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Abstract. Local variations in the 3D microstructure can control the macroscopic behavior

of heterogeneous porous materials. For example, the permittivity through porous sheets or

membranes is governed by local high-volume pathways or bottlenecks. Due to local variations,

unfeasibly large amounts of microstructure data would be needed to reliably predict such ma-

terial properties directly from image data. Here it is demonstrated that a vine copula approach

provides parametric models for local microstructure descriptors that compactly capture the

3D microstructure including its local variations and efficiently probe it with respect to se-

lected, measurable properties. In contrast to common methods of complexity reduction, the

proposed approach creates parametric models for the multivariate probability distribution of

high-dimensional descriptor vectors that inherently contain the complex, nonlinear dependen-

cies between these descriptors. Therein, material properties are offered in physically motivated

distributions of microstructure descriptors rather than as normally distributed data. Applied

to porous fiber networks (paper) before and after unidirectional compression, it is shown that

the copula-based models reveal material-characteristic relationships between two and more mi-

crostructure descriptors. In this way, the presented modeling approach can provide deeper

insight into the microscopic origin of effective macroscopic properties of heterogeneous porous

materials.

Key words and phrases. porous material, local heterogeneity, vine copula, 3D microstructure, multivariate

statistical data analysis, complexity reduction.
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1. Introduction

Although heterogeneous porous materials surround us in daily life, be them membranes, fiber-

reinforced materials, wood, concrete, or paper, it is still a challenge to predict their macroscopic

behavior from the microscopic structure. In contrast to ordered or homogeneous materials, such

materials exhibit pronounced local variations in their microstructure, so that structure-driven

material properties depend on the actual location in the material. Consequently, also any rela-

tionship between these properties depends on their local spatial correlation. Reliable predictions

are therefore only possible if models are informed about the limits in which the underlying local

microstructure descriptors vary over the entire sample and how likely certain local realizations

of relevant descriptors, so-called configurations, occur. If it is known how often, i.e., how likely,

each permissible configuration occurs in the material, it is possible to quantify how these descrip-

tors vary across the material due to the heterogeneous structure. In mathematical terms, the

likelihood of encountering a given configuration of microstructure descriptors can be computed

from the joint multivariate probability distribution of these descriptors.

When focusing on the 3D morphology of the microstructure, multiple geometric descriptors

are needed to capture the complex microstructure and to distinguish it from the structure of

other materials. If the microstructure is known, e.g., from tomographic imaging of the material,

possible configurations and, consequently, the spatial variations and relationships between the

geometric descriptors are contained in the 3D image data. However, since such data sets are

typically very large, the key challenge is to cast the information contained in the microstructure

into a much more compact form, i.e., to provide and compactly store the parameters of high-

dimensional multivariate distributions.

In this article, we demonstrate the use of R-vine copulas to build and apply a compact, para-

metric model for the multivariate distribution of microstructure descriptors. Such vine copulas

represent the distribution contained in the 3D image data more flexibly and more precisely than

conventional multivariate distribution models. Unlike the latter, vine copulas reliably predict

highly likely as well as rare configurations [1] and inherently describe nonlinear relations be-

tween various descriptors of the 3D microstructure. This flexibility of R-vine copulas is rooted

in their construction: One assembles simple and easy-to-interpret building blocks. The first

building blocks are the univariate distributions of each descriptor. Then, the univariate dis-

tributions are coupled in pairs with one or two additional model parameters using bivariate

copula functions. These model parameters directly provide the relationships between pairs of

microstructure descriptors. Since R-vine copulas are not routinely used for designing multivari-

ate distribution models to capture heterogeneous materials, we illustrate the conceptual steps

necessary to construct such a distribution from 3D image data considered in the present article.

With this compact model of the multivariate distribution at our disposal, we will (i) showcase

how to extract relationships between pairs or even triples of microstructure descriptors, (ii) show

that we are capable of finding relations that are not revealed with other methods, and (iii) show

that these relationships are characteristic for our heterogeneous materials.

Paper sheets serve here as a heterogeneous porous model system to instructively explain how

to construct and use such multivariate probabilistic models. The pore space in paper sheets,

that is accessible to 3D imaging techniques such as microcomputed X-ray tomography [2, 3, 4]

or FIB-SEM,[5, 6] is associated to pores formed between fibers. When a paper sheet is formed,

the number and diameters of the locally involved fibers may profoundly vary [7]. This variation
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results in a pronounced heterogeneity of the pore space, especially in the plane of the sheets.

Intriguing microstructure descriptors of the pore space with foreseeable local variations are the

porosity ε (i.e., the volume fraction of the pore space), the sheet thickness δ, and the specific

surface area SV (i.e., the surface area per unit volume) [4, 8, 9, 10, 11]. For the investigation of

transport phenomena, also the lengths of transportation pathways through the sheet are crucial.

To provide such lengths, we consider here τ0, the mean geodesic tortuosity of all pathways, and

τ3, the mean geodesic tortuosity of pathways with a minimum radius of 3 µm, to account for

high-volume pathways [12].

Thanks to two deliberately chosen paper grades, markedly different realizations of the mi-

crostructure descriptors can be offered for modelling (Figure 1): A new, second paper grade was

formed from an original paper grade by compressing the sheets unidirectionally in the thickness

direction without allowing the fibers to change their in-plane orientation [13]. In the original

paper, there are pronounced variations in the local thickness, as the number of stacked fibers

laterally varies from place to place (uncompressed, Figure 1a,c). During the compression pro-

cess, the original paper was converted to a paper with only slight local thickness variations, but

marked lateral variations in the space between stacked fibers (compressed, Figure 1b,d). While

compression predominantly reduces the space between stacked fibers in previously thicker re-

gions, previously thinner regions remain practically unchanged. Further structural changes,

such as significantly deformed fiber cross sections or even densification of the fiber walls, are

not expected. Since the two paper grades still share the same fiber type and in-plane distribution

of fibers (i.e., same basis weight), it possible to interpret model-predicted changes in relations

between descriptor pairs as a result of compression. The microstructure dataset associated to

each paper grade stems from X-ray computed microtomography scans is large enough to ensure

that local variations in the descriptors are fully captured [13].

uncompressed compressed

a)

c)

b)

d)

Figure 1. Microstructure of a local cutout from uncompressed (a,c), and
compressed paper (b,d) obtained with X-ray computed microtomography [13].
Shown is the fiber material in a cross section of the cutout (a,b) and within the
3D-rendered volume (c,d). This visualization only shows a small region of the
available image data. Courtesy of E. Baikova.

In a first use case, our model formulated in terms of these five microstructure descriptors

directly reveals how strongly descriptor pairs are cross-related in each paper grade. As a second

instructive use case, we will combine our knowledge on porosity ε and specific surface area SV
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to unravel the relation of the latter to the more routinely quoted surface area per unit mass.

As a final model application involving three or even four microstructure descriptors, we show

how the conventional Bruggemann-relation between porosity and tortuosity can be material-

specifically modified to reliably predict mean geodesic tortuosities τ0 and τ3 from knowing local

porosity and local thickness. Such a relation is a highly desirable to ease the prediction of

structure-determined transport properties such as local air permeances [12].

2. Capturing local variations and correlations with R-vine copulas

The five local microstructure descriptors considered in the present study are modeled by a

random vector W “ pW1, . . . ,W5q “ pε, δ, SV , τ0, τ3q: A realization w “ pw1, . . . , w5q P R5 of

W can be interpreted as the vector of descriptors evaluated for a predefined local inspection

region. In principle, the multivariate distribution of the random vector W is readily sampled by

collecting the configurations of pε, δ, SV , τ0, τ3q in non-overlapping inspection regions of a given

size. This yields a sampling-dependent point cloud in the five-dimensional descriptor space.

Based on such a point cloud, we calibrate the probabilistic model. In other words, we seek for

a multivariate probability density function f : R5 Ñ r0,8q of pε, δ, SV , τ0, τ3q which describes

the observed data appropriately and, in particular, reflects interdependencies between pairs of

descriptors accurately. While it is possible to model multivariate probability density functions

directly, for example by kernel density estimation, such an approach does not allow for adjusting

the final model and makes inter- or extrapolation to different scenarios impossible.

We therefore choose to employ a parametric approach. By using so-called R-vine copulas,

parametric univariate and bivariate distributions can be combined to construct the multivari-

ate probability density function of a random vector in arbitrary dimension, where no limiting

assumptions on the shape of the marginal distributions are necessary.

In this section, we explain the theory underlying this approach at the example of the five

local descriptors of paper sheets mentioned above, and demonstrate the increased flexibility and

accuracy that this type of modeling approach brings compared to classical techniques, such as

multivariate normal distributions or product densities.

2.1. Univariate distributions. As a first step, we analyze the univariate distribution of each

local descriptor individually. That is, we are interested in modeling the univariate probability

density functions fi : R Ñ r0,8q, i “ 1, . . . , 5, which are the density functions of the compo-

nents Wi of W “ pW1, . . . ,W5q. Each of these density functions is determined by the frequency

of encountering values of the corresponding descriptor across the sample. From these observed

frequencies, an empirical density function is determined by kernel density estimation [14]. In

order to obtain a parametric model, these empirical densities are approximated by an appro-

priate parametric probability density function with correspondingly adjusted parameters. A

candidate probability density function is found appropriate if (i) it approximates the empirical

density well and (ii) the function accounts for the descriptor distributions regardless of the size

of the inspection region [15]. Furthermore, it is desirable, albeit not necessary, that (iii) the

support of the distribution is consistent with the nature of the descriptor. The last aspect often

excludes the classical Gaussian density function of the normal distribution, as its support is the

whole real line, and it cannot accurately represent distributions that are skewed to one side.

By employing criteria (i)–(iii) explained above, we follow a data-driven approach in modeling

the univariate distributions of the five local descriptors. To find the best fitting model density
4



functions, we did not impose physically motivated density functions. For a general overview on

candidate density functions the reader is referred to [16].

Figure 2 shows that the empirical density functions (filled symbols) are accurately approx-

imated with their respective fitted parametric density functions (open symbols) in all cases.

Depending on the descriptor, we either use beta, generalized gamma, Weibull, or Rician dis-

tributions. Their parameters are fitted via maximum likelihood estimation [17], where the

procedure for beta and shifted gamma distributions follows [15] and the one for the Rician

distribution follows [18].

Figure 2. Univariate density functions of microstructure descriptors porosity
ε (a), sheet thickness δ (b), specific surface area SV (c), as well as the mean
geodesic tortuosities τ0 (d), and τ3 (e) for the uncompressed and the compressed
paper sample. The densities of microstructure descriptors computed from 3D
image data via kernel density estimation (filled symbols) are compared with the
corresponding parametric model densities (open symbols).

For the local porosity ε, beta distributions are highly suitable (Figure 2a), because their sup-

port is r0, 1s and thus matches exactly the range of possible porosity values. Path-length-related

descriptors τ0 and τ3 are modelled with shifted generalized gamma distributions (Figure 2d,e).

Shifting the gamma distribution ensures that its support does not exceed the range of possible

tortuosity values, because τ0, τ3 ě 1. Moreover, gamma distributions readily account for skewed

distributions, be that for the tortuosities τ0, τ3 (Figure 2d,e) or for the local thickness δ in the

uncompressed paper (Figure 2b). The Weibull distribution models the local thickness δ (Fig-

ure 2b) and the local specific surface area SV (Figure 2c) of compressed paper sheets. Note that

the Weibull distribution nicely reproduces the negative skewness, that compression induces in

the distributions of δ and SV . As already discussed in [13] for local thicknesses, a negative skew-

ness indicates that there are less outliers towards high values of δ and SV . The specific surface

area SV of uncompressed paper sheets (Figure 2c) is modeled by a Rician distribution. Though

a fit to a normal distribution has a comparable quality, a Rician distribution is preferred, since

its support is the positive half axis, i.e., only positive SV -values are permitted. The expressions

for the probability density functions used in this article, their adjustable parameters, and their

support are provided in the Supporting Material.
5



uncompressed compressed

P
ea

rs
on

 c
or

re
la

tio
n 

co
e

ffi
ci

en
t s

qu
ar

ed

0.4

0.6

0.5

0.3

0.2

0.1

0

0.4

0.6

0.5

0.3

0.2

0.1

0

Figure 3. Pairwise Pearson correlation coefficients squared for porosity (ε),
sheet thickness (δ), specific surface area (SV ), and the two path-length related
descriptors τ0 and τ3 for the uncompressed (left) and compressed (right) paper
sheets. Labels in red indicate positive correlations, labels in blue negative cor-
relations. To guide the eye through changes in correlations upon compression,
some property pairs are highlighted with a box. Green bars (down triangles)
indicate pairs, whose relations weaken after compression; yellow bars (up trian-
gles) indicate pairs with increased dependence after compression.

2.2. Multivariate distributions and copulas. Recall that we consider the five descriptors

ε, δ, SV , τ0, and τ3 as components of a random vector W “ pW1, . . . ,W5q. As we ultimately

want to model the joint distribution of the random vector W , we are interested in the multi-

variate probability density function f : R5 Ñ r0,8q of W . Since we already have a parametric

representation of the univariate density functions fi, i “ 1, . . . , 5, the simplest approach would

be to model f as the density of the product measure, i.e.,

fpw1, . . . , w5q “ f1pw1q . . . f5pw5q, for all w1, . . . , w5 P R. (1)

However, as this approach ignores all interactions between the descriptors, this model of f only

leads to reasonable results if all five descriptors are independent. In Figure 3, the values of

the squared empirical Pearson correlation coefficient [19] are visualized for all descriptor pairs

for the compressed and uncompressed paper sheets. As these values are non-zero and most of

them significantly differ from zero, the five local descriptors are not independent and therefore

influence each other. These dependencies, which we model separately, have to be taken into

account in order to obtain an accurate model for the joint distribution of the random vector
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W . For a more detailed discussion on the effect of compression on the correlation between

descriptor pairs, see Section 3.1.

In the fortunate case of a multivariate normal distribution, it is enough to incorporate these

pair-wise correlation coefficients in the covariance matrix in order to capture the dependencies

between the individual descriptors [9, 20]. However, as shown in Section 2.1, the marginal dis-

tributions of the descriptors cannot be approximated well by normal distributions. We therefore

require a more advanced approach for modeling the interdependencies between the individual

descriptors, which is precisely what so-called copulas can be used for.

Formally, for any fixed integer n ě 2, where n “ 5 in our case, a function C : r0, 1sn Ñ r0, 1s

is called a copula if it is the multivariate probability distribution function of a random vector

U “ pU1, . . . , Unq for which the marginal distributions of all components Ui, i “ 1, . . . , n, are

uniform on r0, 1s.

The merit of this concept is that it allows to decompose the information carried by the mul-

tivariate distribution of any n-dimensional random vector W “ pW1, . . . ,Wnq in two separate

parts. One part is the information about the univariate marginal distributions, which is carried

by the univariate probability density functions or, equivalently, the corresponding cumulative

distribution functions of W1, . . . ,Wn. The second part is the information about the correla-

tion of the random variables W1, . . . ,Wn. In the context of multivariate normal distributions,

such a decomposition is available by combining univariate normal distributions with a suitable

covariance matrix. This strategy becomes available for all types of marginal distributions and

correlation structures when copulas are used. This idea is formalized through Sklar’s theo-

rem (see, e.g., Theorem 1.1 in [21]), which states that for any cumulative distribution function

F : Rn Ñ r0, 1s of an n-dimensional random vector there exists a copula C such that F can be

written in terms of its marginal distribution functions Fi, i “ 1, . . . , n, and C as

F pw1, . . . , wnq “ C
`

F1pw1q, . . . , Fnpwnq
˘

, for all w1, . . . , wn P R. (2)

In this representation, the copula C models the correlation structure between the components

W1, . . . ,Wn of W , while information about the marginal distributions themselves is captured

in the respective univariate distribution functions Fi, i “ 1, . . . , n. This splits the problem of

modeling a multivariate distribution into the two subproblems of modeling the distributions

of the individual components, and modeling their correlation structure separately. Moreover,

if the distribution of the random vector W is absolutely continuous and, in particular, if its

multivariate distribution function F is differentiable, the multivariate density function f corre-

sponding to F can be expressed via the density function c : r0, 1sn Ñ r0,8q of the copula C,

together with the marginal densities fi, of the components Wi, i “ 1, . . . , n, by

fpw1, . . . , wnq “ c
`

F1pw1q, . . . , Fnpwnq
˘

n
ź

i“1

fipwiq, for all w1, . . . , wn P R. (3)

In general, this is the product of an n-variate density function c and n univariate density

functions f1, . . . , fn. However, the density c in Equation (3) can be decomposed further such

that the multivariate density f is represented by a product of univariate and bivariate density

functions only.

In brief, the necessary steps involve (i) applying the chain rule for conditional density func-

tions and (ii) recursively expressing each conditional density by some (conditional) bivariate

densities rfij : R2 Ñ r0,8q for i, j P t1, . . . , nu with i ­“ j. To avoid complicated notation, the
7



tilde symbol is used to emphasize that these probability densities and distribution functions rfij

can be either unconditional bivariate ones or conditional ones with respect to one or more other

components of W “ pW1, . . . ,Wnq.. A detailed explanation using more involved notation be

found in the Supplementary Material.

Step (iii) decomposes each bivariate density rfij (regardless whether rfij is conditional or not)

using a bivariate copula density rcij as in Equation (3) by

rfijpwi, wjq “ rcij
`

rFipwiq, rFjpwjq
˘

rfipwiq rfjpwjq, for all wi, wj P R, (4)

where rfi is some (conditional) univariate density with the corresponding cumulative distribu-

tion function rFi , i P t1, . . . , nu, and the copula density rcij is the partial derivative of some

(conditional) bivariate copula function rCij : R2 Ñ r0, 1s, given by

rcijpui, ujq “
B2

rCijpui, ujq

BuiBuj
for all ui, uj P r0, 1s. (5)

Ultimately, the multivariate density f can be decomposed into factors of the form given in

Equation (4), which implies that we only need to model (conditional) joint distributions of

descriptor pairs pWi,Wjq to capture the full correlation structure as in Equation (3). For this,

many parametric families of bivariate copula densities are readily available in order to achieve

a good fit to the bivariate densities, see the Supplementary Material for further details.

2.3. R-vine tree representations. To find all univariate and bivariate densities that ulti-

mately enter the decomposition in Equation (3), it is not necessary to step through the formal

decomposition (being provided in the Supporting Material). Instead, an appropriate structure

for the decomposition can be determined using a graph representation with trees. So-called

regular vine (R-vine) trees give rise to a pair-copula decomposition of the multivariate den-

sity [22]. A specific choice of bivariate copulas for every pair in this decomposition is then

called an R-vine copula.

We illustrate the graph representation for the case of three descriptors (i.e., considering

W “ pW1,W2,W3q) added to the R-vine tree one by one, see Figure 4. If we only consider

one descriptor W1, then f is equal to f1, see Figure 4a. In Figure 4b, two descriptors W1

and W2 are considered, which adds the univariate density f2 (circle) and a third factor c1,2

(square, connected by a dashed line to the edge of the graph above). The latter factor c1,2 is

a bivariate copula density and accounts for the correlation between W1 and W2 in the spirit of

Equation (4). Figure 4c extends this scheme to incorporate a third descriptor W3. The new

factors are the univariate density f3 (circle), the bivariate copula density c2,3 (square), and the

conditional copula density c1,3;2 (diamond), which models the dependency between descriptors

W1 and W3 given that W2 “ w2 for some w2 P R, see Equation (3.23) in [22]. In the spirit of

c1,3;2, we will list all descriptors, to whose values bivariate copula densities are conditioned, as

indices after the semicolon in c¨;¨. In general, this conditional copula density c1,3;2 depends on

the value w2 P R of W2.

In the following we assume the so-called simplifying assumption, i.e., that copulas of condi-

tional distributions do not depend on the value we are conditioning on. This is a commonly

used simplification step that enormously reduces the complexity of the model. Without this

step, the number of parameters for the final five-dimensional density would become computa-

tionally infeasible. Under this assumption, the copula density c13;2p ¨ , ¨ ;w2q does not depend
8



on the particular choice of w2. This allows us to model the joint distribution of W1,W2,W3 by

means of three bivariate copulas and the three marginal distributions. We will see later that the

distribution of our data is modeled reasonably well under this assumption; for a more detailed

discussion on the simplifying assumption, see [23].

b) c)two descriptors three descriptorsa) single descriptor

number of considered descriptors i

n
u

m
b

er
 o

f 
tr

ee
s 
T
i-
1

Figure 4. Pair copula decomposition of f represented by graphs for the example
of one (a), two (b) and three correlated descriptors (c). Each vertex in a graph
corresponds to a density function that enters the vine copula of f as a factor.
Edges indicate a dependence between two descriptors. As a guide for the eye, all
factors associated to a new descriptor added are connected with a diagonal, grey
bar. Each new descriptor i extends the scheme to the right via factors (vertices)
aligned along such a diagonal and adds a new tree Ti´1 if i ě 2 .

All factors occurring in this decomposition are arranged in graphs Tm form “ 1, 2. Vertices in

graph T1 visualize factors depending on one descriptor and correspond to univariate densities.

Edges (solid lines in Figure 4a and 4b) mark the dependencies between the variables of the

connected vertices and indicate a bivariate copula (dashed line). The densities c1,2 and c2,3 of

these bivariate copulas enter graph T2 as a vertex if W1 and W3 are connected by an edge in T2

(Figure 4c).

Collecting all factors generated with the graphs T1 and T2, the density f ofW “ pW1,W2,W3q

is given by

fpw1, w2, w3q “ c1,3;2
`

F1;2pw1;w2q, F3;2pw3;w2q
˘

(6)

ˆ c2,3pF2pw2q, F3pw3qq c1,2
`

F1pw1q, F2pw2q
˘

f3pw3qf2pw2qf1pw1q,

for all w1, w2, w3 P R, where cij : r0, 1s2 Ñ R denotes the bivariate copula of Wi and Wj ,

1 ď i ă j ď 3, c1,3;2 is the conditional copula density of W1 and W3 given the value of W2

under the simplifying assumption, and Fi;2p¨;w2) is the cumulative distribution function of Wi

given that W2 “ w2 for i “ 1, 3, see also Example 4.1 in [22]. In the general case of n random

descriptors for some fixed integer n ě 2, a particular decomposition is represented as a sequence

of n ´ 1 trees T1, . . . , Tn´1.

2.4. Resulting R-vine copula structure. The representation of the joint density of a ran-

dom vector through R-vine trees is not unique. For instance, the descriptor indices 1, 2, and 3

can be permuted in Equation (6). Commonly, the variables in the vine trees are ordered based

on the strength of the pair-wise correlations. Performing such an ordering for the pair copula de-

composition gives trees for uncompressed (Figure 5a) and compressed paper sheets (Figure 5b),
9



in which the descriptors arrange in tree T1 depending on whether the paper has undergone com-

pression or not. We will interpret in which detail the trees of uncompressed and compressed

paper sheets differ later in Section 3.1. Figure 5a,b shows that order and arrangement of the

descriptors (in tree T1) can differ from the ordering in the initially introduced random vector

W “ pε, δ, SV , τ0, τ3q and from the example tree in Figure 4. Hence it is convenient (i) to index

the copula densities by the descriptors rather than their corresponding indices, for example c1,5

is denoted by cε,τ3 , and, (ii), to indicate descriptors to be conditioned on after the semicolon

in the copula indices (in analogy to the notation used in Equation (6)); e.g., cε,δ;τ0,τ3 is the

conditional bivariate copula density of pε, δq given the values of τ0 and τ3 under the simplifying

assumption.
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Figure 5. (a,b) Tree representation of pair copula decomposition obtained by
fitting R-vine copulas to the multivariate distribution of the local descriptors
porosity ε, sheet thickness δ, surface area per unit volume SV and path-length re-
lated descriptors τ0 and τ3. Tree representations are shown for uncompressed (a)
and compressed (b) paper sheets. Colored vertices of trees T2, T3 and T4 indicate
the size and sign of Kendall’s tau τK . (c-e) Determination of the material-specific
order of descriptors in tree T1 using maximum spanning trees for the uncom-
pressed (d) and compressed paper sample (e). (c) Graph in which descriptors
are vertices arranged as in the random vector W “ pε, δ, Sv, τ0, τ3q and all pair-
wise connections represented as edges. (d,e) Shows how the maximum spanning
tree for the graph (c) is determined by connecting descriptors with strongest
pair-relations in descending order.

The arrangement of descriptors in Figure 5a,b strictly results from an ordering algorithm

applied to the paper-specific data. This algorithm is implemented in the statistical software

package R by the function RVineStructureSelect in the package VineCopula, see p. 134 in [24].

In brief, the structure of the trees is determined using maximum spanning trees with respect to

Kendall’s tau [22], which is a rank correlation coefficient used to quantify the ordinal association
10



between two measured quantities. In the first step we consider a complete graph in which every

vertex represents a descriptor, see Figure 5c). Then, every edge represents a descriptor pair

and receives a weighting based on the value of Kendall’s tau. The so-called maximum spanning

tree of this graph is determined according to Kruskal’s algorithm, as illustrated in Figure 5d,e).

Edges are marked (green lines) according to the absolute value of Kendall’s tau, |τK |, that

is associated with the pair correlation of the vertices connected by the respective edge. The

marking starts with the edge of largest |τK | (indexed with 1) and continues in descending

order of |τK | (indices 2,3, and 4). If an edge is marked that connects vertices that are already

connected via previously found edges, the edge (marked as purple line) is not considered in

the tree and one proceeds with the edge of next lower |τK |, for example discarding edge 3a in

favor of edge 3b in the uncompressed case. The marking stops as soon as all five vertices are

connected, i.e., four edges are identified. The resulting tree contains the descriptor pairs (e.g.,

pε, τ3q and pτ3, τ0q in T1) as edges whose joint distribution is to be modeled by a bivariate copula

function.

As the descriptors are arranged in T1 according to their position in the maximum span-

ning tree (cf. Figure 5d,e)), the most strongly related pair (with the highest absolute value of

Kendall’s tau) is not necessarily placed in left-most position. In the next step, the edges of the

maximum spanning tree become the vertices of a new graph (vertices in T2). The set of edges of

this new graph is constructed according to the so-called proximity condition, see p. 98 in [22], to

ensure that the formal decomposition of the resulting vine into bivariate copulas is well-defined.

The proximity condition requires that the corresponding edges of two connected vertices (e.g.,

cτ3,τ0 and cτ0,δ in T2, Figure 5a) of the new graph share a common vertex in the previous tree (τ0

in T1). This common vertex represents the common descriptors on which subsequent bivariate

densities are conditioned on (cτ3,δ;τ0 in T3). Due to the simplifying assumption, these conditional

descriptors are ignored and Kendall’s tau is again determined on the remaining descriptor pair.

A maximum spanning tree is computed and the procedure is repeated recursively until only one

vertex remains in the final tree.

2.5. Bivariate distributions. With the R-vine decomposition shown in Figure 5 at hand, the

only remaining step is to fit a bivariate copula function to every descriptor pair in the R-vine

trees. The procedure for this is implemented by the R function BiCopSelect in the package

VineCopula, where a wide range of parametric copula families is available for fitting, see p.

69 in [24] for a full list. First, the parameters of all available copulas are determined through

maximum likelihood estimation. The selection of the parametric family is then performed

according to the Akaike information criterion [19].

The resulting fits for the joint bivariate densities are shown in Figure 6 for the examples

of (i) the porosity ε and specific surface area SV (Figure 6a and 6b) and (ii) for the porosity

ε and thickness δ (Figure 6c and 6d). For the descriptor pairs appearing in the first tree of

the R-vine decomposition (T1 in Figure 5), this is a direct fit of a bivariate copula function to

the joint bivariate densities. For the conditional distributions of descriptor pairs appearing in

the subsequent trees, it is a fit under the simplifying assumption. All empirical and copula-

modeled joint bivariate densities as well as the chosen copula families and their associated copula

parameters are provided in the Supporting Material.
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Figure 6. Bivariate probability densities of porosity ε and specific surface area
SV (a,b), and of porosity ε and sheet thickness δ (c,d), each shown for the un-
compressed (a,c) and compressed (c,d) paper sheets. For each case, the bivariate
density obtained via kernel density estimation is shown for measured image data
(left) and simulated data drawn from the copula-based model (right).

3. Interdependence relations for microstructure descriptors

With the parametric model described above, the multivariate probability distribution of

W “ pε, δ, Sv, τ0, τ3q can be analyzed with respect to different aspects. In particular, we use

the R-vine copula model in order to quantitatively assess the impact of compressing the paper

sheets. This compression acts only in the thickness direction, compacting the paper mainly

in thicker areas with many stacked fibers, without the possibility of changing the in-plane

orientation of the fibers, see Section 2 in [13].

In this way, a sample with a roughly uniform mass density and marked thickness variations

(uncompressed) was transformed into a sample of marked mass density variations with only

small thickness variations (compressed).

The copula-based model, the tree representations of which are shown in Figure 5, allow us

to quantify compression-induced differences in multiple different ways.

3.1. Interdependence relations distinguish paper grades. The tree representations of

the parametric R-vine copula models inform on dependence structures between the descriptors

for the two paper grades (Figure 5a,b). Each set of trees reveals the strongest, most-needed

relationships with descriptors based on Kendall’s tau in tree T1. For uncompressed paper, for

example, the three pairs that can be formed between the porosity ε and the two path length

descriptors τ0 and τ3 relate most strongly (cf. Figure 3), but only two pairs appear in the

tree T1, pε, τ3q and pτ3, τ0q (Figure 5a). The pairwise relationship pε, τ0q is quite strong, but is

not considered in T1 because it is the least strong and therefore least needed to quantify the

joint variations in ε, τ0, and τ3. Compression leads to a significant change in the dependency

structure; it rearranges the descriptors within the first tree T1 (Figure 5b) to emphasize the

strong interdependencies between ε, δ with SV . In contrast to the uncompressed sample, τ0 and

τ3 interact only weakly with the other three descriptors.
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Instead of comparing the strongly condensed information stored in the copula-based depen-

dence structures, we can directly monitor how compression alters the correlation coefficients of

each descriptor pair before and after compression. The values of these coefficients are visualized

in Figure 3 for both samples using their squares, varying within the interval r0, 1s. The uncom-

pressed paper has, as mentioned above, two particularly strong relations, between τ3 and τ0,

and between ε and τ3 (Figure 3, left green boxes), and concomitantly between ε and τ0. Note

that the correlation coefficient of the pairs pε, τ3q and pε, τ0q are negative, as indicated by their

blue labels in Figure 3. That means that longer paths form the more likely, the smaller the local

porosity is, regardless whether all possible local paths or local high-volume paths, i.e., paths

with a minimum diameter of 3 µm, are considered. Upon compression, this intuitive relation

between ε and τ0 as well as between ε and τ3, respectively, is practically lost. The strongly

reduced squared values of the correlation coefficients of ε and τ3, and τ3 and τ0 (Figure 3, right

green boxes), respectively, suggest that the lengths of high-volume paths neither dependent

on the available local porosity nor on the lengths of all conceivable local paths. As argued in

[13], the low correlation between ε and τ0, together with a reduced porosity and a practically

unchanged distribution of all pathlengths, τ0, suggests that the topology of the pathways is

nearly unchanged. However, high volume paths get much longer upon compression (Figure 2b

and 6c); some of them exceed the local thickness by a factor of 10 and more. Such pathways

may start in a local environment of a given ε, but certainly leave this spot and run through

denser or more open regions. Thus, whether such paths can form is not determined by the local

porosity of their starting position anymore.

This illustrative discussion demonstrates that the set of correlation coefficients (Figure 3) and

the copula-based dependence structure (Figure 5a,b) of W “ pε, δ, Sv, τ0, τ3q can serve as finger

prints to compare and to distinguish differences between materials, here between differently

treated (compressible) papers.

3.2. Revealing relations between different kinds of specific surface areas. Our para-

metric copula-based model enables us to unravel relationships to descriptors that are associated

with, but not directly incorporated into, the parametric model. To demonstrate the use of such

relationships, we will now focus on the surface area per unit mass, denoted by SM , which is

routinely measured, for example, by gas sorption, mercury intrusion porosimetry, or inverse gas

chromatography. Thus, SM is commonly used to compare and distinguish materials in terms of

their internal surface area rather than SV , the surface area per unit volume. However, SM can-

not simply replace SV to convey information about the available internal surface area per unit

volume, i.e., the amount of available surface sites. Using the models for the two paper samples

considered in this study, we show that SM includes not only the locally available surface area,

but also the local porosity and its variation; correspondingly, samples can have the same value

for SV , but very different ones for SM , and vice versa.

The relation between SM and SV is established via the local mass density ρ. Recall that, in a

certain inspection region of the sample with volume V and internal surface area A, the surface

per unit volume SV is defined as

SV “
A

V
. (7)
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Its counterpart SM requires, besides the internal surface area A, also the mass M of the inspec-

tion region, i.e.,

SM “
A

M
. (8)

Thus,

SM “
1

ρ
SV , (9)

where ρ “ M{V . The mass density ρ can be estimated using mass densities ρs in the solid

and ρp in the pore space, respectively, provided that ρs and ρp are constant. In our samples,

ρs corresponds to the mass density of the fiber walls, which is expected to be invariant in each

paper grade and unaffected by compression. Assuming that ρp ! ρs, as the density ρp of air in

the pores is three orders of magnitude smaller than the density of the fiber walls, we obtain

ρ “ p1 ´ εqρs ` ερp « p1 ´ εqρs . (10)

In this approximation, all possible variations in the local density ρ of the porous material

are caused by variations in the local porosity ε. Inserting the approximated relation given in

Equation (10) into Equation (9) yields

SM “
SV

ρsp1 ´ εq
. (11)

Consider the surface area per unit solid volume SVs given by

SVs “
SV

1 ´ ε
, (12)

and note that SM only differs from SVs by the constant factor ρs, since

SM “
SVs

ρs
. (13)

By means of SVs we can therefore predict the statistical behavior of SM with the parametric

copula-based model, even without knowing the value of the constant factor ρs.

On the other hand, Equation (11) readily shows that the spatial variation in SM is not only

governed by the variation in SV , but also by variations in local mass density ρ « ρsp1 ´ εq

and hence by variations in local porosity ε. Even though our paper samples possess only

slightly different distributions of SV , they represent two contrasting scenarios in terms of mass

density variations and, thus, give quantitatively and qualitatively different values of SM and SVs .

Figure 7 tracks how the relation between SVs and SV changes when passing from uncompressed

to compressed paper.
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Figure 7. Comparison of uncompressed (a) and compressed (b) paper sheets
to reveal the impact of compression on the relation between local surface area
per unit volume, SV , and local surface area per solid volume, SVs . For both
paper sheets, the arrangement of fibers (gray) in a cross section of a sheet is
schematically visualized. The bold contour of the cross sections of fibers indi-
cate their contributions to the local surface area. In the compressed paper (b),
compacted regions are indicated with fiber cross sections shaded in dark-gray.
The joint probability density of SVs and SV is shown as heatmap. The white
curves indicate how the (conditional) mean value of SVs changes with the value
of with SV .

The uncompressed paper is composed of virgin, long softwood fibers that arrange layer-by-

layer into stacks of fiber mats as shown in a schematic cross section in Figure 7a. This fiber

arrangement remains largely unaffected during the production process. Hence, local accumu-

lations of fibers lead to thickness variations [13] and the local surface area A (and, hence SV )

is expected to relate to the local porosity [25, 26]. The more surprising find is that the local

specific surface area SV does not correlate with the local porosity ε, as seen from the joint

density of ε and SV in Figure 6a. Even though we cannot explain the absence of any relation

between SV and ε in this paper sheet, theoretical models that aim to connect SV to ε in packed

beds (such as soils) [27, 28] or multiphase battery electrodes [29] predict indeed that a porosity

range (0 ! ε ! 1) exists in which a change in local porosity does not trigger a change in SV .

As SV is unaffected by ε, we expect SVs to link linearly to SV according to Equation (12). The

fitted joint density of SVs and SV is visualized in Figure 7a by a heat map. Therein, associated

mean values of SVs relate practically linearly to SV (white line) as expected. Note that the

underlying heat map gives additional insight into the predictive power of the white mean line,

as it carries information about the local amount and spread of the available data-pairs of SVs

and SV .

Compression of the paper changes the relation between SV and SVs as a result of local

compaction. Compression, which is intended to smooth surfaces [13], acts exclusively in the

thickness direction. It compresses thicker regions while thinner regions remain unchanged,

as shown schematically in the cross section of Figure 7b. This process strongly alters the
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relationships between descriptors of microstructure (see Section 3.1), albeit the distribution

of SV changes only slightly (see Figure 2d). The apparent increase in the mean value of SV

compared to the uncompressed case is likely due to lesser contributions of specific surface areas

Æ 0.16 µm´1. The descriptor relations originate from the previously thicker, now compacted

regions. Compaction reduces the vertical space between fibers and thus the local porosity ε.

Wherever the vertical space is completely eliminated, the fibers are in direct contact, which

reduces their contribution to the total surface area, so that SV shrinks [25, 26]. Even when

considering the whole sample, this strong dependence of SV on ε is clearly reflected in their joint

bivariate density (Figure 6b) and in the strong positive correlation (Figure 3). How SV grows

with ε determines how the relationship (12) between SVs and SV accounts for local porosity:

In the heat map of Figure 7b, we observe values of SVs that are much smaller than in the

uncompressed case and the mean value curve of SVs has a much steeper slope. The steeper

slope is not only due to lower local porosity ε, but also reflects the changed dependence of SVs

on ε and, in parallel, the unchanged behavior of the uncompressed regions.

Note that SV and SM are not simply linearly related, as the proportionality factor 1{ρsp1´εq

in Equation (11) depends on the sample-specific local porosity ε, so that SV and SM cannot

just be used interchangeably. While the white curve in Figure 7a might suggest a nearly linear

dependence between SV and SVs (and therefore also between SV and SM due to Equation (13)),

this is only true for the conditional mean value of SVs (or SM ) given the value of SV . However,

the relation between SV and SVs (or SM ) is random and cannot be captured by a simple linear

relation.

Thus, the use of SM alone to compare specific surface areas in a series of samples is not

sufficient, because it cannot be excluded that samples differ in their local porosity.

3.3. Bruggeman-type relations for the prediction of tortuosity. The copula-based model

presented in this study also allows us to justify formulas that relate various descriptors of porous

materials with each other. We illustrate this for a common wisdom associated to porous materi-

als: Higher porosities promote shorter pathlengths and, hence, smaller tortuosities [30, 31]. This

expectation is often cast into the form of Bruggeman-type relations for the so-called tortuosity

factor τ , which characterizes the length of effective (not necessarily shortest) transportation

paths. In particular, when the transport is obstructed by cylindrical or spherical objects, liter-

ature considers the formula

τ “
1

εa
(14)

for random arrangements of solid cylinders or spheres, in which the exponent a in Equation (14)

is 1/2 or unity, respectively [32].

In the following we show how the relation between τ and ε given in Equation (14) can be

extended for the mean geodesic tortuosities τ0 and τ3 considered in the present study. With the

parametric copula-based model delivering ε and τr, with r being either 0 or 3, we can readily

determine the quotient

a “ ´
log τr
log ε

, (15)

where a is not longer a deterministic constant as in Equation (14), but a random variable.

Since we learned that the local porosity ε is either strongly correlated with the tortuosities

τ0, τ3 (uncompressed sample) or the local thickness δ (compressed sample), see Figure 3, it

is worthwhile to check whether the random Bruggeman exponent a in Equation (15) depends
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on the thickness δ. Figure 8 shows how the exponent a in Equation (15) predicted from the
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Figure 8. Dependency of the exponent a “ ´ log τr{ log ε on the local thick-
ness δ, shown for uncompressed (a,c) and compressed paper sheets (b,d) by the
bivariate probability density of pa, δq (heatmap), together with the conditional
mean values of a for given values of δ (white curves) and its linear fit (dashed
lines). Left panels (a,c) concern the tortuosity τ0 (i.e., r “ 0) with respect to
all paths, while the middle panels (b,d) refer to tortuosity τ3 with respect to
high volume paths (r “ 3). The right panel (e) shows a comparison of the linear
relation between a and δ for all four cases on equal length scales. As a guide to
the eye, the regions with high probability in (a-d) are indicated.

parametric model varies with thickness δ when either the tortuosity τ0 of all pathways (Figure 8a

and 8b) or τ3 of high volume pathways is considered (Figure 8c and 8d). Each panel shows

(i) the bivariate density of the joint probability distribution of a and δ (heatmap), and (ii) the

conditional mean value of a given δ (white solid curves).

The exponent a, best seen from the mean value curve, shows a marked dependence on the

thickness δ regardless of the (uncompressed or compressed) sample or the chosen variant of the

tortuosities τ0, τ3. Moreover, for each considered case, the evolution of the mean value curve

of a within the range of encountered thicknesses δ can be well quantified by a linear function

(dashed lines in Figure 8a-d), i.e., the exponent a is approximated by

a “ bδ ` c , (16)

with b, c P R being adjustable parameters. The fitted values of b and c as well as the coefficient

of determination R2 are given in Table 1. Note that for the compressed sample, the goodness

of fit could be further improved if the fit only considers thicknesses near the mean thickness of

ca. 100 µm, see Figure 2e. These linear approximations of a, collected in Figure 8e, exhibit

significant differences that depend on the sample and variant of tortuosity considered. Thus,

the porosity- and thickness-dependence of the mean geodesic tortuosity τr (r being either 0 or

3), is captured with the parameterized formula

τr “
1

εbδ`c
, (17)
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where the values of b, c P R are chosen separately for each of the four cases uncompressed paper,

compressed paper.

Having in mind that the Bruggeman-type relation in Equation (14) was easily extended to

include the dependence on the local thickness δ, the question arises whether the prediction of

τr via Equation (17) could be further improved if the exponent a also took a dependence on

the remaining descriptor, the surface area per unit volume SV , into account. Therefore, an

extended linear model of the form

a “ bδ ` cSV ` d , (18)

where b, c, d P R are some parameters, was fitted to realizations of pε, δ, SV , τ0, τ3q drawn from

the copula-based model. However, it turned out that the fit using Equation (18) improves

the prediction of τr only marginally compared to Equation (16), see the last two columns of

Table 1. Hence, there is no significant benefit in increasing the complexity of the model beyond

Equation (17), see also the Supporting Material.

Sample Tortuosity b of Eq. (16) c of Eq. (16) R2 of Eq. (16) R2 of Eq. (18)
compressed τ0 -4.8 ¨ 10´3 0.89 0.365 0.392
compressed τ3 -12.9 ¨ 10´3 2.72 0.045 0.052

uncompressed τ0 -1.8 ¨ 10´3 0.73 0.186 0.195
uncompressed τ3 -4.2 ¨ 10´3 1.66 0.091 0.097

Table 1. Parameters b, c and coefficients of determination of the linear model
given in Equation (16), as well as coefficients of determination of the model
in Equation (18). Note that the model in Equation (16) only considers local
thickness, while the model in Equation (18) considers local thickness and local
surface area per unit volume.

4. Discussion

Being equipped with the general concept of R-vine copulas, two additional technical consid-

erations promise to substantiate the model and further predictions to be derived from it: (1)

As a sanity check for the distilled cross-descriptor relations it is fair to ask whether an R-vine

copula keeps its shape upon considering other local cutout sizes. As the model relies on local

descriptors obtained for a certain, fixed cutout size, it inherits the descriptor variation that

is characteristic for the cutout size [33]. The larger the cutout size, the smaller the variation

[10, 13, 34]. So it is intriguing to establish, whether the size-dependent R-vine copula models

preserve (i) the correlation ranking of the descriptors (i.e., the tree shape of the R-vine copula)

and (ii) the same bivariate copula density functions. (2) The results from Section 3.2 and 3.3

include information about the predictive power of considered models by indicating the local

amount and spread of available data in the heat maps of the probability densities. This pre-

dicted validity range aids to suggest which further data ranges ought to be explored. Additional

data could be supplied either by probing further regions in the sample or by inspecting deliber-

ately altered samples, provided that the initial data set is already representative of the sample

[13].

The R-vine-based parametric models allow the complexity of highly varying microstructures

to be compactly captured by sample-specific multivariate distributions of five microstructure
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descriptors. Each model distribution consists of a set of parameterized univariate and bivari-

ate distributions ordered and linked according to their pairwise dependence expressed by the

Kendall-Tau rank coefficient. With this formal act of complexity reduction, our models provide

valuable structure to the five-dimensional space of descriptors itself. The very composition of

the model, and thus the dependence structure determined, is highly material-specific and ca-

pable of distinguishing materials: Pairwise dependencies between descriptors are quantified as

an inherent feature of the model. Beyond the pairwise dependencies, probability distributions

with three or more descriptors can be extracted and used to confirm or find previously unknown

analytical formulas for the relationship between descriptors, as shown for the surface area per

unit mass, SM , and for the Bruggemann relationship between τr and ε. A final and very im-

portant, but easily overlooked, aspect is that the choice of descriptors allows us to interpret

the relationships between each descriptor in terms of microstructure and its changes. Rather

than relying on descriptors whose interrelationships are completely unclear and often come from

unrelated measurements or are simply readily available, we have taken care to select descrip-

tors that are known to contribute collectively, yet in a structure-specific manner, to transport

through disordered materials. Considering the above, parametric models based on vine copulas

are expected to reach their full potential when coupled with subsequent searches for structural

properties or optimization of related properties, e.g., permittivity.

Most of the conceivable benefits exemplified in this study are not limited to unordered materi-

als. Even before the actual matching procedure, the identified dependencies between descriptors

may suggest additional dimensionality reduction [35]; for strongly related pairs of descriptors,

one descriptor could be completely replaced by another [20]. Our model is also useful in selecting

or generating configurations: (i) A parametric model, such as the one presented in this paper,

inherently contains the physically consistent range of descriptor values. Since the descriptors do

not need to be normally distributed, no additional constraints are required for the generation of

configurations to ensure physically consistent values. (ii) Thanks to the parametric formulation

of the multivariate probability density, interpolation between known configurations to generate

unseen configurations is fast and robust. In particular, the prediction of rare and extreme con-

figurations directly benefits from the ability of copulas to accurately describe the likelihood of

configurations that are far from the most likely. (iii) The latter implies that material-specific

conditions can be imposed on algorithms to generate statistically equivalent morphologies that

reproduce the dependency structure between descriptors. (iv) Our parametric multivariate

model can even be made compatible with frameworks that use Gaussian approaches, although

these approaches necessarily require multidimensional normal distributions. The idea is to iter-

atively transform the probability distribution model into multivariate normal distributions and

vice versa, using normalizing fluxes [36, 37].

Taken together, vine copula-based parametric models characterize vectors of microstructure

descriptors for various kinds of materials and their relationships in a compact, structured, and

easily interpretable manner. They provide an excellent relation-wise and physically informed

starting point for fast and robust sampling of higher-dimensional descriptor spaces of materials,

in particular of disordered heterogeneous materials. Therefore, these models are a good tool to

generate a data-based understanding of local, structural relationships in materials.
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5. Methods

Material. Two types of paper are considered. The first, uncompressed one serves as our

reference paper. It is a commercial product consisting of unbleached softwood virgin pulp fibers,

that does not contain fillers and has not passed any mechanical post-treatment. The paper

sheets exhibit low variability in local mass density, while its local thickness varies appreciably

across the sheet. To obtain the second type, i.e., the compressed paper, the reference paper was

subjected to a hard-nip, steel-steel calendering with a line load of 90 N/m. To determine whether

this compression had the desired impact on local mass density and thickness, each paper type

underwent a characterization in terms of basic paper-specific quantifiers; the detailed values

are given in [13]. The compression preserves the basis weight of 100 g/m2 [38], but markedly

reduces the sheet thickness, determined via the caliper-based thickness (the apparent thickness

associated with the most protruding regions of the paper sheets [39]). Calendering smoothes

both surfaces as indicated by an enhanced Bekk smoothness parameter (informing on the time

(in seconds) for a fixed volume of air to leak between the surfaces of a paper sample and a

smooth glass) [40]. In parallel, markedly enhanced air retention times [41] demonstrates a

compression-induced reduction in air permeance.

Microstructure acquisition. The microstructures of the two considered paper grades were

acquired by imaging the papers with X-ray microcomputed tomography followed by a segmenta-

tion of the 3D images. The voxel size in the microstructure data sets is 1.3 µm. To capture the

variations in the microstructure, 150 volumes of the uncompressed sample with a field of view of

1.7ˆ1.4 mm2 were acquired that covered a totally scanned area of approximately 2.9 cm2. For

the compressed sample less volumes sufficed as the field of view was with 3.29ˆ2.46 mm2 larger.

Details related to sample preparation and structure acquisition, as well as post-treatment and

binarization of the 3D image data is provided in [13].

Preprocessing methods providing descriptor data. To compute the local microstruc-

ture descriptors, we partitioned all binarized data sets into non-overlapping, local inspection

regions. These inspection regions are square-shaped in lateral direction and contain the entire

thickness of the paper sheets. For each inspection region, the values of the five descriptors were

determined and collected in 5-tuples of (ε, δ, SV , τ0, τ3). Though the descriptor values depend

on the size of the inspection regions [13], we illustrate the construction of the parametric prob-

abilistic model and the interdependence relations for regions with a side length of 330 µm. A

total of 200 non-overlapping regions were considered for each paper grade. When combining

these regions, the associated total area 200 ˆ (330 µm)2 = 21.78 mm2 ensures a comprehensive

representation of the variations in each paper grade, i.e., any further region added would not

change the univariate distributions within a Kolmogorov distance of 0.05. [13]
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