG-PTMA-SC65 (green) and G-PTMA-SC65 electrodes (blue) at a constant specific current of 50 mA g⁻¹. The dis-/charge profile of the 2nd cycle is displayed in panel (b) for XG-PTMA-SC65 and panel (c) for G-PTMA-SC65.

Figure S6. Basic physicochemical characterization of CMK-8 via (a,b) SEM at two different magnifications, (c) BET, and (d) BJH analysis.

Figure S7. (a,b) Charge and (c,d) discharge profiles of galvanostatically cycled (a,c) G-PTMA-CMK-8 and (b,d) XG-PTMA-CMK-8 electrodes at specific currents varying from 0.2 to 10 A g⁻¹. Plots of the average charge and discharge voltage vs. the applied specific current (logarithmic) for (e) G-PTMA-CMK-8 and (f) XG-PTMA-CMK-8; the inset shows the total dis-/charge hysteresis.