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S1. Decomposition of multivariate probability densities. Here we briefly summarize

the mathematical arguments needed to arrive at a decomposition of a multivariate probability

density into a product of univariate probability densities and bivariate copula densities, see

e.g. [3, 4] for further details. First, the necessary steps are provided for the decomposition of a

general multivariate density function f1,...,n : Rn Ñ r0,8q for any fixed integer n P t2, 3, . . .u.

Afterwards, the example of a quadrivariate density f1,2,3,4 : R4 Ñ r0,8q will be used to illustrate

these steps.

S1.1. General case. Suppose that we are given n random variables W1, . . . ,Wn with absolutely

continuous joint distribution and differentiable multivariate distribution function. While in the

main text we simply denoted their n-variate joint density of pW1, . . . ,Wnq by f , we will need the

additional specification of the indices 1, . . . , n here, i.e., instead of f we will write f1,...,n in the

following. The ultimate goal is to represent f1,...,n by the univariate densities fi of Wi and some

(conditional) bivariate copula densities rcij evaluated by means of some conditional distribution

functions rFi and rFj of Wi and Wj , respectively, where i, j P t1, . . . , nu. To get there, three steps

are required: (i) Rewrite the n-variate density f1,...,n in terms of univariate conditional densities

using the chain rule for conditional probability densities, and (ii) consecutively convert the

univariate conditional densities into bivariate conditional densities. Finally, in step (iii), each

bivariate density is expressed by a bivariate copula density function. The procedure stops once
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each of the bivariate conditional densities is written as a product of marginal densities and

bivariate copula density functions.

Rewriting f1,...,n as product of univariate conditional densities. To express the n-

variate density f1,...,n in terms of conditional densities, the chain rule for conditional probability

densities is used. Intuitively, this corresponds to consecutive drawing of the sample pw1, . . . , wnq

from f1,...,n, each time conditioning on the already drawn values. The resulting identity then

reads as

f1,...,npw1, . . . , wnq � fn;1...n�1pwn;w1, . . . , wn�1qfn�1;1...n�2pwn�1;w1, . . . , wn�2q

� . . .� f2;1pw2;w1q f1pw1q, for all w1, . . . , wn P R, (S1)

where fi;1...i�1p�;w1, . . . , wi�1q : R Ñ r0,8q denotes the univariate conditional density of Wi

given that pW1, . . . ,Wi�1q � pw1, . . . , wi�1q, for all i � 2, . . . , n. Note that this decomposition

is possible regardless of the order of the variables with respect to which we start the draw. In

the formulation considered above, the variables are chosen in ascending order, as it drastically

simplifies the notation in the following arguments.

Converting univariate conditional densities into bivariate conditional densities.

Note that the univariate conditional densities on the right-hand side of Eq. (S1) are defined by

fi;1...i�1pwi;w1, . . . , wi�1q �
f1,...,ipw1, . . . , wiq

f1,...,i�1pw1, . . . , wi�1q
, (S2)

for all w1, . . . , wi P R and i � 2, . . . , n. For i � 2 the numerator on the right-hand side of

Eq. (S2) is already a bivariate density. This is desired, as we can later apply Eq. (S6) to the

numerator, which cancels out the denominator in Eq. (S2). If i ¥ 3, an additional step is

necessary, where we use the fact that the conditional bivariate density f1,i;2,...,i�1 of pW1,Wiq,

given that pW2, . . . ,Wi�1q � pw2, . . . , wi�1q, is defined by

f1,i;2,...,i�1pw1, wi;w2, . . . , wi�1q �
f1,...,ipw1, . . . , wiq

f2,...,i�1pw2, . . . , wi�1q
, for all wi, . . . , wj P R. (S3)

Thus, it holds that

f1,...,ipw1, . . . , wiq � f1,i;2,...,i�1pw1, wi;w2, . . . , wi�1qf2,...,i�1pw2, . . . , wi�1q , (S4)

for all w1, . . . , wi P R and i ¥ 3. Inserting Eq. (S4) into the numerator of Eq. (S2) yields another

representation of fi;1...i�1 for i ¥ 3 through

fi;1...i�1pwi;w1, . . . , wi�1q �
f1,i;2,...,i�1pw1, wi;w2, . . . , wi�1qf2,...,i�1pw2, . . . , wi�1q

f1,...,i�1pw1, . . . , wi�1q
,

�
f1,i;2...i�1pw1, wi;w2, . . . , wi�1q

f1;2...i�1pw1;w2, . . . , wi�1q
for all w1, . . . , wi P R, (S5)

in which the numerator is now again a bivariate density. Analogously to Eq. (S2) for the case

i � 2, we will later apply Eq. (S8) to the numerator of Eq. (S5), which again cancels out the

denominator of Eq. (S5).

Expressing arbitrary bivariate densities by bivariate copula densities. Sklar’s the-

orem [3, 4] states that any bivariate probability density fi,j : R2 Ñ r0,8q of a two-dimensional
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random vector pWi,Wjq can be expressed by a bivariate copula density ci,j : r0, 1s
2 Ñ r0,8q via

fi,jpwi, wjq � ci,j
�
Fipwiq, Fjpwjq

�
fipwiq fjpwjq, for all wi, wj P R, (S6)

where Fi and Fj are the (univariate) cumulative distribution functions of Wi and Wj , respec-

tively, and ci,j is the bivariate copula density of some copula function Ci,j : r0, 1s
2 Ñ r0, 1s, that

is

ci,jpui, ujq �
B2Ci,jpui, ujq

BuiBuj
, for all ui, uj P r0, 1s. (S7)

Bivariate copula functions Cij can be chosen from a wide range of parametric function families

to fit the bivariate density fi,j best. For an overview on such function families, the reader may

refer to, e.g., the selection given in Tables S2 and S3 below, see also [1, 2]. By construction,

copula densities couple the marginal distributions of Wi and Wj (via Fi and Fj) to a bivariate

(joint) probability density, by means of one or several additional copula-specific parameters,

that contain the relation strength between the two variables Wi and Wj , alike the correlation

coefficient in bivariate Gaussian distributions.

In the case of a conditional bivariate density of the form fi,j;i�1,...,j�1 with i � 1   j, using

again Sklar’s theorem, a representation analogous to Eq. (S6) is acquired by adding the indices

i� 1, . . . , j � 1 of the conditioning variables to every factor, yielding

fi,j;i�1,...,j�1 � ci,j;i�1,...,j�1

�
Fi;i�1,...,j�1, Fj;i�1,...,j�1

�
fi;i�1,...,j�1 fj;i�1,...,j�1, (S8)

where we suppress the arguments of the functions for better readability. At this point, the

simplifying assumption is used, i.e., we assume that the copula density ci,j;i�1,...,j�1 in Eq. (S8)

does not depend on the specific values of pwi�1, . . . , wj�1q. This allows us to represent the

numerator in Eq. (S5) through a (conditional) bivariate copula density.

Assembling the multivariate probability density f1,...,n. We can now express each

conditional density in Eq. (S1) by a bivariate conditional density via Eq. (S5). Subsequently,

each of these bivariate densities is expressed by a bivariate copula density as prescribed in

Eqs. (S6) and (S8. This yields the following expression

f1,...,n �
n�1¹
i�1

n�1¹
j�i�1

ci,j;i�1,...,j�1

�
Fi;i�1...,j�1, Fj;i�1...,j�1

� n¹
k�1

fk, (S9)

where we again suppress the arguments of functions for better readability.

S1.2. Example: Decomposition of a quadrivariate probasbility density. For the case n � 4, we

now demonstrate all the steps considered above, necessary to decompose the joint (quadrivari-

ate) probability density f1,2,3,4 : R4 Ñ r0,8q of a 4-dimensional random vector pW1,W2,W3,W4q

into a product of univariate (marginal) probability densities and bivariate copula densities. To

this end, it is most instructive to show this by adding the random variables W1,W2,W3,W4 one

by one.

If we consider only one variable W1, then f1 is its marginal density and no decomposition is

necessary. With one more additional variable, W2, we need to decompose the joint desnity f1,2

of pW1,W2q. Following Eq. (S6), we readily get that

f1,2pw1, w2q � c1,2
�
F1pw1q, F2pw2q

�
f1pw1q f2pw2q, for all w1, w2 P R. (S10)
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Adding a third variable, the dependencies between the variables W1, W2, W3 in f1,2,3 cannot

be captured by one single bivariate copula anymore. Rather, we rewrite f1,2,3 bymeans of

conditional probability densities (like in Eq. (S1)), i.e.,

f1,2,3pw1, w2, w3q � f3;1,2pw3;w1, w2qf2;1pw2;w1qf1pw1q, for all w1, w2, w3 P R. (S11)

Using Eqs. (S2) and (S6), we get that the second factor f2;1 in Eq. (S11) is given by

f2;1pw1;w2q �
f1,2pw1, w2q

f1pw1q
� c1,2

�
F1pw1q, F2pw2q

�
f2pw2q, for all w1, w2 P R. (S12)

Furthermore, using Eqs. (S5) and (S8), the first factor f3;1,2 in Eq. (S11) can be written as

follows:

f3;1,2pw3;w1, w2q �
f1,3;2pw1, w3;w2q

f1;2pw1;w2q

�
c1,3;2

�
F1;2pw1;w2q, F3;2pw3;w2q

�
f1;2pw1;w2q f3;2pw3;w2q

f1;2pw1;w2q

� c1,3;2
�
F1;2pw1;w2q, F3;2pw3;w2q

�
f3;2pw3;w2q,

for all w1, w2, w3 P R. Therein, for the factor f3;2 we get that

f3;2pw3;w2q �
f2,3pw2, w3q

f2pw2q
� c2,3pF2pw3q, F3pw3qq f3pw3q, for all w1, w2, w3 P R,

by Eq. (S6). Inserting these expressions for f2;1 and f3;1,2 into Eq. (S11) yields

f1,2,3pw1, w2, w3q � f1pw1q c1,2
�
F1pw1q, F2pw2q

�
f2pw2q

� c1,3;2
�
F1;3pw1;w3q, F3;2pw3;w2q

�
f3;2pw3;w2q

� f1pw1q c1,2
�
F1pw1q, F2pw2q

�
f2pw2q

� c1,3;2
�
F1;2pw1;w2q, F3;2pw3;w2q

�
c2,3

�
F2pw2q, F3pw3q

�
f3pw3q,

for all w1, w2, x3 P R. Thus, in a more compact form that suppresses the arguments of the

functions, we have

f1,2,3 � c1,2pF1, F2q c2,3pF2, F3q c1,3;2pF1;2, F3;2q
3¹

k�1

fk. (S13)

Finally, the fourth variable W4 is added, where we start again with rewriting f1,2,3,4 by means

of univariate conditional densities, i.e.,

f1,2,3,4pw1, w2, w3, w4q � f4;1,2,3pw4;w1, w2, w3q f3;2,1pw3;w1, w2q f2;1pw2;w1q f1pw1q, (S14)

for all w1, . . . , w4 P R. Comparing this expression with Eq. (S11) we can see that we have

supplied already all factors except f4;1,2,3. Using Eqs. (S5) and (S8), this conditional probability
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density takes the form

f4;1,2,3pw4;w1, w2, w3q �
f1,4;2,3pw1, w4;w2, w3q

f1;2,3pw1;w2, w3q

�
c1,4;2,3

�
F1;2,3pw1;w2, w3q, F4;2,3pw4;w2, w3q

�
f1;2,3pw1;w2, w3q

� f1;2,3pw1;w2, w3qf4;2,3pw4;w2, w3q

� c1,4;2,3
�
F1;2,3pw1;w2, w3q, F4;2,3pw4;w2, w3q

�
f4;2,3pw4;w2, w3q,

for all w1, . . . , w4 P R, where

f4;2,3pw4;w2, w3q �
f2,4;3pw2, w3;w4q

f2;3pw2;w3q

�
c2,4;3pF2;3pw2;w3q, F4;3pw4;w3qq f2;3pw2;w3q f4;3pw4;w3q

f2;3pw2;w3q

� c2,4;3pF2;3pw2;w3q, F4;3qpw4;w3q f4;3pw4;w3q,

and

f4;3pw4;w3q �
f3,4pw3, w4q

f3pw3q

�
c3,4

�
F3pw3q, F4pw4q

�
f3pw3q f4pw4q

f3pw3q

� c3,4pF3pw3q, F4pw4qq f4pw4q,

for all w2, w3, w4 P R. Inserting all these expressions into Eq. (S14) and sorting the factors gives

the final decomposition of f1,2,3,4 into a product of univariate (marginal) probability densities

and bivariate copula densities:

f1,2,3,4 � c1,2pF1, F2q c2,3pF2, F3q c3,4pF3, F4q c1,3;2pF1;2, F3;2q

� c2,4;3pF2;3, F4;3q c1,4;2,3pF1;2,3, F4;2,3q
4¹

k�1

fk. (S15)

Now the multivariate density f1,2,3,4 is expressed by bivariate copula densities and the univariate

marginal densities. Arranging all factors of this decomposition in Figure S1 shows that we again

generated a tree-like representation of related factors. In the spirit of Figure 4in the main text,

colored patches highlight the factors, which join the decomposition with each additional variable.
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Figure S1. Factors contributing to the pair copula decomposition of the quadri-
variate probability density f1,2,3,4 in Eq. (S15), arranged in a tree representation.
Each colored patch contains the factors that are introduced with a new variable.
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S2. Modeling of univariate probability densities. Detailed information on the univariate

probability densities, which are used in this study to model the (marginal) distributions of

microstructure descriptors ε, δ, SV , τ0 and τ3, is given in Table S1. Here, I0 denotes the zero-

order modified Bessel function of the first kind, Γ is the Gamma-function, and 1A denotes the

indicator function of a set A. Note that the Rician distribution is the distribution of the length

of a two-dimensional random vector with independent and identically (normally) distributed

components, see e.g. [5].

Table S1. Probability density functions used to model the univariate distribu-
tions of the microstructure descriptors ε, δ, SV , τ0, τ3, see also [6].

distribution density function descriptor
estimated
parameters

beta Γpα�βq
ΓpαqΓpβqx

α�1p1� xqβ�1
1r0,1spxq

ε (uncompressed)
α � 165.297
β � 244.86

ε (compressed)
α � 109.653
b � 227.68

shifted
Gamma

px�1qk�1

θkΓpkq
e�p

x�1
θ q

k

1r0,8qpxq

τ0 (uncompressed)
k � 43.860
θ � 0.015

τ0 (compressed)
k � 55.562
θ � 0.011

τ3 (compressed)
k � 10.740
θ � 0.194

τ3 (uncompressed)
k � 3.213
θ � 1.537

Gamma xk�1

θkΓpkq
e�p

x
θ q

k

1r0,8qpxq δ (uncompressed)
k � 62.9873
θ � 1.6961

Weibull β
α

�
x
α

�β�1
exp

�
�
�
x
α

�β	
1r0,8qpxq

δ (compressed)
α � 98.508
β � 17.631

SV (compressed)
α � 0.166
β � 42.941

Rician x
σ2 I0

�
xs
σ2

�
exp

�
�px2�s2q

2σ2

	
1r0,8qpxq SV (uncompressed)

s � 0.162
σ � 0.004
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S3. Prediction of the Bruggeman exponent. Besides the results presented in Section 3.3,

we provide additional information on the comparison between the linear models given in Eqs. [16]

and [18], respectively, for the predicting the Bruggeman exponent a. Figure S2 shows scatter

plots of the respective residuals, i.e., the difference between the value of a calculated through

Eq. [15] and the value of a predicted through the linear models in Eqs. [16] and [18], respectively,

in dependence of the specific surface area SV .

Figure S2. Scatter plots of residuals when predicting the Bruggeman exponent
a by means of the sheet thickness δ (left column), and by means of δ and the
specific surface area SV (right column). In the line above the plots, the corre-
sponding Pearson correlation coefficient between the residuals and the specific
surface area SV is given.
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S4. Bivariate probability densities for descriptor pairs. Besides the results presented

in Section 2.5, we provide the bivariate probability densities for all pairs of microstructure

descriptors obtained via kernel density estimation based on (i) tomographic image data and

(ii) simulated data drawn from the copula-based model, see Figures S3 and S4. The chosen

copula families and their associated copula parameters are given in Tables S2 and S3 for the

uncompressed and the compressed sample, respectively.

Table S2. Copula families and their associated copula parameters in the case
of uncompressed paper sheets.

Copula Model type Parameters

Cp,τ3 Student-t θ1 � �0.37, θ2 � 30

Cτ0,τ3 Survival Gumbel θ � 1.87

Cδ,τ0 Gaussian θ � �0.41

CS,δ Gaussian θ � �0.37

Cp,τ0;τ3 Frank θ � �1.09

Cδ,τ3;τ0 Independence

CS,τ0;δ Independence

Cp,δ;τ0,τ3 Clayton (rotated 270�) θ � �0.27

CS,τ3;δ,τ0 Survival Gumbel θ � 1.12

Cp,S;δ,τ0,τ3 Tawn Type 1 (rotated 270�) θ1 � �1.49, θ2 � 0.08

Table S3. Copula families and their associated copula parameters in the case
of compressed paper sheets.

Copula Model type Parameters

Cp,τ3 Tawn Type 1 (rotated 270�) θ1 � �1.38, θ2 � 0.19

Cp,δ BB8(rotated 90�) θ1 � �4.63, θ2 � �0.66

Cp,S Survival BB8 θ1 � 3.55, θ2 � 0.91

Cδ,τ0 BB8(rotated 90�) θ1 � �2.13, θ2 � 0.91

CS,τ3;p Survival Clayton θ � 0.20

Cδ,τ3;p Joe (rotated 90�) θ � �1.25

Cp,τ0;δ BB7 (rotated 90�) θ1 � �1.04, θ2 � �0.45

CS,δ;p,τ3 Independence

Cτ0,τ3;p,δ Clayton θ � 0.24

CS,τ0;p,δ,τ3 Tawn Type 2 θ1 � 4.89, θ2 � 0.00
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Figure S3. Joint probability density of selected descriptor pairs for the un-
compressed (left columns) and the compressed sample (right columns). For each
descriptor pair, the bivariate density obtained via kernel density estimation is
shown for measured image data (left) and simulated data drawn from the copula-
based model (right). Shown are descriptor pairs that have a clearly visible nega-
tive correlation: pε, τ0q, pε, τ3q, pε, δq, pδ, τ0q, and pδ, τ3q, see also Figure 6 in the
main text.

10



Figure S4. Joint probability density of selected descriptor pairs for the un-
compressed (left columns) and the compressed sample (right columns). For
each descriptor pair, the bivariate density obtained via kernel density estima-
tion is shown for measured image data (left) and simulated data drawn from the
copula-based model (right). Shown are remaining descriptor pairs not covered
in Figure S3, i.e., pτ3, τ0q and all possible pairs containing the specific surface
area SV , see also Figure 6 in the main text.
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