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Abstract

The highly complex aging mechanisms of lithium-ion batteries are still not sufficiently well understood.
In the present paper, we characterize cyclically aged cells by means of a statistical 3D microstructure
analysis and electrochemical properties. More precisely, synchrotron tomography is used to capture the
morphology of lithium-ion battery cathodes with a state of health of 100%, 90%, 80%, 60% and 40%,
cyclically aged with two different C-rates (0.5C and 1C). The three phases, namely active material, pores
and the phase carbon-binder domain, have been reconstructed from 3D grayscale images by a k-means
clustering approach. Moreover, individual active particles are segmented by combining the concept of
morphological reconstruction with the watershed algorithm. The processed image data allows to quan-
titatively characterize the 3D microstructure by phase-based and particle-based characteristics, where
a special focus is put on local heterogeneity, which will be described by locally computed descriptors.
In addition, electrochemical data and electrochemical impedance spectroscopy are used to characterize
the cyclically aged cells. Furthermore, we correlate these results with the detected structural changes.
To the best of our knowledge, this is the most extensive data set of cyclically aged lithium-ion cells
including electrochemical data as well as 3D structures.

Keywords: cathode, lithium-ion battery, cyclic aging, microstructure, electrochemical impedance
spectroscopy, synchrotron tomography

1. Introduction

Lithium-ion batteries are one of the key technologies of recent and future years due to their high en-
ergy density as well as a decent power density, which leads to a variety of applications ranging from
portable devices to electric vehicles [1, 2, 3, 4, 5]. To further reduce costs and the environmental impact
of lithium-ion batteries, one of the main goals in state-of-the-art battery research is to increase their5

lifetime [6, 7, 8]. Therefore, a deeper understanding of the complex aging mechanisms, which are still
not fully understood, is key with regard to the development of electrodes with optimized electrochem-
ical properties [9, 10]. To analyse the aging mechanisms with electrochemical methods electrochemical
impedance spectroscopy (EIS) is used frequently. The gained data are often fitted with an equivalent
circuit model (ECM) based on simple electronic components as resistors and capacitors [11]. ZARC10
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elements can be used to fit the EIS data instead of RC elements in ECMs. Though they can describe
the data better than the same mount of RC elements yet their physicochemical interpretation is not
fully defined at this point [12].

Since it is well known that the 3D microstructure of battery electrodes has a strong impact on the5

resulting effective properties [13, 14, 15, 16], the microstructural changes caused by cyclic aging are of
particular interest. For this purpose, imaging techniques such as electron spectroscopy, X-ray diffraction
or X-ray photoelectron spectroscopy are used [17, 18, 19, 20]. Since lithium-nickel-cobalt-manganese
oxides (NCMs) are still the basis for most industrially manufactured cathodes [21], the focus of the
present paper is to quantitatively investigate the cyclic aging of NCM-based cells by means of EIS and10

synchrotron tomography to gain a deeper understanding of the aging mechanisms, both, from a struc-
tural as well as an electrochemical point of view.

In the present paper, we characterize cyclically aged cells by means of a statistical 3D microstructure
analysis and electrochemical properties. More precisely, synchrotron tomography is used to capture the15

morphology of lithium-ion battery cathodes with a state of health of 100%, 90%, 80%, 60% and 40%,
cyclically aged with two different C-rates (0.5C and 1C). The three phases, namely active material, pores
and the phase consisting of binder and conductive additives, have been reconstructed from 3D grayscale
images by a k-means clustering approach. Moreover, individual active particles are segmented by com-
bining the concept of morphological reconstruction with the watershed algorithm. The processed image20

data allows to quantitatively characterize the 3D microstructure by phase-based as well as particle-based
characteristics, where a special focus is put on local heterogeneity, which will be described by locally
computed descriptors. In addition to the structural point of view, electrochemical data and EIS are
used to characterize the cyclically aged cells. Finally, the results of the statistical microstructure analy-
sis are correlated with the parameters of the ECM, which is fitted to data obtained by electrochemical25

impedance spectroscopy.

The rest of this paper is organized as follows. In Section 2, the cyclic aging of the cells as well as the
imaging of the NCM-based cathodes is described. Next, we describe the processing of the 3D image
data consisting of image preprocessing, a three-phase reconstruction and a particle-based segmentation30

of the active particles. In Section 4, a variety of phase-based as well as particle-based characteristics are
described, which will be used to quantitatively investigate the influence of cyclic aging on the morphology
of the cathodes. In addition, EIS data are analysed with an ECM to quantify the influence of cyclic
aging on the electrochemical behaviour of the cells, see Section 5. Finally, the paper is concluded with
a summary of the results in Section 6.35

2. Experimental

In this section, we describe the material composition, the cyclic aging procedure and the imaging process
in detail.

2.1. Materials

In the present paper, we consider nine one-layered pouch cells with about 40mAh at C/10, manufactured40

by VARTA Microbattery GmbH. The composition of the electrodes manufactured by a representative
research recipe and the densities of the used materials are listed in Table 1. Additionally, an areal weight
of 180 g/m2 and an electrode thickness of 60 µm for the cathode allow us to compute the volume fraction
of the cathode materials, which will be used for image segmentation in Section 3.

2



component portion [wt%] density [g/cm3]

NCM622 94-95 4.76
binder ca. 1 1

conductive additive 3-4 2

graphite 96-97 2
binder ca. 2 1

conductive additive ca. 1 2

Table 1: Material composition of cathodes and anodes and density of materials.

2.2. Cyclic aging

Cyclic aging and EIS measurements were done using a Basytec CTS connected via a multiplexer with a
Gamry Reference 3000. The pristine cells provided by VARTA Microbattery GmbH were characterized
at different C-rates to determine their performance and discharge capacity. To investigate the influence
of cyclic aging on the electrode morphology as well as their electrochemical behavior, eight cells were5

aged to a state of health (SOH) of 90%, 80%, 60% and 40%, respectively. More precisely, for each SOH
there are two cells that differ with regard to their C-rate, where we considered the C-rates of 0.5C and
1C. To compute the corresponding currents for these two C-rates, we determine the individual capacity
of each cell at 1/10C using the nominal capacity. The current for the aging procedure is then computed
from the individual capacity. The capacity of each cell at cyclic aging speed is used to determine the10

SOH in comparison to the discharge capacity in the individual cycle. All cells were cycled with CC-CV
full cycles. One cell remained in its original state at 100% SOH and was used as reference.

2.3. Electrochemical impedance spectroscopy

All cells were characterized by EIS measurements in galvanostatic mode every 50th cycle with four hours
relaxation time beforehand at 0% SOC. For this purpose, a frequency range from 10 kHz to 10mHz with15

ten points per decade and an AC current of 4mA (0.1C of nominal capacity) have been used. To account
for changing connection resistances, measurements with an internal resistance at least three times higher
than in the first measurement for the same cell are corrected in their real part of the impedance. This is
done by computing the mean change in internal resistance up to the (to be corrected) measurement and
using this value times the number of impedance measurements until this point as new internal resistance.20

The other values for the real part of the impedance of the measurement are adjusted by the same factor.
Note, that Matlab 2021b is used to analyze the electrochemical data including the EIS measurements
and the ECM.

3 - 4
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R1-3/4

C1-3/4

Figure 1: Used ECM to analyze the EIS data.
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The results were fitted with an equivalent circuit model (ECM) in the form R-RC-RC-RC-W-W as
presented in Figure 1. This ECM covers all processes in the cell on cathode and anode side. The first
resistor (R0) resembles the ohmic resistance of connections and the internal resistance of the cell. The
RC-circuits are simulating the following processes in the cell, which are listed in increasing order of
their characteristic time scale: electron transfer current collector-electrodes as well as particle-particle5

resistance, ionic passage graphite-electrolyte, NCM-electrolyte and electrolyte-separator. The Warburg
impedance consists of two parts: diffusion in the electrolyte and diffusion inside the active material of the
electrodes, represented by a Warburg impedance with an ideal reservoir Wid as well as a non-permeable
membrane Wnpm, respectively. As we only analyze 3D image data of the cathodes, the RC-element that
covers the electrode-electrolyte transfer is split to analyze cathode and anode separately. To prevent10

inconsistent fitting, several constraints regarding the fitting are used. For example, the capacitance for
the capacitors was kept in range to each other, avoiding the case of one dominating factor and a few
very minimal capacitors. To differentiate between cathode and anode processes, the second RC-parallel
circuit is divided into two parts at different scales.Considering the approximated surface area, computed
by surface areas per gram from [22] and [23], electrode loading, and typical exchange current densities it15

is likely that the cathode is responsible for about 90% of the resistance caused by the electrolyte-electrode
transfer. Hence, the graphite RC circuit is restricted to 5-15% of the overall resistance, whereas the RC
circuit corresponding to NCM electrode is constrained to 85-95% of the former second RC-element.

2.4. Sample preparation and imaging procedure

After reaching their destined SOH the cells were discharged to 2.5V and disassembled under argon20

atmosphere (< 0.5 ppm H2O and < 0.5 ppm O2). The electrodes were washed in dimethyl carbonate for
30 seconds and cut into smaller pieces in preparation for the synchrotron tomography experiments.

The tomography measurements of the cathode samples have been conducted at two separate synchrotron
facilities. The samples 100%, 90% 0.5C, 90% 1C, 80% 1C and 40% 1C have been measured at the P0525

beamline (Petra III, DESY, Germany) [24, 25], whereas the samples 80% 0.5C, 60% 0.5C, 40% 0.5C,
60% 1C have been measured at the BAMline (BESSY II, HZB, Germany) [26]. The working principle
of both beamlines is similar, in both cases a monochromatic nearly parallel X-ray beam is guided on the
rotating sample without the use of X-ray focusing optics. Behind the sample the transmitting beam is
detected with a setup consisting of a CdWO4 scintillator for X-ray to light transformation, an optical30

microscope and a CMOS camera.

In case of the P05 beamline, the pristine sample has been measured with an energy of 28 keV, while
the remaining P05 samples have been measured with 25 keV to assure an optimal image contrast. For
energy selection a double crystal monochromator was used. All samples have been measured as close35

as possible to the scintillator screen to reduce phase contrast. During the tomography each sample
was constantly rotated while 2401 images have been capture using a KIT CMOS camera (5120 × 3840
pixel) with an exposure time of 130ms. Combined with the 10 times optics this resulted in a voxel size
of 0.64 µm. For the reconstruction the normalized data was denoised using a total variation minimiza-
tion filter [27] and then reconstructed using the gridrec routine based on the filtered back projection [28].40

In case of the BAMline, the samples 80% 0.5C, 60% 0.5C, 40% 0.5C and 60% 1C have been measured
with 25 keV. In contrast to P05, the energy selection at BAMline was done by using a double multi layer
monochromator, resulting in a slightly broader energy spectrum around the mentioned target energy.
The samples have been measured as close to the detector as possible. At BAMline, the samples have45
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been rotated stepwise, so for each image the rotation was halted. Every hundredth rotation step the
sample was removed from the field of view for flatfield capture. In addition, the center of rotation was
randomly altered after each flatfield sequence. During the post processing the known shift of the center
of rotation was removed resulting in a slightly smaller field of view but also removing all ring artifacts.
In total, 2200 projections were measured, where a PCO4000 camera (4008 × 2672 pixel) was used for5

image acquisition, resulting in a voxel size of 0.44 µm. The reconstruction was done in the same way as
in the case of the P05 data. Note that linear interpolation is used to scale the P05 samples (voxel size
0.64 µm) to the voxel size of 0.44 µm [29].

3. Image processing

This section describes the image processing methods that are applied to the 3D image data obtained10

by synchrotron tomography. This includes image preprocessing, the three-phase reconstruction of the
preprocessed grayscale image data as well as the segmentation of individual active particles.

3.1. Image preprocessing

At first, a non-local means filter with a local neighborhood size of one and a search volume size of 11
voxels is applied, which significantly reduces the noise while preserving edges [30, 31]. Afterwards, the15

3D image data is rotated such that the first slices correspond to the current collector, i.e., the z-direction
now corresponds to the main direction of ionic and electric transport. The rolling ball method, which
is based on a morphological closing, is used to define a mask of the electrode (excluding the current
collector) [32]. By doing so, one is not restricted to a cuboid that is fully contained within the sample
and is able to take the complete volume of the electrode into account.20

3.2. Phase-based segmentation

Note that the voxel size of 0.44 µm is larger than the size of binder as well as conductive additives. Thus,
we will assign a nanoporosity of 50% to the carbon-binder domain (CBD), where similar values of 47%
and 58% are reported in the literature [33, 34]. In order to trinarize the preprocessed grayscale images,
i.e., segmenting them into the three phases, active material, pores and the carbon binder domain (called25

CBD in the following), we use a modified k-means clustering algorithm similar to [20]. However, the
present approach allows us to match the known target volume fraction of the pristine sample by tuning
certain parameters accordingly. Applying the modified k-means cluster algorithm with the parameters
obtained from the pristine cathode to the cyclically aged samples allows us to reconstruct the three
phases with one and the same approach. More precisely, the newly introduced parameters consist of30

phase weights as well as feature weights. In order to formally define them, we introduce the following
notation. Let v1, ..., vn denote the voxels inside the mask of the electrode, where for each voxel vi a
so-called feature vector fi = (f

(1)
i , ..., f

(27)
i ) ∈ R27 is considered, which consists of the sorted grayvalues

within the 3×3×3 neighborhood of vi. The k-means clustering algorithm partitions v1, ..., vn into k = 3
clusters C1, C2, C3, which correspond to the three phases, namely active material, pores and CBD. More35

precisely, it holds

Cj = {vi : j = argmin
ℓ=1,2,3

wℓ ·
27∑

m=1

xm · (f (m)
i − µ

(m)
ℓ )2} for j ∈ {1, 2, 3}, (1)

where w1, w2, w3 > 0 denote the phase weights, x1, ..., x27 > 0 the feature weights and µℓ = (µ
(1)
ℓ , ..., µ

(27)
ℓ )

∈ R27 the feature vector of the centroid of the ℓ-th cluster, respectively. In the classical k-means
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approach, the phase weights as well as the feature weights are all equal to one. To reduce the dimension
of the optimization problem, we set w1 = 1 and x1 = 1 as reference. In addition, we assign equal
feature weights to voxels within the 3×3×3 neighborhood, which have the same (discretized) Euclidean
distance to the currently considered voxel vi. This results in the following five parameters, which are
subject to the optimization: The phase weights w2 and w3 as well as the feature weights x2 (used for5

the 6 voxels with distance one), x8 (used for the 12 voxels with distance
√
2) and x20 (used for the 8

voxels with distance
√
3). Powell’s BOBYQA algorithm is then used to minimize the sum of squared

differences between the experimentally determined volume fractions and the volume fractions obtained
by the modified k-means cluster algorithm [35].

3.3. Particle-based segmentation10

Based on the three-phase reconstruction described above, individual particles will be distinguished from
each other using the marker-based watershed algorithm [36, 37, 38]. This frequently used technique
typically leads to oversegmentation, which can be mitigated by means of approaches such as the concept
of extended regional minima [39] or a post-processing step based on dilation [40]. Even though the
combination of these techniques is able to successfully segment active particles in cathodes of lithium-15

ion batteries [20, 41], there are two parameters, which have to be tuned manually. To reduce the effort
of manual parameter tuning, the segmentation of active particles in the present paper is carried out
via the straightforward adaption of the 2D morphological reconstruction approach presented in [42] to
3D. More precisely, the Euclidean distance transform D from the active material to its complement is
computed [29, 43, 44]. Afterwards, a morphological reconstruction using D as mask and (1 − α)D as20

marker with α ∈ (0, 1) is carried out [45, 46, 47], leading to the reconstructed distance transform R
[48]. The marker image is now given by the local maxima of R, whereas the watershed transformation
is performed on −R. The reconstruction step merges two local maxima d1 ≥ d2 > 0 of D if and only if
w
d2

is larger or equal than 1−α, where w denotes the value of D at the watershed line separating d1 and
d2. For detailed visualizations of the morphological reconstruction process, we refer to [42]. Thus, the25

particle-based segmentation only requires manual tuning of the parameter α. It turns out that α = 0.2
is a reasonable choice, which allows us to successfully segment the NCM particles of all samples, see
Figure 2. Note that using the algorithm proposed in [48] allows to efficiently compute morphological
reconstructions such that the present method is also advantageous from a computational point of view.

4. Microstructure descriptors30

This section covers the definition of several phase-based and particle-based image characteristics. A
particular focus is put on quantifying the spatial heterogeneity by means of locally computed descriptors
of 3D microstructure.

4.1. Volume fraction
Obviously, the volume fraction ε ∈ [0, 1] of a certain phase is a fundamental characteristic of great35

importance, which can be easily estimated from voxelized image data by the point count method [49].
Note that the volume fractions of the three phases have been in used in Section 3.2 to obtain suitable
segmentation parameters by matching the experimentally determined volume fractions of the pristine
cathode.

4.2. Specific surface area40

The specific surface area S ≥ 0 (SSA) of a predefined phase is given by the ratio of its surface area and
the volume of the observation window. The surface area is estimated by weighted local 2× 2× 2 voxel
configurations, where the weights proposed in [50] are used.

6



Figure 2: Two-dimensional in-plane cutouts (300 µm× 300 µm) of the pristine cathode (a-c) and a cyclically aged cathode
(SOH 80 %, 1C, (d-f)), where the left column (a,d) contains the grayscale images. The center column (b,e) shows the
corresponding trinarizations, where active material, CBD and pores are depicted in white, gray and black, respectively.
The segmentation of active particles is shown in the right column (c,f), where different colors are used to label the
individual active particles.

4.3. Geodesic tortuosity

A further phase-based microstructure descriptor is the geodesic tortuosity of a certain phase, which is
a purely geometric characteristic based on shortest paths. At this point, note that different concepts of
tortuosity exist in the literature, which is a common source of confusion [51, 52, 53]. When considering
geodesic tortuosity, for each point within the starting region, the shortest path to the target region is5

computed, where the shortest paths have to be completely contained in a predefined phase. Geodesic
tortuosity is now defined as the length of those shortest paths divided by the Euclidean distance between
the respective start and end points, resulting in a distribution of tortuosity values greater or equal to
one. Mean geodesic tortuosity τgeo ≥ 1 is then simply obtained by averaging over all tortuosity values.
In general, this characteristic is closely related to effective transport properties, see [54, 55, 56]. In the10

present paper, the shortest paths are computed from the current collector side to the separator side
(i.e. in z-direction) since this is the main direction of electric and ionic transport. For this purpose,
the well-known Dijkstra algorithm is used [57]. Note that for each pair (x, y) of x− and y−coordinates,
we add the voxel with the lowest z-coordinate that belongs to the mask of the electrode to the starting
region if this voxel belongs to the phase on which transport takes place. Analogously, the target region15

is based on the voxels with the highest z-coordinate that are located inside the mask and are part of
the transport phase. A more formal definition of geodesic tortuosity within the framework of random
closed sets can be found in [58].
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4.4. Continuous phase size distribution

The continuous phase size distribution CPSD : [0,∞) → [0, 1] is defined in terms of morphological
openings [46, 45], which is the reason why this phase-based characteristic is sometimes called opening
size distribution [59, 46]. In particular, for each fixed radius r ≥ 0, a morphological opening of the
considered phase is carried out using a sphere with radius r as structuring element. The value CPSD(r)5

is now given by the volume of the phase of interest after opening. This corresponds to the maximum
volume that can be covered by spheres with radius r, which have to be completely contained inside the
considered phase.

4.5. Particle size distribution

One of the most fundamental particle-based characteristic is the distribution of particle sizes, which will10

be quantified by volume-equivalent radii.

4.6. Sphericity

In order to characterize the roundness of active particles, we consider the sphericity, which is defined

by ψ =
3√π
A
(6V )

2
3 ∈ [0, 1], where A and V denote the surface area and the volume of an active particle,

respectively. This quantity, originally introduced in [60], is equal to one if and only if the particle is a15

sphere. The lower the sphericity, the larger the deviation of the particle shape from a perfect sphere.

4.7. Connectivity

The connectivity of the active particle system is quantified by the distribution of coordination numbers.
The coordination number of a single particle is defined as the number of touching particles, where the
3× 3× 3 neighborhood is used to decide whether two discretized active particles touch each other.20

4.8. Local characteristics

It is well known that, besides the overall morphology of battery electrodes, local heterogeneities also
strongly affect the electrochemical performance [61, 62, 63]. In particular, degradation mechanisms [64],
lithium-plating [65], electronic impedance [66] and effective tortuosity [67, 68] are potentially subject to
large variations on a local scale. Thus, we partition the observation window into equally sized cutouts25

with 50 voxels in x- and y-direction, whereas the whole sample thickness is used in z-direction (through-
plane direction). By computing a given descriptor of 3D microstructure for each small cutout, one
obtains the local distribution of this characteristic, which allows us to quantify the heterogeneity of the
electrode.

5. Results30

In this section we discuss the results obtained by statistical image analysis and electrochemical mea-
surements to quantify the effects of cyclic aging.

5.1. Statistical microstructure analysis

First, using the microstructure descriptors considered in Section 4, we discuss the structural changes of
cathodes caused by the different cycling conditions. The top row of Figure 3 shows the volume fractions35

of active material (NCM), CBD as well as pore space of the nine samples with a state of health (SOH) of
100%, 90%, 80%, 60% and 40%, respectively. Generally, the volume fraction of NCM is slightly increas-
ing during aging by 1.7% to 4.1%. Note that for a SOH of 80 % and 40%, the charging rate of 1C leads
to a slightly lower volume fraction of NCM compared to 0.5C, whereas both C-rates behave similarly in
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case of a state-of-health of 90 % and 60%. In contrast to the active material, the volume fraction of CBD
and the porosity decrease during cyclic aging. Moreover, there seems to be no unambiguous behavior
for the different cycling rates, especially for the pore phase. With regard to active material and CBD,
we observe a slightly stronger effect for the 0.5C samples. Furthermore, the probability density of the
local volume fraction of NCM is clearly shifted to the right for decreasing SOH-values, see the middle5

row of Figure 3. In addition, the C-rate has a considerable impact on the location and shape of this
density when considering SOH values less or equal than 80%. This effect is similar when considering the
CBD instead, where cyclic aging generally leads to lower local CBD volume fractions resulting in a shift
of the probability density to the left. With regard to the distribution of local porosity, the increased
fraction of regions with a quite small porosity caused by cyclic aging is of particular interest, since this10

might cause bottleneck effects hindering ionic transport.

In contrast to the relatively small changes of global volume fractions and somewhat larger changes of
(horizontally) local volume fractions discussed above, there are more pronounced gradients in through-
plane direction, see the bottom row of Figure 3. Note that even the pristine cathode sample exhibits15

a slight CBD gradient. This is likely caused by binder migration [69, 70, 71, 72], which in turn causes
the active material gradient. The cyclically aged samples show stronger variations in through-plane
direction with regard to the volume fractions of all three phases compared to the pristine sample. Fur-
thermore, for a state of health of 90 %, the differences between 0.5C and 1C are quite small, whereas
for lower SOH-values, the C-rate has a significant impact. In general, the volume fraction of the pores20

strongly decreases when considering the region of the electrode that is at most 10 µm away from the
current collector. With regard to the remaining part of the electrode, this quantity varies only about 5%.

The top row of Figure 4 shows the specific surface area (SSA) of each phase. It can be seen that cyclic
aging leads to a larger surface area of active material, which might be due to particle cracking. An25

increase in specific surface area is also observed with regard to the CBD, despite the slight decrease
of the CBD volume fraction. However, the specific surface area of the pore space is not significantly
affected by cyclic aging, except for both 60% SOH cells, which show an increase (1C) or decrease (0.5C)
compared to pristine sample. Furthermore, the middle row of Figure 4 shows that cyclic aging leads to
an increased number of regions with a comparatively large specific surface area of the active material.30

On the other hand, with regard to the CBD as well as the pore space, there is no clear shift of the
distribution of local specific surface area. Note that the most pronounced changes with regard to these
two phases is observed for the samples with a state of health of 60%.

Note that also the specific surface area strongly depends on the distance to the current collector, see the35

bottom row of Figure 4. More precisely, most cells show an approximately linear increase of the specific
surface area of the active material along the course from the current collector to the separator. With
regard to the CBD, the specific surface area is highly correlated to the corresponding volume fraction
curve in shown in Figure 3h). When considering the specific surface area of the pore space for distances
larger than 10 µm, the variations along the transport direction are strongly pronounced in contrast to40

the more homogeneous behavior of the distance-dependent volume fraction.

Figure 5 shows the mean geodesic tortuosity of the three phases. In general, a tendency towards
larger values of the mean geodesic tortuosity for decreasing SOH values can be observed, where the mi-
crostructural changes with regard to this quantity are much less pronounced compared to the previously45

considered characteristics.
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Figure 3: Top row: Volume fraction of active material (a), CBD (b) and pore space (c). Center row: Probability density of
local volume fraction of active material (d), CBD (e) and pore space (f). Bottom row: Volume fraction of active material
(g), CBD (h) and pore space (i) as a function of the distance to the current collector.

Next, we consider the continuous phase size distribution of CBD and pore space, see Figure 6. It can
be observed that the continuous phase size distribution of these two phases is not influenced by cyclic
aging. In addition, the size of pores is significantly larger than the size of CBD regions, as expected.
Note that the continuous phase size distribution of the active material phase is not considered. Instead,5

the size distribution of the NCM-particles will be considered in the following paragraph.

We now discuss the influence of cyclic aging on particle-based characteristics. Figure 7a) shows how
the size distribution of NCM-particles is influenced by cyclic aging, where the difference between both
C-rates is more pronounced for lower SOH-values. Interestingly, there are some aging scenarios for which10

the particle size distributions is slighted shifted towards smaller particles. On the other hand, there are
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Figure 4: Specific surface area of active material (a), CBD (b) and pore space (c). Middle row: Probability density of
local specific surface area of active material (d), CBD (e) and pore space (f). Bottom row: Specific surface area of active
material (g), CBD (h) and pore space (i) as a function of the distance to the separator.
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Figure 5: Mean geodesic tortuosity of active material (a), CBD (b) and pore space (c).
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Figure 6: Normalized continuous phase size distribution of CBD (a) and pore space (b).

samples with larger particles compared to the pristine sample. In addition, Figure 7b) reveals that the
sphericity distribution is clearly shifted to the left due to cyclic aging, which might be partially caused
by particle cracking. However, it is likely that the NCM-particles are also mechanically deformed since
at least some cathode samples do not show an increased number of small particles, which should be
observed in case of particle cracking. Figure 7c) shows the distribution of the coordination number,5

which only depends on the C-rate for a SOH of 80% and below. Furthermore, most samples show a shift
of the distribution to the right, which corresponds to a slightly improved connectivity of the system of
active particles. In addition, there is a certain small fraction of NCM-particles, which are isolated from
the remaining particles, for each considered cathode sample.
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Figure 7: Probability density of size (a), sphericity (b) and coordination number (c) of active material particles. Note
that for the sake of clarity, a kernel density estimation is used for the coordination number, even though this is a discrete
quantity.

5.2. Electrochemical measurements

The cells showed average capacities of about 40.2mAh at 0.1C and retaining 40.01mAh at 0.5C, and
36.45mAh at 1C in the initial characterization. The capacity value for the chosen cycling rate for each
cell is used as the reference value for the SOH instead of doing slower cycles as check-up. This is done
primarily because of two reasons: First, check-up cycles need a lot of time. Depending on the chosen15

C-rate, the cyclic aging process including the performed electrochemical measurements already took up

12



to about two years. Secondly, the slower cycles have a significant influence on the aging behavior [73],
which is not desired for in this study.
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Figure 8: Discharge capacity in dependence on the cycle number for 0.5C (a) and 1C (b).

Figure 8a) shows the discharge capacity as a function of the cycle number for the cells aged at 0.5C,
while Figure 8b) corresponds to a C-rate of 1C. The cells 60% 0.5C and 40% 0.5C show a steep drop in5

capacity at the end of their lifetime. The cell 40% 1C shows a faster aging compared to all other cells,
which is a result of a slightly leaky housing or a mistake during electrolyte filling of the cell as electrolyte
was detected on the outside of the housing. Unfortunately, the defect was detected after starting the
experiments, so no other cell could be chosen for this long term measurement. The median of losses in
capacity per cycle for each cell during the SOH steps 100% to 90%, 90% to 80%, 80% to 60% and 60%10

to 40% is listed in Table 2.

cell Capacity loss per cycle from ... to ... SOH

100% - 90% 90% - 80% 80% - 60% 60% - 40%
0.5C 40% 0.0098 0.0045 0.0042 0.0113
0.5C 60% 0.0085 0.0053 0.0050 -
0.5C 80% 0.0076 0.0043 - -
0.5C 90% 0.0092 - - -
1C 40% 0.0213 0.0144 0.0057 0.0041
1C 60% 0.0065 0.0049 0.0052 -
1C 80% 0.0053 0.0031 - -
1C 90% 0.0067 - - -

Table 2: Capacity loss per cycle in mAh for the aged cells.

Not considering the cell 40% 1C, the cells aged at 0.5C show a faster capacity fade during the first 10%
of aging compared to the 1C-cells. The next 10% SOH-change show similar rates, while the last two
sections indicate that the 1C-cells are aging faster, as expected. The results of the first 20% can be15

explained by the increased amount of charge, which is cycled through the cells for the 0.5C rate. This
leads to a greater expansion and contraction of the electrodes and, therefore, a faster aging. Higher
temperatures and concentration gradients caused by a higher C-rate seem to play a secondary role in

13



the first 20% of SOH-reduction. Nevertheless, these effects could play a bigger role in the later part of
cyclic aging.

Figure 9 shows the normalized resistances of R0, R2 and R3 for each cell in dependence of its SOH.
The values are normalized to the resistances from the ECM fitted to the first EIS measurement of the5

corresponding cell. An increase of the internal resistance R0 can be observed for all cells that were cycled
with 0.5C in the first 20% SOH loss, except for sample 0.5C 40%. The value of R0 first rises during the
first 10% SOH-loss and drops over the aging process to about the original value from the first ECM fit at
40% SOH. With regard to the 1C measurements, the value of R0 is also increasing during aging except
for the 90% SOH cell, which shows a slight decline of about 20%. Generally, the internal resistance of10

all cells never rises over 2.5 times the corresponding initial value, therefore never reaching three times
the initial resistance criterion for end of life (EOL), which is frequently used in the literature [74, 75].
Examples for the EIS measurements on which these results are based can be found in the supporting
information.
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Figure 9: Development of the resistors R0, R2 and R3 in the ECM (from left to right) during aging with 0.5C (top row)
and 1C (bottom row). The values are normalized to resistances from the ECM fitted to the first EIS measurement of the
corresponding cell.

The curves corresponding to R2 display a quite complex behavior for the cells aged at 0.5C. The fits for
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the cells corresponding to a SOH of 90% and 80% show a decreasing value, while the 60% cell shows an
about 1.4 times higher value at 90% SOH and values smaller than the initial one for 80% and 60% SOH.
The cell aged to 40% SOH shows normalized R2s between 1.9 and 3.5, rising from 90% to 80%, decreasing
to a minimum at 60% and finishing at about 2.4 at 40% SOH. The values for R2 for the 1C measurements
show a clear increasing trend during aging. They rise up by a factor of about 60 of the initial value5

(40% SOH), which is more than tenfold of the factor for the 0.5C aging series. The R3 parameter for the
0.5C aging series displays a lowering of the resistance for the 60% and 90% cells, while the parameter
increases for the other two cells. A decrease is shown from 60% to 40% SOH for the 40% cell. The values
for R3 for the 1C series show a similar behavior as the R2 values for the same series. For all values
an increase in resistance is detected and only the 60% to 40% SOH step shows a slight decrease. To10

summarize the results shown in Figure 9, it can be stated that the 1C series shows a much clearer picture
of increasing resistances, while the behavior of the cells aged at 0.5C is much more complicated. Also
the increase of the resistances R2 and R3 in the 1C series is about 10 times higher than in the 0.5C series.

Generally, the volume fraction of the active material is increasing during aging, see Figure 3. At the15

same time, the value of R3 is rising for the 1C aging series. As can be seen in Figure 4, the SSA of
the active material is rising too. This can be explained with the decreasing amount of lithium, which
is extracted during discharge, due to the higher volume of a more lithiated NCM electrode [76]. The
decrease in delithiated lithium is caused by a general higher resistance in the cell in combination with a
fixed voltage range with no CV phase during delithiation. This is but one aspect of the interpretation20

of the results. Furthermore, the mean geodesic tortuosity of the active material shown in Figure 5
together with the rising SSA suggests that particle cracking is happening in a significant amount, even
though not all cracks can be detected due to the limited resolution of the image data. Note that the
results cannot be explained by particle cracking alone as this would lead to a lower resistance for the
electrode-electrolyte passage due to the higher surface area. This matches the observations with regard25

to the particle size distribution as well as the sphericity distribution in Figure 7. More precisely, the
behavior of these quantities indicates that there has to be a further effect besides particle cracking since
there are certain cathode samples with a shift of the particle size distribution towards larger particles.
In addition, the general trend that the sphericity is decreasing during cyclic aging might be caused by
a combination of particle cracking and some kind of mechanical deformation.30

Considering SSA, volume fraction and tortuosity of the CBD and pore phase, it seems like the active
material is generally expanding into the other two phases and is blocking paths as well as separating
some areas. This might be explained with an expansion of the particles over the aging process. But it
can also be interpreted as a build up of some sort of surface film, which has a similar density to the35

particles. If it’s conductivity is low it might also explain the increase in resistance of R3. To show a
similar signal during the CT scan the film must be of a similar atomic number and/or structure. This
leads to the conclusion, that it is one of three possible in the cell present materials: First, it could
be a copper derivative from the current collector of the anode. Second, an additive in the electrolyte,
which contains similar heavy atoms as nickel, cobalt or manganese breaks down on the surface of the40

NCM particles. Third, the active material dissolves and is redeposited on the particle surface as another
structure, which is less conductive than the original material. Since it has been shown in [77] that these
redepositions have a great influence on layered nickel-based cathode materials, the third possibility seems
to be most likely. Nevertheless, this cannot be proved in this study and there are further possibilities,
which might explain this behavior. This underlines the complex nature of aging mechanisms and forms45

the basis for future research.
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6. Conclusion

In the present paper, the influence of cyclic aging on the 3D microstructure of cathodes as well as the
electrochemical properties of lithium-ion battery cells is investigated. To the best of our knowledge, this
is the most extensive data set of cyclically aged lithium-ion cells including electrochemical data as well
as 3D structures. More precisely, synchrotron tomography is used to capture the 3D microstructure of5

cyclically aged cathodes, where two different C-rates (0.5C and 1C) and five different values for the state
of health (100%, 90%, 80%, 60% and 40%) are considered. The resulting 3D image data is segmented by
a k-means clustering approach into three phases, namely active material, carbon-binder domain and pore
space. In addition, a particle-based segmentation of the system of active material particles is carried out
by a combination of morphological reconstruction and the watershed algorithm. The processed image10

data allows for a comprehensive microstructural analysis, which among others shows that even though
the changes with regard to the volume fraction of each phase are small, there are more pronounced
changes when considering the volume fraction as a function of the distance to the current collector.
This emphasizes the importance of 3D measurements as well as local descriptors of 3D microstructure
in order to accurately capture the morphology of electrodes since certain important structural effects15

can not be detected by using 2D image data or globally computed microstructure properties. Besides
the morphological point of view, cyclic aging is quantitatively investigated by means of electrochemical
impedance spectroscopy, where the resulting data is fitted by an equivalent circuit model. Among others,
it has been shown that a C-rate of 0.5 leads to a complex aging behavior, whereas cyclic aging at 1C
leads to a clearer picture of increased resistances which are up to ten times higher compared to the20

0.5C cells. A correlation to structural data shows another factor than particle cracking, which is more
dominant than particle cracking.
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Figure A1: Nyquist plots corresponding to the C-rates of 0.5C (a) and 1C (b) for both 60% SOH cells, where for exactly
these two cells the spectra for the SOH values of 90%, 80% and 60% are shown.
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