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Detecting crossovers in cryo-electron microscopy images

of protein fibrils is an important step towards determining

the morphological composition of a sample. Currently, the

crossover locations are picked by hand, which introduces

errors and is a time-consuming procedure. With the rise

of deep learning in computer vision tasks, the automation

of such problems has become more and more applicable.

However, because of insufficient quality of raw data and

missing labels, neural networks alone cannot be applied suc-

cessfully to target the given problem. Thus, we propose

an approach combining conventional computer vision tech-

niques and deep learning to automatically detect fibril cross-

overs in two-dimensional cryo-electron microscopy image

data and apply it to murine amyloid protein A fibrils, where

we first use direct image processingmethods to simplify the

image data such that a convolutional neural network can be

applied to the remaining segmentation problem.
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1 | INTRODUCTION

The ability of protein to form fibrillary structures underlies important cellular functions but can also give rise to disease,

such as in a group of disorders, termed amyloid diseases [1]. These diseases are characterised by the formation of

abnormal protein filaments, termed amyloid fibrils, that deposit inside the tissue [1]. These fibrils, or intermediate

structural states that occur in the course of fibril formation, are detrimental to their surrounding tissue and underlie

the formation of disease. Examples hereof are Alzheimer’s or Parkinson’s diseases [1] or the various forms of systemic

amyloidosis [2]. Many amyloid fibrils are helically twisted [3], which leads in cases of fibrils with an anisotropic cross-

section to periodic variations in the apparent width of the fibril, when observing amyloid fibrils using microscopy

techniques like cryogenic electron microscopy (cryo-EM) [4, 5, 6, 7]. Due to the two-dimensional (2D) projection,

parts of the fibril orthogonal to the projection plane appear narrower than parts parallel to the plane. The parts of

small width are called crossovers.

The distance between two adjacent crossovers is an important characteristic for the analysis of amyloid fibrils,

because it is informative about the fibril morphology and because it can be determined from raw data by eye. A given

protein can typically form different fibril morphologies. The morphology can vary depending on the chemical and

physical conditions of fibril formation, but even when fibrils are formed under identical solution conditions, different

morphologies may be present in a sample. As the crossovers allow to define fibril morphologies in a heterogeneous

sample [3, 8], detecting crossovers is an important first step in the sample analysis.

EM-reconstruction software like Relion [9], cryoSPARC [10] or EMAN2 [11] allows for picking of fibrils using

templates. But these techniques are especially designed for cryo-EM structure determination of single particles and

not for a statistical analysis of an entire fibril sample. So far, the detection of fibrils in cryo-EM image data for statistical

analysis to determine fibril morphologies has often been performed by labelling the crossovers’ locations by hand and

measuring parameters like fibril lengths, crossover distances, widths and curvatures manually. However, for large

datasets, only a small number of fibrils can be analysed this way [3], because this is a time-consuming and error-

prone task. In the present paper, we propose an approach for the automatic detection of crossovers in 2D image

data obtained by cryo-EM based on a combination of conventional image processing methods with machine learning

techniques. In contrast to existing tools, this method is specifically designed for the precise localisation of crossover

locations for the purpose of statistical analysis. Even for challenging data scenarios like overlapping fibrils and artefacts,

entire fibrils (i.e., their crossovers) are correctly labelled.
The detection of specific locations in 2D images can be understood as an image segmentation task for which

convolutional neural networks (CNNs) are often used. In particular, in recent years, encoder-decoder architectures [12,

13] were established for this kind of problems. However, CNNs, as all machine learning techniques, heavily depend

on the presence of training data of sufficient quantity and quality. While, in principle, it would be possible to obtain

a suitable amount of hand-labelled image data of fibrils to perform successful training of a neural network, cryo-EM

image quality poses challenges for this approach. Low contrast and image artefacts can make it infeasible to label

some crossovers by hand. Furthermore, each image contains many possibly overlapping fibrils. Both problems lead to

missing labels in the present data which make the direct training of a CNN impossible.

For further analysis of crossover locations, the quality of the detected crossovers may be even more important

than the quantitative yield: First, wrongly detected crossovers can obviously not be used further and would need

to be removed laboriously. Second, the knowledge of crossover locations is especially useful when entire fibrils are

labelled and no crossovers are missing for the labelled fibrils. A direct training of a CNN based on incomplete data

where not all crossovers are labelled and regions with certainly no crossovers are not known would induce problems

in the segmented data processed with this badly trained CNN.
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Our approach, therefore, combines conventional tools of morphological image analysis [14] withmachine learning

techniques. The combination of these two methodologies has already proven valuable for different kinds of segmen-

tation tasks [15, 16]. Figure 1 shows an overview of the proposed approach which can also serve as an outline for the

present paper.

Thus, the rest of the paper is organised as follows. To begin with, we describe the data consisting of cryo-EM

images of fibrils and hand-labelled crossovers for some fibrils and explain the basic problems when using this data.

Then, we present a preprocessing method which is capable of extracting the rough shapes of fibrils from the given

data. As this method does not rely on hand-labelled crossover locations, it can be applied to the whole dataset and

serves to simplify the data and remove artefacts. In the next step, we introduce a convolutional neural network based

on the U-Net architecture which is trained using the previously enhanced data. After applying this CNN to all of

the preprocessed fibrils, we perform a final postprocessing step to remove wrongly detected crossovers. Finally, we

present the results of applying the proposed technique to cryo-EM image data of fibrils. Furthermore, we assess its

performance and compare it to a direct application of a CNN.
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F IGURE 1 Overview of the proposed methodology. The data used in our approach consists of cryo-EM images

of fibrils (1a) and hand-labelled crossover locations (1b) for some of these fibrils. The presented preprocessing

method (2) transforms this data into pairs (3) of extracted, re-aligned fibrils and crossovers, if available. Fibrils for

which corresponding crossovers are known are used to train and validate a convolutional neural network (4).

Applying the CNN to the remaining fibrils yields probable crossover locations for each fibril (5). Postprocessing (6)

ensures that artefacts are removed and only valid crossovers remain in the final output (7).
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2 | DATA

Previously recorded cryo-EM 2D image data of murine AA amyloid fibrils [8] serve as the basis of our approach to the

automated detection of crossovers. To obtain these images, fibrils were extracted frommicewith systemic amyloidosis

and applied in water onto a holey carbon coated grid, blotted and finally plunge-frozen into thin vitreous ice. A total

of 1063 images (3838px × 3710px, pixel size: 1.36Å) of the fibrils frozen in vitreous ice were collected at 300 kV in

the transmission mode with a K2 summit (Gatan) direct electron detector. Each resulting image shows a different

part of the sample and an unknown number of possibly overlapping fibrils of different lengths and shapes. For this

sample, we previously showed that approximately 94% of all fibrils are of the same fibril morphology with a width at

the widest point of 11.8 ± 0.5nm and a crossover distance of 75.7 ± 1.3nm [8]. An example of the used image data is

shown in Figure 2. Note that the fibrils are not evenly distributed over the images: While there exist images showing

barely any fibril, others show huge clumps of overlapping fibrils.

F IGURE 2 Cryo-EM image of murine AA amyloid fibrils. Note that contrast and noise level have already been

improved for visualisation; fibrils would only be barely visible in the raw data.

For a subset of 669 images, hand-labelling of crossovers has been performed in such a way that the positions

of crossovers are entirely known for a total of 1069 fibrils. However, not all fibrils have been included in the hand-

labelling and, more relevant, there exist no images in which all fibrils have been labelled. This is partly due to noise

and overlapping fibrils which make it hard to hand-label some fibrils.

Thus, without further knowledge of the image structure, the hand-labelled data can only be used to determine

crossover positions which are certain. For any non-labelled region in the image data, we cannot directly conclude

from the hand-labelled data if there might be a fibril or even a crossover. In the following, we present an approach to

overcome these issues by first extracting the rough shapes of fibrils.
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3 | PREPROCESSING

As already mentioned above, the raw data consists of 2D greyscale images of different (potentially overlapping in

2D projection) fibrils oriented mostly parallel to the projection plane, see Figure 3a. Note that the raw image data is

subject to heavy noise and low contrast. Furthermore, many fibrils overlap each other making a visual detection of

crossovers practically impossible. Both problems lead to an incomplete labelling of crossovers in the images designated

as training data, making a direct application of a convolutional neural network to the given data infeasible.

To overcome these issues, we first use a method for preprocessing the raw cryo-EM image data. This method

splits the images into pieces showing single fibrils which are then used for the training of a neural network.

First steps in preprocessing include the removal of grey value gradients, which do not carry information but instead

need to be considered as artefacts using a Gaussian high-pass filter, and a Gaussian smoothing for noise reduction.

Furthermore, the grey value range of all images is set to a predefined scale by adjusting the mean and standard

deviation of grey values. By this, we account for deviations in exposure and measurement of different images. The

scale is chosen to accommodate 99.9% of the original range in an 8-bit image. Next, the rough shapes of the fibrils

are extracted using a local thresholding approach, see Figure 3b. The image representing the local threshold values

is obtained by applying a Gaussian smoothing [17] with a relatively large standard deviation such that the shapes of

fibrils persist only faintly. Additionally, the local threshold values are multiplied by 0.97 and pixels are set to white

in the resulting image if their grey value in the original image is below the corresponding threshold value, i.e., dark
elements (fibrils) remain. The multiplicative correction of 0.97 is chosen empirically to improve the binarisation. Yet,

the result does contain a significant amount of artefacts and not yet a precise representation of the fibrils.

a b c

d

F IGURE 3 Overview of the preprocessing steps. a) Sample image from the histogram-normalized raw data and

the hand-labelled positions of crossovers (red dots). b) Rough fibril shapes. c) Pointwise maximum of 60

convolutions of b) with differently oriented line-kernels. d) Example of a detected fibril.

Thus, a method similar to the Hough transform [18] is applied to precisely extract the shapes of the fibrils.

This method is based on convolutions of the original image with suitably chosen kernels. Considering different

kernels, convolutions can be used for various operations of image processing like sharpening or blurring [17]. More-

over, convolutions can be used to detect objects of a known shape in an image, by choosing a kernel similar to the
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object of interest. This property is used in various situations of image analysis, e.g., for edge detection by employing a

kernel depicting a strong gradient in the direction orthogonal to the desired edge. In a more general way, convolution

with a kernel depicting a given object, highlights the respective positions of all occurrences of the given object.

Note that this method of object detection is robust with respect to noise and minor deviations in the object’s

shape and still works when the object is partly covered by other objects. This is important for application to our

problem as fibrils can overlap in the given image data.

a b c

F IGURE 4 Sample image visualizing the result (c) of the convolution of a binary image (a) with the shown kernel

(b, not to scale). Fibril segments of any length which are oriented similar to the kernel are clearly visible in the result

of the convolution (see the highlighted area) and can easily be separated from the background using a global

threshold. Note that for curved fibrils, this does only extract segments of the fibril for each given orientation. These

parts are then combined in a later step.

We apply this method of object detection to our data using kernels which depict straight lines with 60 different

orientations equally spaced in α ∈ [0, π]. For any fixed α , the convolution highlights fibril segments which are oriented

accordingly, see Figure 4b. By applying a simple global thresholding to this greyscale image, the desired fibril segments

can be extracted.

However, some postprocessing still needs to be performed to separate real fibril segments from artefacts, see

Figure 4c. Filtering the connected components of the obtained binary image using an area threshold, i.e., only keeping
components which are larger than a given size, and a morphological closing/opening (see [14]) with a line segment

oriented in the direction α as structuring element solves this problem reasonably well. Finally, the direction of the

principal axis β of each region in the binary image is computed via principal component analysis (PCA, [19]). While

PCA and other statistical tools are often used in the cryo-EM context to obtain distinguishing features of a class of

samples [20], we employ PCA solely to detect the geometrical orientations of single regions in the binary image. For

these, the principal axis is given by the major axis of the ellipse which best fits the given region and corresponds to

the perceived orientation of the extracted elongated regions. Only regions for which the predicted orientation α and

the orientation β computed by PCA coincide to some extent are considered valid fibril segments.

Because the procedure described above may split fibrils into multiple fragments, the next step merges regions

belonging to the same fibril, see Figure 5. Therefore, the previously described convolution-based extraction of fib-

ril segments is performed for a certain (finite) number of directions equally spaced in the interval [0, π]. For each

extracted fibril segment Fi , the calculated orientation βi obtained from PCA is stored. Now, for each pair of fibril

segments Fi , Fj , the angular deviation in orientation ∆i ,j = min( |βi − βj |, |βi − βj − 2π |) and the relative overlap

∩i ,j = λ
(
Fi ∩ Fj

)
/min

(
λ(Fi ), λ(Fj )

)
are determined, where λ(F ) denotes the area of a fibril segment F . Then, fibril
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a b c

F IGURE 5 a) Fibril segments detected using kernels with different orientations. Each colour corresponds to a

specific orientation. b) Combination of many detected (overlapping) segments results in accurate detection, compare

the original image (c). Note the curved red fibril in the lower left part of panel b) which was combined from segments

with considerably different orientations.

segments with relative overlap ∩i ,j > 0.4 and deviation in orientation ∆i ,j < 10
◦
are considered to belong to the same

fibril. These numbers are based on the angular step size of 3◦ used for detection of fibril segments. As the measured

orientations of the regions can be hugely affected by noise and inaccuracies, we allow for a fairly large deviation. Fur-

thermore, based on visual inspection, 10◦ are sufficient to capture all non-broken, curved fibrils encountered in the

data.

Assessing the thereby detected regions by size and shape gives a reasonably good procedure for the final elimi-

nation of wrongly detected fibrils, as detailed in Section 6. This leaves us with a set of fibrils for each input image. To

simplify the process of further analysis, the cutouts representing each extracted fibril (and hand-labelled crossovers)

are rotated such that the fibrils are horizontally oriented, see Figure 3d.

A subset of all fibrils for which hand-labelled crossover locations are known is then used to train a neural network

as described in the next section.

4 | CNN-EMPOWERED CROSSOVER DETECTION

Roughly speaking, we now try to predict unknown crossover locations in 2D image data of fibrils employing the

information we obtained from the hand-labelled data described in the previous section. A direct processing of the

fibril shapes extracted in the previous steps using traditional morphological methods did not prove successful due

to inaccuracies in the detected shapes, see Figure 5b. However, the methods of statistical learning, in particular

convolutional neural networks provide a promising technique with regard to automated image analysis. If enough

training data is available, they have shown to be successful in many domains, including microscopy [15, 16, 21, 22, 23].

Integrating these techniques into the analysis process of fibril images is a promising approach that could drastically

reduce the efforts needed to process these images using completely interactive approaches alone.

4.1 | Description of the CNN architecture

The task of automatically detecting crossovers in image data of fibrils can be seen as a classical image segmentation

problem. For this type of problem, fully convolutional neural networks are well-established, especially when dealing
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with complex data as given by the varying appearance of crossovers in microscopic image data. Fully convolutional

neural networks use repeated layers of convolution of the input image with trainable kernels. To automatically detect

crossovers in microscopy images of fibrils, we employ an encoder-decoder CNN. These types of networks, which have

proven to be successful in related problem contexts [12, 13], transform the input image into a latent space, where, in

our case, abstract representations of the fibril images are obtained at lower resolution, before reprojecting them onto

the original resolution of the image. This kind of procedure is desirable as the aim is to predict pointwise probabilities

for each pixel to be a crossover. The network we use divides fibril images into crossover and non-crossover pixels.

The basic idea of our architecture is shown in Figure 6.

1 16 16

32 32

64 64
128

128 64

64 32

32 16 2

Input Convolution Max-pooling Transposed 
Convolution

F IGURE 6 The neural network architecture we use for segmenting fibril images. It transforms the input image

into a 128-dimensional feature vector, for which the spatial resolution is reduced by a factor of eight. In the

following, this vector is utilised to produce the two-dimensional segmentation map used as the crossover prediction.

Due to its fully convolutional nature, the in- and output sizes of the network are arbitrary.

4.2 | Training of the CNN

Fully convolutional networks like the architecture considered in the present paper are not designed for the detection

of single points but instead for the segmentation of larger regions. This is partly due to the pooling and upsampling

layers which cause high correlation between values of neighbouring pixels in the resulting image. Moreover, when

individual pixels are labelled as crossover points, while the entire rest of the image is labelled as non-crossover, high

accuracy can be reached by simply labelling the whole image as non-crossover. Thus, the network would optimise to

classifying any input image entirely as non-crossover.

To circumvent these limitations of the learning process, we carefully choose the data used for training the neural

network. As shown in Figure 7, we take small cutouts of each image containing a horizontally aligned fibril. These

cutouts can either contain exactly one crossover or no crossover. Finding regions containing exactly one crossover is

straightforward and is done by taking square regions of a given size around all hand-labelled crossovers. Note that the

regions are chosen at randomwhile still containing the crossover, resulting in patches featuring crossovers at different

locations. This prevents the neural network from learning to predict crossovers simply based on their location.

Even though the hand-labelled data may be incomplete (as illustrated in Figure 7), by adjusting the size, we can

guarantee that only one crossover is present in each cutout if no other fibrils cross the present fibril in the given

cutout. Selecting regions which do not contain any crossovers requires some extra effort due to potentially missing

labels. However, hand-labelling was performed such that no additional non-labelled crossover lies between two hand-

labelled crossovers. Thus, as shown in Figure 7, we can use any cutout of the fibril which lies entirely between two
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labelled crossovers as further training data.

F IGURE 7 Splitting up the available data into patches for training the neural network. The top row shows parts

of a hand-labelled fibril after preprocessing. Red circles mark hand-labelled crossovers which can be used to cut out

(square) patches for training. Between two hand-labelled crossovers, we can be sure that no further crossovers

exists, so these regions can be used as negative samples. The black-yellow circle highlights a crossover which was

not hand-labelled. The bottom row shows two pairs (input/ground truth) of training data for the neural network

extracted from this fibril.

By this, we get two sets of square cutouts of fibril images. The first set (“positive samples”) consists of regions

which contain exactly one crossover whose position is known from hand-labelled data. The second set (“negative

samples”) consists of regions which contain no crossover at all. Together, the two sets make up the input data for the

training of the neural network. Furthermore, we require appropriate ground truth data for all cutouts contained in

the input data. For the “negative samples”, the ground truth is simply a black image of appropriate size representing

the absence of crossovers. For the “positive samples”, we take a black image of appropriate size and place a white

ellipse at the known position of the corresponding crossover. The ellipse’s major axis is chosen parallel to the fibril

whose orientation is known from preprocessing. By adjusting the size of the cutouts and the size of the ellipses, we

can account for class imbalance.

We use the data of input and ground truth images given by the method described above to train the neural

network described in the previous section. For assessing the quality of a predicted output compared to the ground

truth data, we need to define a so-called loss function which assigns a loss (i.e., a value specifying how “good” the

prediction is) to a pair of data (i.e., the CNN’s output and the ground truth). We chose themean cross-entropy loss [24]

which operates on the output image IO : {1, . . . , 8nx } × {1, . . . , 8ny } × {1, 2} → [0, 1] of the neural network prior to

thresholding. Recall that this image represents the probabilities of each pixel belonging to a crossover or not. The

corresponding ground truth data IT : {1, . . . , 8nx } × {1, . . . , 8ny } × {1, 2} → {0, 1} takes values 1 (the pixel belongs to

a crossover) or 0 (the pixel does not belong to a crossover). The cross-entropy function is then defined for each pixel

(x , y ) and channel c by

LCE (x , y , c) = −IT (x , y , c) log(IO (x , y , c)) .

The total loss of an output image is just the mean 1/(nx ny
∑nx
x=1

∑ny
y=1
(LCE (x , y , 1) + LCE (x , y , 2)) which equals 0 if
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IO = IT . The training of the neural network is performed using this loss function and the Adam optimiser [25].

Due to the fully convolutional architecture, the (trained) network can operate on arbitrarily-sized patches to

perform inference on unseen data. While training is performed on small image patches for computational reasons,

the trained network can be used to detect crossovers on entire fibrils.

4.3 | Application of the trained network

For the automatic detection of crossover locations, we apply the trained neural network to single fibrils which have

been extracted from the original data using the preprocessing method described above, see also Figure 3d.

While crossovers onmost fibrils are correctly identified, the preprocessing method described above does propose

some areas of the images as fibrilswhich are not suitable as input for the neural network, see Figure 8. On the one hand,

some areas of the images are proposed as fibrils which, at visual inspection, are clearly noise and do not contain fibrils.

On the other hand, fibrils which are crossed by many other fibrils are (correctly) detected by the preprocessing steps.

While these do indeed contain crossovers, it is almost impossible to distinguish between crossovers and artefacts

introduced by crossing fibrils. In both cases, the neural network cannot be expected to produce valid results.

Thus, we try to eliminate wrongly labelled crossovers in a final postprocessing step, see below.

5 | POSTPROCESSING

Recall that our aim is to obtain a set of fibrils whose crossovers are entirely labelled. For postprocessing, we thus

consider the entire fibrils which have been extracted from the original image data using the preprocessing methods

described above. A fibril should be classified as correctly labelled if all of its crossovers are correctly labelled and

no additional points are labelled as crossovers. Missing or wrongly placed labels would lead to inaccurate further

analyses. Thus, we develop a method to correct minor errors and detect wrongly labelled fibrils. This includes the

cases where the region proposed by the preprocessing method does not contain any (clearly visible) fibril as well as

the cases where the neural network does not perform correctly. A sample of correctly and wrongly labelled fibrils is

shown in Figure 8.

F IGURE 8 Top: A correctly extracted fibril with precisely detected crossovers. Bottom: A fibril which is not

clearly visible, resulting in a bad performance of the neural network.

First, the detected crossovers are assessed by size of the detected region. Based on visual inspection of a small

fraction of detected regions, it seems reasonable to assume that larger regions are associated with a more reliable

detection. Thus, we apply a morphological closing [17] to eliminate minor noise and then remove small regions using

another morphological opening. Due to the helical shape of a fibril, crossovers on a single fibril should form an ap-

proximately periodical pattern. The following method uses this information to classify correctly labelled fibrils. Using

the known orientation of the fibrils—which, after preprocessing, is horizontal—we interpret the detected crossover
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x1 x2 x3 xn· · ·d0 d

F IGURE 9 Visualisation of the superimposed Gaussian kernels used for estimating the crossover distance d and

offset d0 from the x -positions of the detected crossovers x1, . . . , xn .

locations as points X = (x1, . . . , xn ), xi < xi+1 on a straight line. If the crossovers are detected correctly, they should

form a semi-periodic pattern, i.e., xi+1 − xi ≈ d for some constant crossover distance d . To find the value of d , we

define the functions

fc (t ) =
n∑
i=1

ϕ(xi ,σ
2
; t )

and

fp (d0, d ; t ) =
n−1∑
i=0

ϕ(d0 + i d ,σ
2
; t ),

where ϕ(µ,σ2; ·) is the probability density function of a Gaussian random variable with mean µ and variance σ2. The

function fp corresponds to a proposed crossover distance d and offset d0. For some assumed crossover pattern X and

a proposed crossover distance d and offset d0, these functions are visualised in Figure 9. By minimising the difference

∆ given by

∆ =

∞∫
−∞

��fc (t ) − fp (d0, d ; t )��dt,
employing a grid search, we obtain a prediction for the real crossover distance and offset. This prediction is robust

to wrongly detected crossover locations which do not fit into the regular pattern: If three or more correctly detected

consecutive crossovers are present, the integral will still be minimal for the correct distance and offset, even if another

wrongly placed crossover is introduced.

Using the predicted offset d0 and distance d , we can compute all possible locations of crossovers d0 + j d . We

generate a new set of crossovers by taking all detected crossovers xi whose distance minj ∈Î |xi −d0+ j d | to the set of

possible locations is below some heuristically chosen threshold between 10nm and 25nm. The precise value of this

threshold proved irrelevant for the performance of our method. The new set of crossovers shows an approximately

periodic pattern and can be used for further analysis.
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TABLE 1 Overview of the number of hand-labelled and not hand-labelled fibrils included in each processing step.

Note that the total number of fibrils present in the data is unknown. Among the 1069 hand-labelled fibrils, 326 fibrils

were not identified by the preprocessing. The number of included fibrils decreases with each processing step as

possibly flawed data is removed from the set of considered fibrils. For not-hand-labelled fibrils, the approximate

numbers are obtained extrapolating data from a visual inspection of a subset of fibrils.

hand-labelled not hand-labelled total

hand-labelled data (total) 1069 — —

proposed by preprocessing 743 1010 1753

of which are actual fibrils 743 ca. 850 ca. 1592

used for training 670 0 670

used for validation 73 0 73

accepted by postprocessing 393 179 572

used for training 353 0 353

postprocessed & not

used for training 40 179 219

entirely labelled 39 ca. 140 ca. 179

6 | VALIDATION

For a validation, we applied the proposed approach to the data described in the previous sections. Before assess-

ing the performance, let us recall the major goal of the approach, which is the extraction of fibrils and the detection

of corresponding crossover locations from the image data. More precisely, each image patch returned by the post-

processing should show a horizontally aligned fibril and the corresponding predicted crossover locations which pass

postprocessing should be correct. Furthermore, no crossovers should be missing. For simplicity, we will call image

patches satisfying all three requirements entirely labelled fibrils. We will call image patches and the corresponding pre-

dicted crossover locations which are returned by the postprocessing steps postprocessed fibrils. Note that our main

goal is met if all (or most) postprocessed fibrils are indeed entirely labelled fibrils, similar to avoiding false positives in

a classification setting.

However, comparing these two sets does not yet measure the total yield of our approach. To assess this, we take

into account the (total number of) hand-labelled fibrils, similar to the quantification of false negatives, as well as the

image patches proposed by the preprocessing method which were used to train and apply the CNN.Wewill call these

image patches proposed fibrils.

Note that hand-labelled crossovers corresponding to some of the entirely labelled fibrils, or postprocessed fibrils,

respectively, were used to train the neural network. Thus, crossover data on these fibrils (image patches) cannot be

used to assess the performance of our approach. Table 1 gives an overview of the data used for validation. Wewill dis-

cuss the detailed numbers of correctly detected fibrils and crossovers in the following, using different characteristics

to assess the performance of the proposed approach, based on hand-labelled data.

From these considerations, the most important accuracy measure is the precision of the method consisting of,

first, detection of fibrils, second, crossover detection on actual fibrils, and third, detection of entirely labelled fibrils.

This is, which fraction of detected objects are correctly classified. Increasing the precision corresponds to decreasing
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the rate of false positives.

6.1 | Performance of fibril detection

We applied the proposedmethods to data from 1063 cryo-EM images. In 669 of these images, crossovers on a total of

1069 fibrils were labelled by hand. Based on Table 1, the preprocessing detected 743 out of 1069 hand-labelled fibrils

(69.5%). However, we find additional fibrils, which have not been included in hand-labelling. Visual inspection of the

proposed fibrils which were not contained in the hand-labelled data shows that approximately 850 out of 1010 (84.2%)

additionally proposed image patches actually are fibrils. Thus, the total precision of fibril detection is approximately

90.9%. As missing hand-labels are mostly due to difficulties in visually assessing the structure of a fibril, this means

that our approach is capable of processing poor quality data. However, this does not imply that detection of crossovers

is achievable for the majority of detected not hand-labelled fibrils. For many of the proposed fibrils which have not

been hand-labelled, it can be hard to locate crossovers due to artefacts or overlapping fibrils. This is reflected in

postprocessing accepting only 179 out of 1010 of these fibrils and corresponding detected crossovers (17.7%).

6.2 | Performance of crossover detection

To validate the performance of the crossover detection performed by the considered CNN and subsequent postpro-

cessing steps, we take into account the number of proposed fibrils and fibrils (and corresponding detected crossovers)

which pass postprocessing. To validate the method in its entirety, we have to exclude fibrils which have been used

for the training of the CNN. This leaves as set of postprocessed fibrils which have not been used for training. On 39

of these 40 fibrils, crossovers have been entirely labelled if we allow a deviation of 20nm (compare to the crossover

distance 75.7 ± 1.3nm) between detected and hand-labelled crossovers, see Figure 10. For a deviation of 10nm, we

get 67.5% entirely labelled fibrils. This is related to the total number of correctly labelled crossovers on these 40 fibrils

which is also shown in Figure 10. Thus, the labelling of fibrils with complete sets of crossovers has a precision of

97.5%. Without postprocessing, this number decreases slightly to around 66 of 73 fibrils or 90.4%.

However, these numbers are only true under the assumption that the objects detected by preprocessing actually

are fibrils. Relaxing this assumption, we take into account objects proposed by preprocessing which are not hand-

labelled fibrils, see Table 1. Note that not all fibrils are included in the hand-labelled data. This is the reason why some

detected objects, despite not being hand-labelled, might actually be fibrils. Thus, we performed a visual inspection of

the detected fibrils and crossovers to obtain the approximate numbers given in lines 3 and 10 of Table 1. On these

data, approximately 84.2% of detected fibrils actually were fibrils. However, without postprocessing, only ca. 11% of

actual fibrils (i.e., 13% of detected objects) were entirely labelled. Here, postprocessing provides a huge advantage by

increasing the precision to approximately 78%.

Combining both cases, we would expect an overall precision of approximately 91.5%with postprocessing and an

overall precision of approximately 45.8% without postprocessing.

6.3 | Comparison to direct application of a CNN

While the values presented above indicate an acceptable performance of the proposed approach, a comparison to

the performance of directly applying an encoder-decoder shows a clear advantage. For this purpose, we performed

no preprocessing on the original cryo-EM image data and trained a network of the same architecture as presented

above using the given hand-labelled crossovers. We then applied the trained neural network to 50 raw images and
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F IGURE 10 The fraction of correctly located crossovers on the validation data (left) as well as the fraction of

entirely labelled fibrils (right) depend on the permitted deviation from the hand-labelled data. In total, 158

hand-labelled crossovers exist on the given fibrils. Note that both fractions stay below 100% due to missing and

additional, wrongly detected crossovers.

post-processed the extracted crossover locations by simply applying amorphological closing and a size threshold. This

should remove some noise introduced by the neural network and keep only "certain" crossovers. While the missing

training data would suggest that not all crossovers are detected, we still expect that proposed crossovers reliably

correspond to actual crossovers. However, even when considering only crossovers on actual fibrils for which hand-

labelled crossovers exist, the precision of the crossover detection using solely a neural network comparable to the

network considered in our method is only about 20%.

Moreover, our method does not only provide single crossover locations, but entirely labelled fibrils. Even when

restricting the crossovers detected by the basic U-Net to crossovers lying on fibrils (for which hand-labelled crossovers

exist), only 8 of 42 fibrils not used for the training of the network were entirely labelled, corresponding to a precision

of 19%. Comparing this to 91.5% precision obtained by our method on all detected objects, this shows a clear benefit
of the approach proposed in the present paper. A further advantage when applying the proposed technique is the

additional information of approximate shape and location of fibrils at no further cost.

7 | CONCLUSION

We proposed an approach for the automated detection of crossovers on 2D cryo-EM image data of AA amyloid fibrils.

It was built around a convolutional neural network similar to the U-Net which was trained using hand-labelled data. A

major improvement compared to the direct application of the CNNwas achieved by a multi-step preprocessing of the

raw image data, using methods from classical image analysis, which extracted patches of horizontally aligned fibrils

from the images. The neural network was trained on and applied to the thereby enhanced data. A final postprocessing

using appropriately chosen parameters ensured that the results meet the required quality. This means, we were able

to reduce wrongly detected crossovers to less than 5% of all crossovers, which is important for further analysis of

the crossovers. While hand-labelling gives better results on most fibrils, the proposed approach was able to detect

fibrils for which hand-labelling would have been too tedious and outperformed hand-labelling on many other fibrils.

In comparison to a direct application of a convolutional neural network to the raw image data, the proposed approach

shows outstanding accuracy with respect to false positives. Even though the total number of detected crossovers is

affected by the focus on avoiding wrong detections, the overall performance of the proposed approach is satisfying.
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While the results obtained for the specific type of fibrils considered in the present paper are promising, further

work may include incorporation of a more sophisticated type of postprocessing to obtain a higher yield in the total

number of labelled fibrils. Moreover, as the presented method does not make any assumptions about the specific type

of fibrils aside from minor geometrical constraints, it may be used in further work to process and analyse different

types of fibrils. The method described in the present paper could thus be the basis for future applications, in which

the morphological composition of a fibril sample is automatically assessed. The ability to analyse the morphological

constitution of a sample is of general importance as it allows a more objective analysis of the fibril spectrum present

in fibril extracts from patient tissue; and thus of the pathogenic agents underlying amyloid diseases and their inherent

clinical variability. In addition, quantification of the morphological composition of a fibril sample is an obvious first

and indispensable step to control the fabrication of reliable and standardized amyloid fibril compositions in any form

of biotechnological application of these fibrils.
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