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1 Introduction and Motivation

In 1898, Karl Haag (HAAG 1898) introduced a new method of displaying dialect differences on a 

map. In the maps that he drew, the thickness of a line between two places indicates how different 

the dialects spoken on both sides of the line are, thus summing up the data of several dialect feature 

maps, each of which provides the realisations of one linguistic feature in space. This was the first 

step  towards  a  quantitative  dialectology,  going  along  with  other  linguistic  disciplines  such  as 

lexicography,  phonetics,  or  historical  linguistics  (cf.  KÖHLER ET AL.  2005,  BEST 2006).  The 

dialectometrical approaches developed since then have put forth a wide range of methods, all of 

which are based on the measuring of dialect distance (the grade to which the dialects in two places 

differ), which is essential for all further dialectometrical investigation. Up to the 1970s, this was 

done exclusively by counting the dialectal differences between all neighbouring places, a method 

that Jean Séguy adapted from Haag for the  Atlas linquistique et ethnographique de la Gascogne 

(SÉGUY 1965–1973), the first major dialectometrical project. In the 1970s, Hans Goebl was the first 

scholar to extend this method – the counting of differences – to all possible pairs of places, not only 

neighbours, and developed a broad spectrum of advanced methods of visual presentation and of 

analysis,  such as different kinds of cluster  analysis  or coherence tests  (see,  for example,  GOEBL 

1994, 2001, 2006, 2007). The subsequent dialectometrical approaches are based on Goebl’s method 

(KELLE 1986, HUMMEL 1993, SCHILTZ 1996, and others).  The next major step was made by John 

Nerbonne and Wilbert Heeringa, who introduced a new way to measure the dialectal distance into 

Goeblian  dialectometry:  they used  an  adapted  version  of  the  so-called  Levenshtein-distance  to 

measure phonetic distance and were thus the first to take into account gradual similarities between 

records, not only identity or non-identity, and they also greatly contributed new analysis methods 

such as multi-dimensional scaling or factor analysis (e.g.  NERBONNE AND HEERINGA 1998, HEERINGA 

2004, NERBONNE 2006).

There  are  various  other  methods  which  are  dialectometrical  in  the  sense  of  ‘quantitative 
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dialectology’, e.g. techniques to measure the dialectality of a variety, i.e. its linguistic distance from 

a standard variety (a brief overview can be found in SCHMITT 1992, 61–91).

The toolbox put together by dialectometricians over more than a century allows for substantiated 

and  objective  statements  about  the  shapes  and  characteristics  of  dialect  areas  or  the  relations 

between linguistic landscapes. It provides a useful and reliable set of techniques that is now an 

important means of gaining information about dialects in space. 

However, classical dialectometry is still restricted to the global question of the dialectal division of 

the  areas  under  investigation.  As  all  feature  maps  of  the  respective  corpus  are  put  together  to 

contribute  to  the  analysis  of  the  spatial  distributions  of  dialects,  not  of  features,  the  structural 

characteristics of the single feature maps are not taken into account. When browsing through a 

dialect atlas, even a cursory glance at the different maps reveals that their distribution patterns are 

not just images of the partitioning obtained by global dialectometrical analysis, slightly distorted by 

stochastic noise,  but that  they show quite individual and highly variated patterns. The variants’ 

spatial distributions can change so dramatically from map to map that this cannot be attributed to 

mere random fluctuation.

On some maps, the distributions of the variants form small, compact and hardly intermingled areas, 

on others,  there are  greater,  overlapping areas,  and there are maps on which we can make out 

nothing but utter chaos. Some geographically defined characteristics such as mountain ridges or 

rivers  parallel  borders  between linguistic  features,  some geographical  features  seldom or  never 

correlate with linguistic boundaries.1 Several  dialectologists have investigated and classified the 

highly diverse structures and patterns of such maps (e.g.  WENZEL 1930, 107ff., FRINGS 1956, BACH 

1969, 39–226, HILDEBRANDT 1983), but as yet, there is no quantitative approach that would allow for 

a systematic examination of the individual maps. 

The  structural  characteristics  of  a  linguistic  feature  map  are  a  result  of  the  way in  which  its 

geographical distribution developed. Several factors that could play a role in this development are 

imaginable: frequency, semantic field or geographical conditions are only a few. The way a map 

looks must in some way correlate or at least be somehow related to these variables. In a nutshell: 

there must be reasons why maps look so different. A quantitative analysis of a corpus of feature 

maps should help us answer the question of which variables play a role in the constitution of the 

maps, and how they affect the spread of variants. 
1We refrain from using the term ‘isogloss’, as it  is inaccurate for several reasons (cf.  HÄNDLER AND WIEGAND 1982, 
SCHNEIDER 1988, 177ff.), and rather prefer the less problematic expression ‘boundary’.



If we are to investigate what the mechanisms are that determine the geographical distributions of 

variants, we must first find a way to describe and quantify the structural characteristics of the maps. 

Concepts like “complexity” or “homogeneity” can be of help. As a first step, they must be defined 

and scaled. Next, a way has to be found in which to measure these characteristics, which has to be 

as objective as possible and in any event reproducible. If a large amount of maps has been analysed 

with regard to  these characteristics,  it  is  possible  to  try and correlate  the values  obtained with 

properties of the linguistic features, thus gaining insight into the mechanisms that are at work in 

language change in space.



2 Approach

The method presented in this article and its  underlying theoretical  approach are based on some 

general assumptions about the data in dialect atlases and the linguistic facts they represent. As the 

atlas data consist of the answers that selected persons have given at  selected places to selected 

questions, it is clear that they reflect only a snippet of the reality. Therefore, the data obtained in the 

surveys do not faithfully reflect the “real” situation at the record locations. Even if we concede that 

the records are more than regular statistical samples, since an informant can speak for more persons 

than just for him- or herself,2 we have to acknowledge the fact that the data are subject to a certain 

amount of random fluctuation. An approximation of the “real situation” can, however, be obtained 

by using  statistical  methods,  which  will  turn  out  to  be  very useful  for  the  calculations  of  the 

structural characteristics of the maps.

The estimation of the probability with which a certain answer should occur at a location, based on 

what the actual records reveal, helps us assign values to that location which assess the geographical 

distribution of variants in its environments. A look at the neighbourhood of each location gives us a 

clue to the validity of the record given there. If, for instance, a single outlier appears in an otherwise 

uniform area, it is very likely that, had another person at the same location been asked, he or she 

would have given the variant of the surrounding locations. At the same time, it is to be expected 

that, if enough persons had been asked in the surrounding area, a few of them would have come up 

with the variant of the outlier. This is a very simple example to illustrate our basic assumption: the 

more records of a certain variant appear in a location’s environment, the more likely it is that this 

variant would have been given as an answer at the location itself if many people had been asked, 

even if the informant that actually was interviewed has given a different one. Abstractly speaking, 

the records of the neighbours of each record location are taken into account when assessing the 

location in  question,  their  influence however  declining with growing distance.  Consequently,  if 

sufficient differing variants around one location are given, they can “overpower” the actual record. 

On the other hand, this also weakens their “power” at their own locations, because the outlier has 

some minor effect on them, too. This expedient is legitimate, because the contact between speakers 

does not only occur within villages and towns, but also between them. The higher the geographical 

distance between two locations is, the lower is the degree of language contact to be expected.3

2Cf. “Der Informant als Experte” (SBS 1997–2005, vol. 1, 20f.)
3This is, of course, an over-simplification, because geographical proximity is not a direct indicator for language contact. 
It has indeed been one of the major goals of classical dialectology to find out what promotes language contact and what 
hinders it. As this question can not yet be regarded as resolved, at least not in quantitative terms, we have no reliable 
basis on which to estimate language contact.  Therefore,  we will  preliminarily have to make do with geographical 
distance as a very rough, although not entirely unfit indicator for the expected degree of language contact between two 
locations.



The result of this method can be seen as an estimated percentage for each variant at each record 

location,  specifying how likely it  would be that a variant would be given as an answer at  that 

location if all possible informants were asked, bearing in mind that the actual records are nothing 

but statistical samples. This estimation holds, of course, only for the part of the population that has 

been selected as eligible informants. The calculations for the estimation are based exclusively on 

the records given in the actual data (a reasonable amount of interpretation granted, as they have to 

be  classified  into  variants)  and  the  geographical  coordinates  of  the  locations.  For  the  exact 

mathematical procedure, see Section 4.

How should the values obtained be interpreted? If the percentage for a certain variant at a location 

is fairly small, we can still assume that this variant is at least part of the passive vocabulary of a 

handful of possible informants. If no variant shows clear prevalence over the others, they are to be 

seen in a state of “competition”, presumed that they are semantically equivalent.4 Consequently, the 

percentages that are obtained for each location and each variant serve a dual purpose: firstly, they 

reflect better what the “real situation”, i.e. the probability to get a certain answer at a location, can 

be presumed to be, and secondly, they allow us to assess the structural characteristics of a map 

locally.  A location  in  which  one  variant  dominates  clearly  over  all  the  others  is  situated  in  a 

relatively  homogeneous  area,  whereas  a  location  in  which  no  single  variant  shows  a  clear 

prevalence over the others lies in a rather intermingled, heterogeneous part of the map. These values 

can then, on the whole, give us an idea of the overall homogeneity of the map. The values also show 

us which variant is the prevalent one in a certain region, even if the region itself is scattered with 

three  or  four  different  variants,  allowing  us  to  divide  the  maps  into  prevalence  areas  – thus 

generating area-class maps automatically. They serve as a means for further analysis and provide – 

as a by-product – an objective way for the division of point-symbol maps into area-class maps.5

4Such a state of competition between two or more variants in a language community is usually seen as an indicator for 
ongoing language change: one variant is the older, the other the newer one. Eventually, one will prevail, either because 
the newer one supersedes the older one, or because the older one regains lost ground (cf.  HAAS 1978, 34–80, KÖNIG 
1982,  464).  A state  of  stability is  only given  if  one  variant  clearly dominates  and  has  no  serious  competitors.  A 
quantitative approach to language change as gradual replacement of older variants by newer ones is known as the so-
called Piotrovskij-law (cf. ALTMANN 1983, PIOTROWSKI ET AL. 1985, 81–100, LEOPOLD 2005, BEST 2006, 106–123).
5There is no question that the area-class maps generated with this method are simplified visualizations of geographical 
dialect data. Clearly, there are more elaborate and detailed ways of displaying linguistic data on a map. Our area-class 
maps serve first and foremost the assessment of the results of our method, and are not meant for a classical qualitative 
interpretation of a dialect map, which often deals with small scale variation. They are, however, reproducibly generated 
and provide a very accessible visualisation of medium scale variation in the SBS and atlases of similar size, illustrating 
the degree of variability in all parts of the map.



3 Data

All examples and results provided in this article have been gained from data from the Sprachatlas  

von Bayerisch-Schwaben (SBS 1997–2009), which was compiled under the direction of Werner 

König at the University of Augsburg in the years 1984–2005. It is the most comprehensive dialect 

atlas within the German-speaking area, comprising 14 volumes with altogether approx. 2,700 maps. 

The investigation area extends 90 km west to east and 150 km north to south, encompassing 272 

record locations. Each item from the questionnaire was typically answered by one informant per 

location. Additional informants were only called in if the first informant proved insufficient. As this 

large amount of data is also available electronically, the SBS is a perfect candidate for the trial of 

new dialectometrical methods.

For each item of the questionnaire, the database of the SBS assigns to each locality one or more 

entries (depending on how many different answers have been given by the informants), consisting 

of a transcription of the actual record and a code for the symbol that has been used in the mapping 

process. This code is what we use primarily for the identification of variants, because it provides a 

pre-classification of the records following established linguistic principles, making it easy to decide 

whether two slightly differently pronounced forms belong to the same lexical item. It must be noted 

that the number of entries is not determined by the number of informants at a location, but by the 

number  of  different  variants.  The  database  does  not  yield  any  information  about  how  many 

informants have contributed a certain variant, so that, for lack of other information, they have to be 

considered equally valid.

For the preliminary study presented in this article, we confine ourselves to lexical maps, as phonetic 

and morphological maps will pose additional problems that have yet to be dealt with, for instance, 

ordinal  scale  data.  The  corpus  encompasses  823  maps,  which  is  a  major  part  of  the  word-

geographical maps of the SBS.



4 Mathematical Methodology

4.1 Intensity Estimation and Area-Class Maps

The first practical step in our approach to the structural analysis of dialect maps is the automated 

generation of area-class maps on the basis of the raw data. Mostly, this raw data is charted in point-

symbol maps, as is the case in the SBS. Since the data basically consist of specific symbols at 

specified points in the plane, it can be seen as a set of point patterns. Thus, it appears appropriate to 

employ methods from point process statistics. Such methods are well established and frequently 

used in many fields of science (see, for example, BADDELEY ET AL. 2006, DIGGLE 2003, ILLIAN ET AL. 

2008, STOYAN AND STOYAN 1994).

The usual purpose of area-class maps, as explained above, is to provide the viewer with a division 

into areas that stand for the occurrence of certain variants, but here, they also help to prepare the 

data for further analysis. Therefore, as a first step, a point-symbol map is “separated” into as many 

so-called variant-occurrence maps as there are distinct symbols (representing distinct variants) on 

the  point-symbol  map.  In  each  of  the  variant-occurrence  maps,  only  one  variant  will  occur, 

wherever it was originally recorded. At those locations where the respective variant does not occur 

in the point-symbol map, there will be no variant at all in the variant-occurrence map. In this way, a 

point pattern of occurrence points for this variant is obtained. Since it is possible that the point-

symbol map features multiple symbols (i.e. variants) at a single location, each record location t is 

assigned an occurrence value  lx(t) of the variant  x: if  x is the only variant occurring in the point-

symbol map at  location  t,  it  is assigned the value  lx(t) = 1. Otherwise, it  is assigned its  relative 

frequency of occurrence, e.g. if x is one of three different variants occurring at location t, lx(t) = . 

Also, to simplify notation, all points of measurement t from the original data where x does not occur 

at all are assigned lx(t) = 0 in the variant-occurrence map for x, which from equation (1) below can 

easily be seen to be equivalent to disregarding  t completely when creating the variant-occurrence 

map.

Once a set of variant-occurrence maps is obtained from the raw data, a continuous intensity field is 

estimated for each variant-occurrence map. Informally speaking, at every location on the map, a 

variant’s intensity field indicates the likelihood of that variant occurring at the respective location. 

This information is obtained by means of a two-dimensional so-called kernel estimator. For detailed 

discussions of all aspects of kernel estimation see, for example, SCOTT (1992) and SILVERMAN (1986). 



Here, we will only give an overview of the specific tools used for our investigations. The kernel 

estimate ux(ti) of the intensity of a variant x at a location ti is defined as 

(1)

In this formula, t1, . . .,tn denote the n points of measurement, and d(ti,tj) indicates the geographical 

distance between the locations ti and tj. The parameter  h > 0 is called the bandwidth of the kernel 

estimator, while the monotonously decreasing function  K is called the kernel. Basically, a kernel 

estimator works by assigning a certain “probability mass” to each location where the variant was 

recorded, and then spreading out this mass in a way that will give less mass to areas further away 

from that location. The shape of the kernel function determines the way in which this mass is spread 

out, while the bandwidth  h can be interpreted as the scale. By adding up the mass created by all 

points of measurement at a certain location, the intensity estimate at that location is obtained. In our 

approach, the mass created at a location t of occurrence of variant x is additionally weighted with 

the  variant  occurrence  value  lx(t).  Consequently,  an  occurrence  of  x in  combination  with  one 

differing variant at one location will create only half the mass of a sole occurrence of only x.

Notice that the factor   in equation (1) is a normalisation of the intensity 

estimate to avoid so-called edge effects. Without this factor, the value of ux(ti) would depend on the 

position of  ti relative to all other locations: locations near the edge of the observation area would 

systematically be assigned less mass than those in the centre, since they are on average further away 

from the other locations. This factor is not dependent on the variant x, and only influenced by the 

location ti. Thus, it does not change the relative proportions of the intensity estimates for different 

variants at a location, but it corrects only the proportions among the locations.

From equation (1), it is clear that there are two choices to be made when employing kernel density 

estimation:  the  choice  of  kernel  and  the  choice  of  bandwidth.  Preliminary  investigations  have 

shown that for our investigations, the standard normal kernel, i.e. the probability density function

(2)

of the (two-dimensional) standard normal distribution appears to be the most appropriate kernel. 



This kernel is among the most frequently used kernels in practice; its most important characteristic 

is that of unbounded support, which means that the kernel function – and thus the mass created by 

any occurrence point – is strictly positive everywhere, although it will of course be close to zero at 

distances far away from an occurrence point.

There appears to be a consensus in the research literature that, when using a kernel estimator, the 

choice of bandwidth is much more important to the quality of the final estimate than the choice of 

kernel (see, for example,  DIGGLE 2003, 118,  MØLLER AND WAAGEPETERSEN 2004, 37, and STOYAN AND 

STOYAN 1994, 237ff.). In linguistic terms, the bandwidth indicates how strong the influence of a 

location is estimated for the assessment of its surroundings, i.e. how far a location with a certain 

variant can be expected to exude its influence into its environments. Tracing this back to the above 

mentioned language contact, the bandwidth indicates to what extent a certain linguistic feature is 

part of the communication between different locations. In the pertinent research literature, various 

techniques  for  the  automated  selection  of  an  “optimal”  bandwidth  are  discussed.  For  example, 

likelihood cross-validation (LCV) consists  of determining the bandwidth that will  result  in  that 

intensity estimate which best “predicts” the observed occurrences. Since this method turned out to 

be too sensitive to  outliers  (see also  SILVERMAN 1986,  88) for  our purpose,  we employed least-

squares cross-validation (LSCV). With this  procedure, a bandwidth  h is found that minimises a 

certain score Mx(h) for the variant x. This score is an approximation to the mean squared difference 

of the resulting intensity estimate from the “true” intensity.  Note that in this way an individual 

bandwidth can be determined for each variant’s intensity estimate. However, as the extent of mutual 

influence of locations cannot be expected to be dependent on the respective variant, we minimise 

the weighted sum

(3)

to obtain a single bandwidth for all the variant-occurrence maps corresponding to one point-symbol 

map. The optimal h is found simply by evaluating M(h) for a large number of values for h over a 

certain plausible range. For details on LSCV, see SILVERMAN (1986, 87f).

Figure 1 shows an original point-symbol map from the SBS, in which variants for “Kartoffelkraut” 

(‘potato haulm’) are mapped. In Figure 2, the resulting intensity estimator for the variant Kraut is 

illustrated;  in  Figure  1,  this  variant  is  symbolised  by  a  striped  isosceles  triangle.  The  record 

locations from the SBS are marked by a black dot in Figure 2. In this figure, darker shades of blue 



in Figure 2 indicate areas with larger estimated intensities, paler shades indicate lower intensities, 

and areas that appear to be white have estimated intensities close to zero. Note that the estimated 

intensities are calculated for the  n = 272 measurement locations of the SBS only, and not for the 

space between them. The surroundings of each measurement location, as defined by its cell of the 

corresponding Voronoi mosaic, are assigned the same estimated value. The Voronoi mosaic – also 

known as Thiessen polygons – assigns each part of the plane to that measurement point to which it 

is  nearest.  Since the data contain no information at  all  on the space between the measurement 

locations – there might be woods, fields or further villages – this is arguably the most natural way 

of partitioning the plane for the purpose of our investigation.  For details  on the definition and 

properties of Voronoi mosaics, see OKABE ET AL. (2000).  Note that, for practical reasons, the outer 

boundaries of the investigation area have been chosen to be the edges of the convex hull of the 

points  of measurement.  This  is  a  deviation from the original  borders  of  the SBS,  which could 

slightly  distort  the  visual  impression  near  the  edges.  These  distortions  are,  however,  arguably 

marginal.  Also,  and  perhaps  more  importantly,  since  the  SBS itself  does  not  map  all  possible 

measurement locations in the observation area, neither choice of outer boundaries can be considered 

more correct than the other. The same argument can be made about the resulting lengths of edges 

between neighbouring points near the boundary, which will become relevant in the calculation of 

boundary lengths (cf. Section 4.2).

In comparing Figures 1 and 2, it can easily be seen that the highest estimated intensities for the 

variant  Kraut occur in the north-eastern corner of the investigated area, where the corresponding 

symbol is the only symbol that occurs. In areas such as the middle or the north-west, where the 

variant Kraut is interspersed with other variants, the intensity is lower, and in the south, where this 

variant is not found, the estimated intensity is nearly zero. This result corresponds very well with 

the interpretation of the estimated variant occurrence intensity explained above.

From the set of estimated intensity fields, we then create a single area-class map in the following 

manner: for every point of measurement on the original map, we have one estimated intensity value 

for each of the variants occurring on the map. Thus, we simply assign each of the points to that 

variant which has the highest estimated intensity at that location. This is natural, since remembering 

the interpretation of an intensity field  – this variant is the one predicted to be most likely used at 

that location. In this way, each location is assigned to exactly one variant and the whole observation 

area is partitioned into areas representing the different variants. An area can therefore be described 

as the area in which its assigned variant is the most likely to be used on every location in it, the 

boundaries marking the line where another variant becomes the most common. For any location t 



on the map, the variant that t is assigned to will be denoted by x(t). By T(x), we will denote the set 

of locations assigned to the variant x, and by |T(x)| the number of locations in T(x). The boundaries 

between areas result  automatically from this process as the edges between the Voronoi cells of 

points  assigned to  different  variants.  Note  that  an area standing for  a  particular  variant  that  is 

created in this way does not necessarily have to be connected, and disconnected areas are not even 

uncommon in the SBS.

Figure 3 shows the area-class map corresponding to the point-symbol map depicted in Figure 1. 

Different variants are denoted with different  colour hues; in this figure, the variant  Kraut, whose 

estimated intensity map is shown in Figure 2, is marked in turquoise. The boundaries between the 

areas are marked in orange. Note that although there are 9 different variants mapped on the original 

point-symbol map, only 4 of them form areas in Figure 3. This is simply due to the fact that for the 

5 other variants, there is no location on the map where the corresponding estimated intensity fields 

have the highest value of all estimated intensities. In other words, these variants are not prevalent 

enough – or arranged compactly enough – on the original map to form their own areas.

By simply assigning a location and its surroundings to a certain variant, all information on how high 

the estimated intensities for the other variants are at that location would be lost in the mapping. 

Therefore, the saturation and brightness of the  colour denoting a certain variant are varied at all 

locations assigned to that variant: the higher the dominance of a variant at a location, the darker and 

more saturated the colour of this location. More precisely, saturation and brightness of the colour at 

location t are proportional to

, (4)

which can be explained as the fraction of the total estimated intensity at  t that is due to  x(t). A 

juxtaposition of Figures 1 and 3 shows that the darkest and most saturated colour shades occur in 

regions where a certain variant occurs almost without any interference from other variants, such as 

the  south-east  and  the  north-east  of  the  observation  area.  In  areas  where  multiple  variants 

intermingle, the colours are much lighter and paler. It is worth noticing that this is also the case in 

regions along the boundaries between areas. This is to be expected, of course, since the boundaries 

do “not mark a sharp switch from one word to the other, but the center of a transitional area where 

one comes to be somewhat favored over the other” (cf. FRANCIS 1983, 5).



All procedures described in this section have been implemented in the Java programming language, 

partially using methods available from the GeoStoch software library. This library contains classes 

and methods for the analysis and simulation of spatial data. For details, see MAYER ET AL. (2004) and 

GEOSTOCH (2009). This implementation allows for the automated generation of area-class maps for 

any number of point-symbol maps according to objectively identical standards, using a standard PC.

These maps provide a means for the quick comprehension of variability patterns on a map. In that 

they show generalised prevalence patterns of variants, they do not – and are not intended to – arrive 

at the richness of detail and faithfulness to the original data as point-symbol maps, which is due to 

their quantitative nature. Their primary purpose is the visualisation and assessment of the results 

gained with our method, which are the basis for further computational analysis, for example the 

measuring of similarities between maps.

4.2 Map Characteristics

The procedures described in Section 4.1 yield area-class maps, which are an established and useful 

means of linguistic investigation. Furthermore and perhaps more importantly, they can be seen as a 

preparation  of  the  raw  data  for  statistical  investigation.  By  using  some  of  the  characteristics 

calculated in the process of creating the area-class maps – or numbers easily derived from those – 

one can describe the geometric features of the areas on a map. Obviously, the analysis of any such 

characteristic only makes sense when there is a plausible linguistic interpretation.

The first characteristic we suggest to calculate for an area-class map is the total length of boundaries 

between  the  areas  on  the  map.  This  can  be  easily  interpreted  as  an  indicator  for  the  overall 

complexity of a map: the more boundaries there are on the map, the more frequently there is a 

change from the area of one variant to another, which makes a map more complex on a large scale, 

ignoring,  however,  the  amount  of  smaller-scale  “fluctuation”  within  the  areas,  which  will  be 

discussed below. Even maps that show the same number of areas can have vastly different amounts 

of  boundaries:  more  irregularly  shaped  and  disconnected  areas  will  result  in  much  longer 

boundaries than well-connected and smooth areas. The area-class map in Figure 3 shows a total 

length of boundaries of 240.8 km, all marked in orange. For comparison, the theoretical maximum 

length of all boundaries in the maps from the SBS is approximately 8,644 km. This, of course, is 

never attained in practice, since this would only be possible if not a single location on the map had a 

neighbour assigned to the same variant. The extensive results presented in Section 5 will help to 

understand these numbers better.



Secondly, we calculate the mean of all variant occurrence values lx of  x for each T(x) on an area-

class map:

(5)

This value can be interpreted as the fraction of the total possible variant occurrence value within the 

area of variant  x that actually has a record belonging to the variant  x. The extreme  = 1 applies 

only if at all locations assigned to T(x), only one variant, variant x, occurs. In all other cases, some 

of the variant occurrence value at a location is not represented by the assignation to the area. For 

example,  if  a location  ti has variants  x1 and  x2 with  (ti) = 0.5 = (ti),  and  x(ti) = x1,  then the 

occurrence value (ti) = 0.5 of x2 at ti is not represented by assigning ti to T(x1). Roughly speaking, 

the fewer variants other than x occur at the locations belonging to T(x), the higher the value of . 

Thus,   could  be  termed  “area  compactness  of  the  area  of  variant  x”.  We can  also  define  a 

weighted mean of all :

(6)

Here,  the weights  are  given by the respective relative number of locations in  the area of  each 

variant. This is natural because this number multiplied by n is equal to the total possible occurrence 

value within this area, since the total occurrence value of all variants at a location is always 1. 

Extending the interpretation of   to a whole area-class map,   can be called the overall  area 

compactness of the map, or, from a different point of view, the fidelity of the area-class map. In the 

map shown in Figure 3, the values of   range from 0.6 for the green area in the west of the 

observation window to 1.0 for the red area in the east. The overall area compactness, or fidelity, of 

the map is   = 0.72, which means that 72 % of the records on the map are represented by the 

respective areas. Again, Section 5 will put these numbers into context.

Thirdly, we propose to calculate 



(7)

and the weighted mean 

(8)

as the indicators of the homogeneity of an area and the overall homogeneity of a map, respectively. 

These  definitions  are  justified  by the  fact  that  large  values  of  b(t)  indicate  that  the  estimated 

intensity of variant x(t) at t is much larger than that of other variants (see equation (4)). Thus, large 

values of  indicate that within the area of x, there is not much “interference” from other variants, 

which suggests calling that area homogeneous. In contrast to ,  takes the estimated likelihood 

of the occurrence of the respective variants at each location into account, rather than the actual 

records.  In Figure 3, the homogeneity of the green area is 0.44, whereas the purple area has a 

homogeneity  of  0.75,  and  the  overall  homogeneity  of  this  map  is   = 0.70.  As  before,  these 

numbers will be given more meaning in Section 5.

Clearly, there are many further possibilities to characterise the area-class maps created with the 

method introduced in  Section 4.1 geometrically and statistically,  and we will  mention some in 

Section 6. Not only for reasons of conciseness and clarity, however, we feel that the collection of 

characteristics presented is sufficient for our purposes. Also and more importantly, their simplicity 

and easy interpretation give them an advantage over other more complicated indicators. 



5 Some Results

We have used the methods for the creation and characterisation of area-class maps proposed in 

Section 4 to analyse a large set of maps. This set contains 823 maps, a major part of all word 

geography maps from the SBS. Figure 4 shows the histograms of the characteristics “length of 

boundaries” (which we will denote by C),  and  of these maps resulting from our analysis. In 

Table 1,  the  values  of  these  characteristics  are  listed for  the  sample  maps that  are  depicted  in 

Figures 3 and 5 through 8 and discussed in this section.

Figure 4(a) shows that while the average length of boundaries between areas on a map is roughly 

389 km, there are quite a few maps with no more than 100 km of boundaries on them or none at all. 

This first column of the histogram of course also includes those maps where a single variant is so 

dominant that only a single area is formed, resulting in the lack of any boundaries between areas. 

The largest total length of boundaries on a map is less than 1,100 km, and values larger than 700 km 

are quite uncommon. Still, in this context, the value of C = 240.8 km in the map shown in Figure 3 

is  quite  low.  A different,  extreme  example  is  given  in  Figure  5,  which  maps  the  variants  for 

“Rosenkranz” (‘rosary’). Here, C = 929.7 km. The subsequent two examples (Figures 6 and 7) both 

have values of C that are above average but not extreme. Figure 8, showing the areas for “dürres 

Reisig” (‘dry loppings’), has boundaries of 391.4 km in length, a value very close to the average. 

These numbers help us assess the complexity of a map. A comparison between Figure 3 and Figure 

5 shows that there can be great differences between two maps, a fact that is not comprehended by 

classical dialectometry. An explanation of these differences is, however, still pending. A next step 

might be to group maps with similar values and determine what circumstances (possibly frequency 

or age of the linguistic item) comparable maps share that would account for their affinity.

The mean value of   over all maps is approx. 0.62, which means that on average, 62 % of the 

records in an area belong to the variant that the area is assigned to. The corresponding histogram is 

plotted in Figure 4(b). The example map given in Figure 3 has a value of  = 0.72, indicating an 

overall area compactness that is above average. The map in Figure 6 has the very small value of 

0.31 for , which means that the areas reflect only 31 % of the variants occurring at the locations 

they include. Again, the map in Figure 8 shows an average overall area compactness. These values 

give us a clue as to how apt a map is to be separated into areas, and thus they give us information 

about the structural characteristics of the maps. Maps whose areas are very compact allow for a 

high fidelity of the resulting area-class maps, which tells us that little abstraction from the raw data 

is required. Hence, this value primarily serves the assessment of the degree to which an area-class 



map is suitable as a visual representation of the original point-symbol map.

A closely related, however more meaningful value is  , the mean dominance of each location's 

decisive variant.  It  is  an indicator  for what  we have dubbed the homogeneity of a map.  More 

intermingling between variants on a small scale results in a smaller . If we recall the remarks in 

Section 2, we can also conclude that a small  means that the local competition between variants is 

rather high on the whole, which would hint at a less stable linguistic situation. For , an average 

value of 0.58 was obtained. The histogram of all values is given in Figure 4(c). From this figure, 

one can see that no homogeneity values below 0.2 are obtained. This was to be expected, of course: 

recalling equations (4), (7), and (8), it is clear that for   to tend to 0 on a map, the number of 

variants  on that map would have to tend to infinity.  Since obviously the number of variants  is 

limited, so are the values of  . The value of   = 0.71 for the map in Figure 3 is significantly 

above average, which is reflected in the predominantly dark shades in the area-class map and only 

few brighter spots in the north-west and south-west and along the boundaries, telling us that the 

distribution of the variants is relatively stable. Figure 7 appears, on the whole, even darker than 

Figure 3, showing very few brighter spots within its areas, which corresponds to a higher . The 

fact  that  this  is  true  despite  much  longer  boundaries  shows  that  their  impact  on   is  not 

overwhelmingly great. Figure 6 on the other hand shows a rather brightly coloured map, which is 

reflected by a very low value of   = 0.24. As before, the value of   in Figure 8 is close to the 

average.

When calculating different characteristics from the same underlying data, as it is done here, it is of 

interest to what extent these characteristics are related. A standard tool for answering that question 

for pairs of characteristics is the so-called Pearson product-moment correlation coefficient ρ, whose 

absolute values do not exceed 1. Large (absolute) values of ρ indicate that one of the characteristics 

is  determined to  a  large degree by the  other  one,  while  values  close to  0  indicate  that  such a 

relationship does not exist. For details on the correlation coefficient (see, for example, RODGERS AND 

NICEWANDER 1988). The values of ρ for the characteristics investigated here are given in Table 2. The 

rather large positive correlation between  and  means that maps with large values of  tend to 

exhibit also larger values of , and small values of  frequently appear together with small values 

of ; i.e. homogeneity and compactness tend to have values of similar magnitudes. The values in 

Table 1 show this exemplarily. This, of course, is not surprising if one recalls the definitions of  

and  (see Section 4.2). A map whose variants are distributed very homogeneously, which will be 

reflected by a large , can be transformed into an area-class map very easily, resulting in especially 



accurate areas, which is expressed by a large . In other words: the fidelity of an area-class map 

depends on the homogeneity of the areas on it.

The total length of boundaries C on a map is negatively correlated with both  and . Although 

the absolute values of ρ are not quite as large as for the pairing of  and , this still means that 

maps with a higher complexity tend to have lower values of compactness and homogeneity, and 

vice  versa.  This  effect  is  stronger  with   than  with  :  the  fidelity  of  a  map  declines  with 

increasing complexity, owing to the growing number of locations for which an assignation to one or 

the other area is equivocal, but the homogeneity is even more affected by  C, as the locations on 

either side of every boundary influence each other. This can be explained by the however small 

amount of language contact that is to be expected for the linguistic item in question across the 

boundaries, even if the areas themselves are rather compact. Remembering the fact that locations t 

close to boundaries usually have lower values of b(t) (see Section 4.1), and that a higher complexity 

is indicated by more boundaries (and thus more locations close to boundaries), this is plausible.



6 Conclusions and Outlook

In this  article,  we have provided a  methodology for the automatic  assessment  of the structural 

characteristics of dialect feature maps. The first substantial step of this assessment consists of the 

creation  of  area-class  maps  from raw dialect  data  by applying  methods  from spatial  statistics. 

Subsequently,  these area-class maps are evaluated by means of averaging certain values over a 

whole map. The three proposed characteristics, C,  and , allow for a quantitative description of 

a map, relating to the concepts ‘complexity’, ‘area compactness’, and ‘homogeneity’. They render 

these  concepts  consistent  quantities,  facilitating  further  automatic  investigation.  We  have  used 

several  examples  to  illustrate  that  the  areas  as  well  as  the  respective  values  of  C,   and   

correspond to visual impressions which a dialectologist  would have had to phrase more or less 

intuitionally  – and thus subjectively  – before now. Hence, this new methodology is the first step 

towards a software system that should be applicable for all kinds of dialectographical data, and 

should give dialectologists the means to analyse dialect maps according to specific problems even 

without profound knowledge of its algorithms. 

However,  heading towards a quantitative,  more objective assessment of linguistic feature maps, 

much remains yet  to be done:  maps should be classified automatically according to the values 

obtained,  for  which  specific  algorithms  have  to  be  developed.  Additional  characteristics,  for 

example  measures  of  variability  such  as  the  empirical  standard  deviations  or  coefficients  of 

variation of  or  (cf. Section 4.2) on a map, could be of use in creating meaningful groupings 

within a given corpus of maps. These groupings can then help to determine what circumstances 

caused the areal distributions of the respective variants to develop similarly. Also, it is desirable to 

create  methods  to  classify  maps  not  only  according  to  their  overall  characteristics,  but  also 

according to geographically defined,  locally or regionally fixed patterns, for example circles of 

expansion around cities or graduated progression lines in the countryside. More advanced methods 

from spatial statistics might play an important role in obtaining this goal. This is also the case for 

the detection of shapes typical for certain types of spatial diffusion, e.g. funnels or wedges, whose 

position  may vary.  With  all  this  achieved,  it  should  be  possible  to  make  statements  about  the 

underlying linguistic variation and change that is reflected in the different distributional patterns. 

The values obtained, namely  and , together with the division into areas, can also be the basis 

for research that goes beyond the assessment of particular feature maps. They can serve to verify 

certain hypotheses about linguistic borders and areas by testing whether given structures, such as 

rivers or landscapes, are paralleled by a statistically significant number of boundaries found in a 



larger corpus of feature maps.  Cumulative occurrence maps for linguistically defined groups of 

features, e.g. Romanisms or standardisms, can be generated easily, thus facilitating the search for 

horizontal or vertical spheres of influence.



References 

ALTMANN, GABRIEL (1983): Das Piotrovski-Gesetz und seine Verallgemeinerungen. In: BEST AND 

KOHLHASE (1983), 59–102.

BADDELEY, ADRIAN / GREGORI, PABLO / MATEU, JORGE / STOICA, RADU / STOYAN, DIETRICH (eds.) (2006): 

Case Studies in Spatial Point Process Modeling. New York: Springer (Lecture Notes in Statistics 

185). 

BACH, ADOLF (1969): Deutsche Mundartforschung. Ihre Wege, Ergebnisse und Aufgaben. 

Heidelberg: Winter.

BESCH, WERNER / KNOOP, ULRICH / PUTSCHKE, WOLFGANG / WIEGAND, HERBERT ERNST (eds.) (1982–1983): 

Dialektologie. Ein Handbuch zur deutschen und allgemeinen Dialektforschung. Berlin/New York: 

de Gruyter (Handbücher zur Sprach- und Kommunikationswissenschaft. 1).

BEST, KARL-HEINZ / KOHLHASE, JÖRG (eds.) (1983): Exakte Sprachwandelforschung. Theoretische 

Beiträge, statistische Analysen und Arbeitsberichte. Göttingen: Edition Herodot.

BEST, KARL-HEINZ (2006): Quantitative Linguistik. Eine Annäherung. 3rd Edition. Göttingen: Peust 

& Gutschmidt.

DIGGLE, PETER J. (2003): Statistical Analysis of Spatial Point Patterns. 2nd Edition. London: Arnold.

FRANCIS, W. NELSON (1983): Dialectology. An Introduction. London: Longman.

FRINGS, THEODOR (1956): Sprache und Geschichte II. Halle (Saale): Niemeyer (Mitteldeutsche 

Studien. 17).

GEOSTOCH SOFTWARE LIBRARY (2009): http://www.uni-ulm.de/mawi/mawi-stochastik/software/ 

GOEBL, HANS (1994): Dialektometrie und Dialektgeographie. Ergebnisse und Desiderata. In: 

MATTHEIER, KLAUS / WIESINGER, PETER (eds.): Dialektologie des Deutschen. Forschungsstand und 

Entwicklungstendenzen. Tübingen: Niemeyer, 171–191.



GOEBL, HANS (2001): Arealtypologie und Dialektologie. In: HASPELMATH, MARTIN / KÖNIG, EKKEHARD / 

OESTERREICHER, WULF / RAIBLE, WOLFGANG (eds.): Language Typology and Language Universals. An 

International Handbook. Berlin/New York: de Gruyter (Handbooks of Linguistics and 

Communication Science. 20), Vol. 2, 1471–1491.

GOEBL, HANS (2006): Recent Advances in Salzburg Dialectometry. In: Literary & Linguistic 

Computing 21, 411–435.

GOEBL, HANS (2007): Kurzvorstellung der Korrelativen Dialektometrie. In: GRZYBEK, PETER (ed.): 

Exact Methods in the Study of Language and Text. Dedicated to Gabriel Altmann on the Occasion 

of his 75th Birthday. Berlin: de Gruyter, 165–180.

GOOSSENS, JAN (1969): Strukturelle Sprachgeographie. Eine Einführung in Methoden und 

Ergebnisse. Heidelberg: Winter.

HAAG, CARL (1898): Die Mundarten des oberen Neckar- und Donaulandes. Reutlingen: Hutzler.

HAAS, WALTER (1978): Sprachwandel und Sprachgeographie. Untersuchungen zur Struktur der 

Dialektverschiedenheit am Beispiele der schweizerdeutschen Vokalsysteme. Wiesbaden: Steiner 

(Zeitschrift für Dialektologie und Linguistik, Beihefte. 30).

HÄNDLER, HARALD / WIEGAND, HERBERT ERNST (1982): Das Konzept der Isoglosse: methodische und 

terminologische Probleme. In: BESCH ET AL. (1982–1983), Vol. 1, 501–527.

HEERINGA, WILBERT (2004): Measuring dialect pronunciation differences using Levenshtein distance. 

Groningen.

HILDEBRANDT, REINER (1983): Typologie der arealen lexikalischen Gliederung deutscher Dialekte 

aufgrund des Deutschen Wortatlasses. In: BESCH ET AL. (1982–1983), Vol. 2, 1331–1367.

HUMMEL, LUTZ (1993): Dialektometrische Analysen zum Kleinen Deutschen Sprachatlas (KDSA). 

Experimentelle Untersuchungen zu taxometrischen Ordnungsstrukturen als dialektaler Gliederung 

des deutschen Sprachraums. Tübingen: Niemeyer (Studien zum Kleinen Deutschen Sprachatlas. 4).

ILLIAN, JANINE / PENTTINEN, ANTTI / STOYAN, HELGA / STOYAN, DIETRICH (2008): Statistical Analysis and 



Modelling of Spatial Point Patterns. Chichester: Wiley.

KELLE, BERNHARD (1986): Die typologische Raumgliederung von Mundarten. Eine quantitative 

Analyse ausgewählter Daten des Südwestdeutschen Sprachatlasses. Marburg: Elwert (Studien zur 

Dialektologie in Südwestdeutschland. 2).

KÖHLER, REINHARD / ALTMANN, GABRIEL / PIOTROWSKI, RAJMUND G. (2005): Quantitative Linguistics. An 

International Handbook. Berlin/New York: de Gruyter (Handbooks of Linguistics and 

Communication Science. 27).

KÖNIG, WERNER (1982): Probleme der Repräsentativität in der Dialektologie. In: BESCH ET AL. (1982–

1983), Vol. 1, 463–485.

LEOPOLD, EDDA (2005): Das Piotrowski-Gesetz. In: KÖHLER ET AL. (2005), 627–633.

MAYER, JOHANNES / SCHMIDT, VOLKER / SCHWEIGGERT, FRANZ (2004): A unified simulation framework for 

spatial stochastic models. In: Simulation Modelling Practice and Theory 12, 307–326.

MØLLER, JESPER / WAAGEPETERSEN, RASMUS PLENGE (2004): Statistical Inference and Simulation for 

Spatial Point Processes. Boca Raton: Chapman & Hall / CRC.

NERBONNE, JOHN / HEERINGA, WILBERT (1998): Computationele vergelijking en classificatie van 

dialecten. In: Taal en Tongval, Tijdschrift voor Dialectologie 20, 164–193.

NERBONNE, JOHN (2006): Identifying Linguistic Structure in Aggregate Comparison. In: Literary & 

Linguistic Computing 21, 463–475.

OKABE, ATSUYUKI / BOOTS, BARRY / SUGIHARA, KOKICHI / CHIU, SUNG NOK (2000): Spatial tessellations: 

concepts and applications of Voronoi diagrams. 2nd Edition. Chichester: Wiley.

PIOTROWSKI, RAJMUND G. / BEKTAEV, KALDYBAY B. / PIOTROWSKAJA, ANNA A. (1985): Mathematische 

Linguistik. Bochum: Brockmeyer (Quantitative Linguistics. 27).

RODGERS, JOSEPH LEE / NICEWANDER, W. ALAN (1988): Thirteen ways to look at the correlation 

coefficient. In: The American Statistician 42 (1), 59–66.



SBS: KÖNIG, WERNER (ed.) (1997–2009): Sprachatlas von Bayerisch-Schwaben. Heidelberg: Winter 

(Bayerischer Sprachatlas. Regionalteil 1). 14 volumes.

SCHILTZ, GUILLAUME (1996): Der dialektometrische Atlas von Südwest-Baden (DASB). Konzepte 

eines dialektometrischen Informationssystems. Marburg: Elwert (Studien zur Dialektologie in 

Südwestdeutschland. 5).

SCHMITT, ERNST HERBERT (1992): Interdialektale Verstehbarkeit. Eine Untersuchung im Rhein- und 

Moselfränkischen. Stuttgart: Steiner (Mainzer Studien zur Sprach- und Volksforschung. 18).

SCHNEIDER, EDGAR W. (1988): Qualitative vs. Quantitative Methods of Area Delimitation in 

Dialectology: A Comparison Based on Lexical Data from Georgia and Alabama. In: Journal of 

English Linguistics 21 (2), 175–212.

SCOTT, DAVID W. (1992): Multivariate Density Estimation: Theory, Practice, and Visualization. New 

York: Wiley.

SÉGUY, JEAN (1965–1973): Atlas linguistique et ethnographique de la Gascogne. Paris: Centre 

National de la Recherche Scientifique.

SILVERMAN, BERNARD W. (1986): Density Estimation for Statistics and Data Analysis. New York: 

Chapman & Hall.

STOYAN, DIETRICH / STOYAN, HELGA (1994): Fractals, Random Shapes and Point Fields. Methods of 

Geometrical Statistics. Chichester: J. Wiley & Sons.

WENZEL, WALTER (1930): Wortatlas des Kreises Wetzlar und der umliegenden Gebiete. Marburg: 

Elwert (Deutsche Dialektgeographie. 28).



Summary

In this  article, we introduce a new methodology for the objective and automated assessment of 

dialect-feature maps. Unlike previous dialectometrical techniques, it is not aimed at the separation 

and analysis of dialects using large corpora of feature maps, but at the assessment of the structural 

characteristics of single feature maps, which are largely ignored by classical dialectometry. Thus, 

our  approach is  intended to  provide  a  means of  comparing  linguistic  feature  maps rather  than 

accumulating them. Using methods from spatial  statistics,  we estimate intensities,  i.e.  expected 

occurrence-frequencies, for all recorded variants of the respective feature in the whole observation 

area. By combining the obtained intensity fields of all variants, area-class maps are generated. The 

statistical analysis of certain characteristics of these area-class maps  – such as the total length of 

boundaries  between  the  areas  of  different  variants  –  then  yields  objective  information  on  the 

homogeneity,  complexity,  and  area  compactness of  single  feature  maps.  The  methodology  is 

exemplified by the analysis of several maps from the SBS and an interpretation of the results.



Zusammenfassung und Ausblick

In  diesem  Beitrag  wird  ein  neues  Verfahren  zur  objektiven  und  automatischen  Analyse  von 

Sprachkarten vorgestellt. Anders als bisherige dialektometrische Verfahren zielt es vorerst nicht auf 

die Einteilung und Analyse von Dialekten anhand von großen Korpora von Merkmalskarten ab, 

sondern auf die quantitative Beurteilung von strukturellen Eigenschaften einzelner Merkmalskarten, 

die von der klassischen Dialektometrie weitgehend ignoriert werden. So soll unsere Methode es 

ermöglichen, Merkmalskarten zu vergleichen und in ihnen bestimmte Strukturen zu finden, anstatt 

sie  zu  kumulieren.  Dazu werden mittels  räumlich-statistischer  Methoden für  alle  Varianten  des 

betreffenden  Merkmals  im  gesamten  Untersuchungsgebiet  Intensitäten,  d.h.  die  erwarteten 

Auftretenshäufigkeiten, geschätzt. Durch eine Kombination der erhaltenen Intensitätsfelder ergeben 

sich Flächenkarten, die als Grundlage für die weitere Analyse dienen. Dabei werden verschiedene 

Charakteristiken, wie z.B. die Gesamtlänge der Grenzen zwischen den Gebieten unterschiedlicher 

Varianten,  herangezogen,  um  objektive  Aussagen  über  die  Homogenität,  Komplexität und 

Kompaktheit von Gebieten bzw. Karten treffen zu können. Die Ergebnisse dieses Verfahrens werden 

exemplarisch anhand einiger Karten aus dem SBS vorgestellt und interpretiert.

Theoretische  Grundlage  für  diese  Vorgehensweise  ist  die  Annahme,  dass  die  Belege  eines 

Sprachatlas Stichproben sind, die im Einzelfall nicht zwangsläufig zu hundert Prozent valide sind. 

So ist es vorstellbar, dass eine Gewährsperson an einem Ort eine andere Antwort gegeben hat, als es 

der  Großteil  der  anderen  möglichen  Gewährspersonen  getan  hätte,  hätte  man  die  gesamte  zu 

untersuchende  Bevölkerungsschicht  befragt.  Die  Validität  der  Belege  kann  aber  eingeschätzt 

werden, wenn man die umliegenden Orte betrachtet: Haben alle dieselbe Antwort gegeben, so ist 

die Validität als hoch einzuschätzen; haben alle eine abweichende Antwort gegeben, so ist der Beleg 

in Frage zu stellen. Dabei ist die Bedeutung der anderen Orte für die Bewertung eines Beleges umso 

höher,  je  näher  sie  ihm sind,  da  geographische  Nähe  in  Beziehung  steht  zu  dem sprachlichen 

Kontakt, der zwischen ihnen stattfindet. (Die geographische Nähe ist natürlich nur einer von vielen 

Faktoren,  doch  der  einzige,  der  objektiv  und  einfach  zu  quantifizieren  ist.  Der  Einfluss  von 

Verkehrswegen,  Territorien,  landschaftlichen  Gegebenheiten  u.ä.  muss  deshalb  vorerst 

unberücksichtigt  bleiben.)  So  kann  ausgehend  von  den  gegebenen  Belegen  – mit  statistischen 

Methoden  – für  jeden  Ort  geschätzt  werden,  welche  Variante  die  am  wahrscheinlichsten  zu 

erwartende ist, auch wenn der jeweilige Beleg tatsächlich ein anderer ist. So werden Flächenkarten 

generiert,  die  Ausreißer  automatisch  ausgleichen,  die  Dominanz  der  jeweils  wahrscheinlichsten 

Varianten  durch  die  Farbgebung  darstellen  und  dadurch  die  tatsächliche  linguistische  Situation 

angemessener  wiedergeben  als  die  unmittelbar  auf  den  Stichproben  basierenden 



Punktsymbolkarten. 

Grundlage für die Analyse ist eine Datenbank, die das Auftreten der verschiedenen Varianten an den 

Belegorten  des  Untersuchungsgebiets  enthält.  Sie  wird  zunächst  nach  den  einzelnen  Varianten 

separiert,  so  dass  für  jede Variante  eine  sog.  Vorkommenskarte  generiert  werden kann,  die  nur 

verzeichnet, wo eine die Variante auftritt und wo nicht. Abhängig von der räumlichen Verteilung 

einer  Variante  wird  nun  für  jeden  Ort  die  Intensität  der  Verteilung  geschätzt,  die  sich  als 

Auftretenswahrscheinlichkeit  der  betreffenden  Variante  interpretieren  lässt.  Im  nächsten  Schritt 

werden die Intensitätsfelder der Varianten (siehe Abb. 2) zu einer Flächenkarte vereint (siehe z.B. 

Abb. 3), indem jeder Ort der Fläche zugerechnet wird, deren Variante die höchste Intensität  an 

diesem Ort aufweist, d.h. deren Auftreten dort am ehesten zu erwarten ist.

Die  so  erzeugten  Flächenkarten  können  auf  verschiedene  Weise  hinsichtlich  ihrer  strukturellen 

Eigenschaften untersucht werden: Die Länge der Grenzlinien zwischen den Flächen kann als eine 

Maßzahl  für die  Komplexität  der  Karte  betrachtet  werden,  die  Intensitäten geben  – gemittelt  – 

Aufschluss über die kleinräumige Homogenität einer Karte. Weitere Maßzahlen sind vorstellbar, 

einige davon werden kurz vorgestellt. Insgesamt bietet das vorgestellte Verfahren die Möglichkeit, 

Karten  von  sprachlichen  Merkmalen  quantitativ  und  nach  einheitlichen  Maßstäben  nach  ihren 

Struktureigenschaften  zu  beurteilen,  um  so  Aufschluss  darüber  zu  gewinnen,  nach  welchen 

Gesetzmäßigkeiten sich bestimmte Merkmale räumlich entwickeln.

In erster  Linie  aber  sollen die  ermittelten Werte  die  Basis  für  weitere  Forschung,  die  über  die 

Analyse  von  Einzelkarten  hinausgeht,  sein.  So  können  etwa  bestimmte  Hypothesen  bzgl. 

Sprachgrenzen und -gebieten überprüft werden, indem getestet wird, ob vorgegebenen Strukturen 

wie  Flüssen  oder  Territorialgrenzen  eine  statistisch  signifikante  Anzahl  an  Sprachgrenzen 

entspricht,  die  in  einem größeren Korpus  von Merkmalskarten bestimmt wurden.  Des Weiteren 

können einfach kumulative Vorkommenskarten von linguistisch definierten Merkmalsgruppen wie 

Romanismen  oder  Standardismen  erzeugt  werden,  um so  auf  einfache  Weise  horizontale  oder 

vertikale Einflussbereiche festzustellen. Beim typologischen Vergleich der Karten wird es möglich 

herauszufinden,  inwieweit  vergleichbare  sprachliche  Erscheinungen  auch  vergleichbare 

Verbreitungsmuster zeigen; bzw. umgekehrt, was vergleichbare Verbreitungsmuster auch sprachlich 

gemeinsam haben.
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Figure 1a: Example: original point-symbol map 80 “Kartoffelkraut” from the SBS (1997–2005, vol. 8, 295) 



Figure 1b: Legend of map 80 “Kartoffelkraut” from the SBS (1997–2005, vol. 8, 295) 



Figure 2: Example: estimated intensity field of variant Kraut in map 80 “Kartoffelkraut” (SBS 1997–2005, vol. 8, 
294f.). This variant is represented by the triangular symbol in Figure 1. The corresponding area in Figure 3 is marked 
turquoise.



Figure 3: Example: area-class map of the data underlying map 80 “Kartoffelkraut” (SBS 1997–2005, vol. 8, p. 294f.)



(a) total length of boundaries C between areas on a map (complexity)



(b) overall area compactness  of maps



(c) overall homogeneity  of maps

Figure 4: Histograms of various map characteristics calculated from a set of 823 word geography maps from the SBS 

(1997–2005)



Figure 5: Example: area-class map of the data underlying map 126 “Rosenkranz” (SBS 1997–2005, vol. 2, 532f.)



Figure 6: Example: area-class map of the data underlying map 15 “die kleinen Hinterklauen der Kuh” (SBS 1997–2005, 
vol. 11, 52f.)



Figure 7: Example: area-class map of the data underlying map 71 “Heuhaufen bei drohendem Regen” (SBS 1997–2005, 
vol. 12, 220f.)



Figure 8: Example: area-class map of the data underlying map 13 “dürres Reisig” (SBS 1997–2005, vol. 13, 532f.)



Tables

figure title C
Figure 3 ‘Kartoffelkraut’ 240.8 km 0.72 0.71
Figure 5 ‘Rosenkranz’ 929.7 km 0.53 0.40
Figure 6 ‘die kleinen 

Hinterklauen der 
Kuh’

637.2 km 0.31 0.24

Figure 7 ‘Heuhaufen bei 
drohendem 
Regen’

653.3 km 0.80 0.67

Figure 8 ‘dürres Reisig’ 391.4 km 0.65 0.60
average values 388.6 km 0.62 0.58

Table 1: Values of various characteristics for the example maps

C
C 1 -0.261 -0.576

1 0.745
1

Table 2: Empirical correlation coefficients between various map characteristics calculated from a 

set of 823 word geography maps from the SBS (1997–2005)


