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The curvature of grain boundaries in polycrystalline materials is an important characteristic,
since it plays a key role in phenomena like grain growth. However, most traditional
tessellation models that are used for modeling the microstructure morphology of these
materials, e.g., Voronoi or Laguerre tessellations, have flat faces and thus fail to incorporate
the curvature of the latter. For this reason, we consider generalizations of Laguerre
tessellations—variations of so-called generalized balanced power diagrams (GBPDs)—
that exhibit non-convex cells. With as many as ten parameters for each cell, it is
computationally demanding to fit GBPDs to three-dimensional image data containing
hundreds of grains. We therefore propose a modification of the traditional definition of
GBDPs that allows gradient-based optimization methods to be employed. The resulting
reduction in runtime makes it feasible to find approximations to real experimental datasets.
We demonstrate this on a three-dimensional x-ray diffraction (3DXRD) mapping of an AlCu
alloy, but we also evaluate the modeling errors for simulated data. Furthermore, we
investigate the effect of noisy image data and whether the smoothing of image data prior to
the fitting step is advantageous.

Keywords: polycrystallinematerial, tessellation, generalized balanced power diagram, gradient-based optimization,
image noise

1 INTRODUCTION

The grain boundaries of polycrystalline materials play an important role in many different
phenomena, ranging from fundamental processes like grain growth and extending to applied
scenarios like the degradation of electrodes in lithium-ion batteries. In many such cases, the
investigation and modeling of grain boundaries presupposes that their locations can be
represented precisely. For this purpose, tessellations have proven to be a powerful tool, as they
provide a partitioning of space into disjoint subsets called cells. For example, the representation of a
material’s microstructure by means of tessellations can be utilized for the analysis of microstructure-
property relationships (Raabe, 1998; Westhoff et al., 2018). For the latter, realistic “virtual
polycrystals” generated by parametric stochastic models for these tessellations are particularly
helpful (see, e.g., Allen et al., 2021). A prominent tessellation type in materials science is the Laguerre
tessellation (Lautensack and Zuyev, 2008), which is a generalization of the well-known Voronoi
tessellation (Møller, 1994; Okabe et al., 2000). It is therefore not surprising that the fitting of Laguerre
tessellations to experimental data has already received much attention. For example, in Bourne et al.
(2020); Petrich et al. (2019); Quey and Renversade (2018) the problem of finding good
representations for statistical data, such as grain volumes and centroids, is discussed. Of
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particular interest is the description of 3D image data, e.g., from
3D electron backscatter diffraction (EBSD) or 3D x-ray
diffraction (3DXRD) microscopy, which was studied in
Liebscher (2015); Quey and Renversade (2018); Spettl et al.
(2016). Additional details regarding the method proposed in
Spettl et al. (2016) are given in Section 2.4.1. A major
drawback of the Laguerre tessellation, however, is the fact that
its facets are planar and therefore apply only to grains having
nearly flat boundaries. This is unacceptable when it comes to the
investigation of curvature-related phenomena like grain growth.
In this case, other tessellation models—often generalizations of
the Voronoi/Laguerre tessellations—have been proposed; we
refer to Altendorf et al. (2014); Šedivý et al. (2018) for an
overview. Heuristics for fitting some of these tessellation
models are described in Altendorf et al. (2014); Teferra and
Graham-Brady (2015). A quite general tessellation model, the
so-called generalized balanced power diagram (GBPD), is
introduced in Alpers et al. (2015), in which a fitting procedure
based on a (very high-dimensional) linear optimization is also
proposed. A different fitting method, again relying on
optimization, is described by Šedivý et al. (2016). Moreover, a
completely different approach is taken in Teferra and
Rowenhorst (2018), where closed formulas for approximating
GBPDs are presented. The latter two methods are discussed in
detail in Sections 2.4.2 and 4.2.

The major goal of the present paper is to propose a fitting
method that works well for GBPDs and other distance-based
tessellations. Taking advantage of efficient gradient-descent
optimization, the new approach aims to achieve a goodness of
fit similar or better than that of other techniques—but with much
shorter computational runtime. This is investigated on 3DXRD
mapping data obtained from a sample of an AlCu alloy, but we
also evaluate the modeling errors for simulated data. Note that the
fitting method presented here is also applicable to image data
obtained by techniques other than 3DXRD, such as 3D EBSD
(Zaefferer et al., 2008; Schwartz et al., 2009; Burnett et al., 2016).
Furthermore, the robustness with respect to noisy image data is
studied, and the question is posed whether the smoothing of grain
boundaries prior to tessellation fitting—as is routinely carried
out—actually improves the fit. Even though different tessellation
models were fitted to the datasets, the topic of model selection is
not discussed; for the latter, we refer to Šedivý et al. (2018). The
present paper extends a previous version of the fitting algorithm
originally described in Furat et al. (2021) by considering more
general types of tessellations and a thorough analysis of the
goodness of fit for different datasets.

2 MATERIALS AND METHODS

In this section we describe the materials and methods used in the
present paper. These topics include the 3DXRD image data
described in Section 2.1, the definitions of various tessellation
models in Section 2.2, a procedure for gradient descent-based
tessellation fitting in Section 2.3 (originally introduced in Furat
et al. (2021)), and two further methods from the literature for the
gradient-free fitting of tessellations to image data (Section 2.4).

2.1 Description of 3DXRD Image Data
One of the main goals of the present paper is to describe a
procedure for finding accurate parametric representations of real,
experimental image data. To that end, a 3D microstructural
mapping was carried out on a 1.4 mm-diameter cylinder of
Al-5wt%Cu, which was cut out of a cold-rolled plate (50%
thickness reduction) that had been subsequently homogenized
at 500°C for 24 h in air. The shape of individual grains in the
specimen and the location of internal grain boundaries were
revealed by 3DXRD microscopy measurements, performed at
beamline BL20XU of the Japanese synchrotron radiation facility
SPring-8 using a monochromatic beam of 32 keV x-rays
(Poulsen, 2004). For 10 min prior to this room-temperature
mapping, the specimen was subjected to a heat treatment at
575°C in air, which results in a liquid AlCu phase of
approximately 2 vol% wetting the boundaries between the
solid, aluminum-rich grains. Owing to the simultaneous
presence of two phases, the resulting evolution of the sample’s
microstructure is classified as Ostwald ripening (Wang and
Glicksman, 2007). Once the sample is removed from the
furnace, however, the liquid layer crystallizes and the growth/
shrinkage of individual grains ceases.

Reconstruction of the 3DXRD data followed the protocol
described in Dake et al. (2016), relying on the data processing
routines of Schmidt (2005, 2014). To each voxel in the
reconstructed volume, the software assigns the crystal lattice
orientation that generates the most complete diffraction signal,
whereby “completeness” is defined as the ratio between the
number of experimentally detected diffraction spots associated
with the voxel in question and the number of diffraction spots
that are simulated to arise from this particular voxel if it were to
have the assumed orientation. The grain labels were then assigned
voxel-by-voxel to the orientation having the greatest
completeness value. Formally, we describe the resulting image
dataset as a mapping

IE,raw : WE,raw � 1, . . . , 531{ } × 1, . . . , 321{ }
× 1, . . . , 321{ } → 0, . . . , 943{ },

where each voxel coordinate is mapped to the corresponding
grain label. Here, the label 0 is assigned to the background
(i.e., voxels located outside the specimen). Each of the
remaining labels is associated with one of the 943 grains.

However, with this reconstruction procedure the grain
boundaries may manifest irregularities, such as local
roughness, “island” voxels, zigzag shapes, or regions of
fluctuating curvature (see Figure 1A) as a result of
measurement uncertainties. These artifacts can be eliminated
by treating the raw reconstruction as the initial configuration
of a computational simulation of curvature-driven grain growth.
If the duration of such a simulation is kept short enough, any
boundary location manifesting severe curvature will tend to
smoothen out, and any island voxels will be consumed by the
surrounding grain, but no long-range translation of boundaries
will occur—see Figure 1B. In the present paper, we employed 25
iterations of a 3D phase field algorithm (Krill and Chen, 2002) to
reduce the roughness of grain boundaries in the raw 3DXRD
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reconstructions. The resulting smoothed experimental image is
referred to as

IE,smooth : WE,smooth → 0, . . . , 938{ },
where WE,smooth � WE,raw. Note that some smaller grains
vanished during the data smoothing procedure; consequently,
IE,smooth had fewer grains than IE,raw (938 grains instead of 943).

2.2 Tessellation Models
In order to represent the 3D grain architecture of (measured and
simulated) image data in an efficient way, we apply an
optimization method to decompose the volume of interest into
subvolumes using tessellations. Thus, to begin with, we briefly
describe the tessellation models considered in the present paper.
For additional details on tessellations in general, we refer, e.g., to
Chiu et al. (2013).

Roughly speaking, a tessellation is a partitioning of space into
pairwise disjoint sets, so-called cells. More precisely, a tessellation
T in a sampling windowW ⊂ R3 is a countable collection of sets
(cells), T � {CT

i ⊂ W: i � 1, 2, . . . }, such that

1) int(CT
i ) ∩ int(CT

j ) � ∅ for i ≠ j,
2) ∪∞i�1C

T
i � W,

3) and T is locally finite—i.e., #{CT ∈ T : CT ∩ B ≠ ∅}<∞ for
all bounded B ⊂ W,

where int(·) denotes the interior of a set. Note that in this paper
we consider tessellations only in a bounded sampling window
W ⊂ R3. In this case, the number of (non-empty) cells is finite
and is denoted by nT .

For practical purposes, such as finding simplified
representations of experimental image data, parametric
tessellation models are probably the most suitable class of
tessellations. The tessellation models considered in the present
paper have in common that their cells are defined in terms of a
distance function dT : R

3 ×G → {R}, where {G} denotes the
domain of generators (i.e., a set of admissible parameters of a
single tessellation cell). For a (finite) set of generators

G � {gi}nTi�1 ⊂ GnT , the i-th cell CT
i of a distance-based

tessellation T is given by

CT
i � x ∈ W: dT x, gi( )≤ dT x, gj( ) for each j � 1, . . . , nT{ }.

(1)

For brevity, we use the notation

CT
i x( ) � 1 if x ∈ CT

i ,
0 otherwise,

{

to indicate whether a point x ∈ W belongs to the i-th cell, where
i � 1, . . . , nT .

The simplest model of a distance-based tessellation is the
Voronoi tessellation, where dT (x, s) � ‖x − s‖ for x ∈ W with a
generator s ∈ R3 � G, and ‖x − s‖ denotes the Euclidean norm of
x − s. While widely studied in literature, see e.g. Aurenhammer
et al. (2013); Møller (1994); Okabe et al. (2000), the Voronoi
tessellation is often found to be insufficiently flexible to fit
experimental maps of polycrystalline materials (Šedivý et al.,
2018); thus, more sophisticated tessellation models are needed.
The fitting procedure considered in the present paper is able to
handle many tessellations of the form given by Eq. 1 for which the
distance function dT is differentiable. However, we focus on
tessellation models that are special cases of generalized balanced
power diagrams (GBPDs), listed here in order from simplest to
most complex:

1) The Laguerre tessellation (Lautensack and Zuyev, 2008) is
obtained if dT (x, (s, w)) � ‖x − s‖2 − w for x ∈ W, with a
generator consisting of a seed point s ∈ R3 and an additive
weight w ∈ R.

2) The multiplicatively weighted Laguerre tessellation is
obtained if dT (x, (s, m, w)) � m‖x − s‖2 − w for x ∈ W,
with a generator consisting of a seed point s ∈ R3, a
multiplicative weight m > 0 and an additive weight w ∈ R.

3) The diagonal GBPD is obtained if dT (x, (s,M,w)) �
(x − s)⊤M(x − s) − w for x ∈ W, with a generator

FIGURE 1 | Two-dimensional slice through the raw (A) and smoothed (B) experimental 3D image data and a magnified region showing the grain boundaries.
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consisting of a seed point s ∈ R3, a diagonal distance matrix
M ∈ R3×3 where every (diagonal) entry is positive and an
additive weight w ∈ R.

4) The general GBPD (Alpers et al., 2015) is obtained if
dT (x, (s,M,w)) � (x − s)⊤M(x − s) − w for x ∈ W, with a
generator consisting of a seed point s ∈ R3, a positive definite
distance matrix M ∈ R3×3 and an additive weight w ∈ R.

Note that all of these models, except the Laguerre tessellation,
can exhibit curved cell boundaries and thus non-convex cells.
With this property comes the possibility, however, that cells are
no longer connected, which might be undesirable when seeking
parametric representations of polycrystalline materials. To rectify
this issue, modifications of the original tessellation models, such
as the one given by Šedivý et al. (2018), can be applied to fitted
generators as a post-processing step. Another problem that affects
all of the tessellation models described above is the possibility for
a generator not to produce a corresponding cell. This can be
mitigated by considering a volume-based cost function during the
fitting that penalizes missing cells—see Section 2.3.

2.3 Gradient Descent-Based Tessellation
Fitting
In this section we describe an efficient, gradient descent-based
fitting procedure for GBPD-type tessellations. This procedure
was originally introduced in Furat et al. (2021), but in Section 3 it
will be applied to a broader class of tessellation models than in
Furat et al. (2021).

Note that the fitting of a tessellation T � {CT
i }nTi�1 can be

achieved by finding generators such that the similarity
between the tessellation T and the ground truth image data is
maximized. Formally, we consider the i-th grain of the ground
truth image data as a map CGT

i : Z3 → {0, 1} given by

CGT
i x( ) � 1 if x belongs to the i − th grain,

0 otherwise,
{

withZ the set of all integers, i � 1, . . ., nGT, and nGT the number of
grains in the sampling window W ⊂ R3. Nearest-neighbor
interpolation can be used to extend the domain of CGT

i from
the integer lattice Z3 to the continuous Euclidean space R3.
Furthermore, let XF � {xF

j }nFj�1 ∈ Z3×nF be the set of all

coordinates of voxels that belong to one of the grains, which
we call the foreground voxels of the image data. If nF denotes the
number of foreground voxels in W, then for each j � 1, . . ., nF
there is an integer i � 1, . . ., nGT such that CGT

i (xF
j ) � 1. In

Section 3we will consider the smoothed experimental image data
from Section 2.1 (among others) and set

CGT
i x( ) � 1 if x ∈ WE,smooth and IE,smooth x( ) � i,

0 otherwise,
{

and XF � {x ∈ WE,smooth: IE,smooth(x)> 0}.
Probably the most natural way to define the similarity between

a tessellation T and the ground truth image data is to count the
voxels at which each cell of the tessellation and the corresponding
grain of the ground truth dataset overlap. To be more precise, the

value of the objective function E: GnGT → [0,∞) for a set of
generators G � {gi}nGTi�1 with gi ∈ G is given by

E G( ) � 1
nF

∑nF
j�1

∑nGT
i�1

CT
i xF

j( )CGT
i xF

j( ), (2)

where the cells CT
1 , . . . , C

T
nGT

of the tessellation T depend on the
choice of the generators in G subject to nT � nGT. The
corresponding fitting problem is thus to determine an optimal
set of generators Gopt defined as

Gopt � argmax
G

E G( ). (3)

It is easy to see that CT
j (xF) with xF ∈ XF can be

reformulated as

CT
j xF( ) � argminp

j dT xF, g1( ), . . . , dT xF, gnT( )( ), (4)

where argmin*j is the j-th component of the nT -dimensional
vector-valued argmin function, i.e.,

argminp : RnT → 0, 1{ }nT ,
argminp

j z � 1 if zj ≤ zi for all i � 1, . . . , nT ,
0 otherwise,

{
with z � (z1, . . . , znT ) ∈ RnT . In cases where the minimum is not
unique, i.e., there are indices j1, j2 ∈ {1, . . . , nT } with j1 ≠ j2 and
zj1 � zj2, only the component with the smallest index is set equal
to 1. The function argmaxp is defined analogously.

Even though the distance function dT is differentiable (with
respect to the generators), the fact that argminp in Eq. 4 does
not have a derivative makes the objective function E defined in
Eq. 2 non-differentiable. This leaves us having to resort to
derivative-free optimization algorithms to solve Eq. 3, which
in most cases converge slower than gradient descent methods
(Audet and Hare, 2017). In order to increase efficiency, we
slightly deviate from the original tessellation formulation by
replacing the argminp function in Eq. 4 with a “softminp”
function—i.e., a softmaxp function with a negative argument,
~C
T
j (xF) � softmaxpj(−dT (xF, g1), . . . ,−dT (xF, gnT )) for

xF ∈ XF. Here, the nT -dimensional function

softmaxp : RnT → 0, 1[ ]nT ,

softmaxpj z � exp zj( )
∑nT

k�1 exp zk( )
with z � (z1, . . . , znT ) ∈ RnT is a smooth version of the argmaxp

function. So, instead of returning a vector the components of
which are either 0 or 1, the softmaxp function is a vector-valued
map, the components of which are continuous functions with
values between 0 and 1. In fact, the output vector softmaxp z for
some argument z ∈ RnT defines a discrete probability measure
(i.e., the values of all components are between 0 and 1 and their
sum is equal to 1), which assigns the highest probability to the
index j if zj ≥ zi for all i ∈ {1, . . . , nT }. Here, the last property can
be understood in the sense that the softmaxp function preserves
the maximum of the input vector. The largest value of a
component of the vector (~CT

1 (xF), . . . , ~CT
nT
(xF)) is therefore
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the one whose corresponding generator has the shortest
tessellation distance to the given evaluation point xF.

The benefit of applying the softmaxp function instead of using
the tessellation distances directly is found in the fact that the
output vector of the softmaxp function is normalized, and thus for
each evaluation point xF only the relative changes in the
tessellation distances to the generators are considered,
providing the same scale (i.e., values in [0, 1]) for all
evaluation points. This trick is often used for multi-class
classification problems in machine learning (Goodfellow et al.,
2016). Furthermore, note that since softmaxp is a composition of
differentiable functions and is itself therefore differentiable, the
function ~C

T
j is differentiable, as well, for each j ∈ {1, . . . , nT }.

Because—in contrast to CT
j , which is either 0 or 1—~C

T
j

assumes continuous values, it is necessary to adapt the
objective function. Consequently, instead of E defined as in
Eq. 2, we consider the function ~E: GnGT → (−∞, 0], where

~E G( ) � 1
nF

∑nF
j�1

∑nGT
i�1

λNCE ~C
T
i xF

j( ), CGT
i xF

j( )( ) (5)

with the negative (binary) cross-entropy loss function λNCE : [0,1]
2

→ ( − ∞, 0] given by λNCE(~y, y) � y log~y + (1 − y)log(1 − ~y).
Note that the cross-entropy loss is often used in machine learning
(Goodfellow et al., 2016) to compare the output of a classifier to
ground truth data, which is basically the same purpose it serves
here: If an evaluation point xF belongs to the i-th grain
(i.e., CGT

i (xF) � 1), ~C
T
i(xF) also needs to be close to 1 in order

to maximize λNCE, and vice versa. Note that the modified objective
function ~E is differentiable with respect to the generators. The fitted
set of generators ~Gopt can then be obtained by solving

~Gopt � argmax
G

~E G( ). (6)

In summary, we reformulated the original fitting problem,
Eq. 3, into the differentiable version given in Eq. 6. This allows
us to employ fast, gradient-based optimization algorithms, such
as the one used in the present work: the stochastic gradient
descent algorithm ADAM (Kingma and Ba, 2015) (applied to the
negative objective function). The optimization is stopped after a
maximum of 25 iterations through (random permutations of)
the dataset or if the objective function ~E defined in Eq. 5 does
not increase by more than 10−4 in 3 iterations. Note that for the
discretization of a fitted GBPD-type tessellation, we compute
the (unique) cell labels using the classical definition in Eq. 4.
The software implementation for the fitting and the
discretization is based on TENSORFLOW (Abadi et al., 2015),
which allows for highly parallel and even GPU-accelerated
computations.

2.4 Gradient-free Tessellation Fitting
In addition to the procedure described in Section 2.3, we
mention two additional methods from the literature for
fitting tessellations to image data, to which we will refer
below. We start with the procedure for Laguerre tessellations
introduced in Spettl et al. (2016), which was used to acquire the
initial parameter configuration in Section 3. Furthermore, in

order to compare the results of our method described in Section
2.3, we also employed a different method for the fast fitting of
GBPDs that was originally developed in Teferra and
Rowenhorst (2018).

2.4.1 Laguerre Tessellation Fitting with the
Cross-Entropy Method
In Spettl et al. (2016), approximations of polycrystalline image data
were sought in the form of Laguerre tessellations. Just like in Section
2.3 of the present paper, an optimization problem was formulated.
However, instead of considering a volume-based objective function,
an interface-based discrepancy measure was minimized. More
precisely, the quality of fit for a given set of Laguerre generators
G was judged by looking at each boundary between two grains. Let
their grain labels be denoted by i ≠ ℓ � 1, . . ., nGT. Then, a plane Por

i,ℓ
was determined by orthogonal regression of the boundary voxel
coordinates, and ten test points xT

i,ℓ,1, . . .x
T
i,ℓ,10 ∈ Por

i,ℓ on this plane
were considered. Furthermore, the plane Peq

i,ℓ that is equidistant
(with respect to the Laguerre distance dT ) to the two corresponding
generators gi and gℓ was computed. Note that if the cellsCT

i andCT
ℓ

are neighboring, the plane Peq
i,ℓ covers their shared facet, but

otherwise—e.g., when one of the cells is empty—the plane Peq
i,ℓ

does not have a correspondence in the tessellation. The total
discrepancy D: G → [0,∞) was then obtained as the average of
squared distances between the test points {xT

i,ℓ,1, . . . , x
T
i,ℓ,10} to the

plane Peq
i,ℓ for all neighboring grains; more precisely,

D G( ) � 1
nT

∑
i,ℓ�1,...,nGT

grains i,ℓ neighboring

∑10
k�1

dist xT
i,ℓ,k, P

eq
i,ℓ( )2,

where nT is the total number of test points for all neighboring
grains, and dist(x, P) is the shortest Euclidean distance of the
point x to a point on the plane P. The resulting minimization
problem is rather high-dimensional and non-convex. For this
reason, in Spettl et al. (2016) a global stochastic optimization
technique was employed—namely, the cross-entropy method
(Rubinstein and Kroese, 2004)—to escape local minima of the
objective function. In the present paper, the same values for the
parameters of the algorithm as proposed by Spettl et al. were used
(see Spettl et al. (2016) for a full list).

2.4.2 GBPD Fitting Using a Direct Approach
A quite different approach, this time for fitting GBPDs, was
proposed in Teferra and Rowenhorst (2018) (which is referred to
as the direct approach in the following). In Section 3, we will
employ this method as a baseline comparison to our gradient-
based fitting method. With the direct approach no optimization
was performed, but rather formulas for directly estimating the
tessellation parameters were presented, which leads to a very fast
heuristic to fit GBPDs. This was achieved by determining the
generators (si, Mi, wi) of the i-th cell only by considering the i-th
grain and without knowledge of the other grains/cells: The seed
point si was set to the center of mass of the grain, and the distance
matrix Mi was computed from the covariance matrix of its voxel
coordinates. Since the isosurface of the GBPD distance function
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{x ∈ W: dT (x, (si,Mi, wi)) � (x − si)⊤Mi(x − si) − wi � 0} can
be considered as an ellipsoid, the additive weights were computed
by equating the volume of this ellipsoid to that of the i-th grain.
Note that this approach is similar to the one proposed in
Lyckegaard et al. (2011) for Laguerre tessellations.

3 RESULTS

In order to evaluate the gradient descent-based fitting method
described in Section 2.3, we applied it to several different image
datasets using the following procedure. First, initial Laguerre
generators were determined by the cross-entropy approach
developed in Spettl et al. (2016) (see Section 2.4.1). Then,
tessellation models with increasing complexity were
successively fitted, using the generators of a simpler
tessellation model as the initial parameter configuration. Here,
any parameters that were not part of the simpler model were
initialized with default values: For example, when optimizing the
fit of a multiplicatively weighted Laguerre tessellation based on
the generators of a fitted Laguerre tessellation, the multiplicative
weights were set equal to 1; in the case of a diagonal GBPD, each
diagonal matrix was filled with a value equal to the corresponding
multiplicative weight. For purposes of comparison, we
independently applied the direct approach of Teferra and
Rowenhorst (2018) to each image dataset (see Section 2.4.2).

3.1 Performance Measures
To evaluate the goodness of fit of the tessellation {CT

i }nTi�1 fitted to
the foreground voxels XF � {xF

j }nFj�1 of the ground truth image
data {CGT

i }nGTi�1 (with nGT � nT ), we consider various performance
measures. The fraction of correctly assigned voxels is given by

Fc � 1
nF

∑nF
j�1

∑nGT
i�1

CT
i xF

j( )CGT
i xF

j( ).
Similarly, the fraction of correctly assigned boundary voxels is

defined as

FB
c � 1

nB
∑nB
j�1

∑nGT
i�1

CT
i xB

j( )CGT
i xB

j( ),
where

XB � xB
j{ }nB

j�1 � {xB
1 ∈ XF: ‖xB

1 − xB
2‖≤


3

√
andCGT

i xB
1( )

� CGT
ℓ

xB
2( ) � 1 for somexB

2 ∈ XF and i, ℓ � 1, . . . , nGT, i ≠ ℓ}
are the coordinates of the nB grain boundary voxels (with respect
to the 26-neighborhood, where the voxels x1, x2 are neighbors if
‖x1 − x2‖≤


3

√
). Moreover, note that the fraction of empty cells

F0 can be written as

F0 � 1
nT

∑nT
i�1

1{CT
i xF( ) � 0 for allxF ∈ XF},

where 1{·} denotes the indicator function. Furthermore, consider
the set of all grains that are a neighbor of the i-th grain in the

ground truth image data (with respect to the 6-neighborhood of
each voxel, where the voxels x1, x2 are neighbors if ‖x1 − x2‖ ≤ 1),

N GT
i � {ℓ ∈ 1, . . . , nGT{ }: CGT

i xF
1( ) � CGT

ℓ
xF
2( ) � 1

for any xF
1 , x

F
2 ∈ XF with ‖xF

1 − xF
2‖≤ 1, i ≠ ℓ},

the set of all cells that are a neighbor of the i-th tessellation cell,
NT

i (defined analogously), and the resulting set of correctly
assigned neighbors, N i � N GT

i ∩ NT
i . Then, the fraction of

cells for which all cell neighbors are correct can be written as

N0 � 1
nGT

∑nGT
i�1

1{N GT
i � NT

i },
and the mean number of incorrect cell neighbors is

�N � 1
nGT

∑nGT
i�1

#N GT
i − #N i( ),

where # denotes cardinality. These performance measures were
calculated for simulated and experimental image data with both
smooth and rough grain boundaries (see Sections 3.2, 3.3).

3.2 Simulated Data
In this section, the fitting of tessellations to simulated image data
is investigated. This allows us to study scenarios in which, in
principle, the tessellations can perfectly describe the image data,
which is usually not the case for experimental data. Apart from
that, it is also possible to simulate the effect of noisy image data
while still having access to the true grain boundaries.

3.2.1 Smooth Grain Boundaries
As a first step, the performance of the fitting procedure described
in Section 2.3 is evaluated for simulated data having smooth
grain boundaries—more precisely, for a (discretized) realization
of a randommultiplicatively weighted Laguerre tessellation. Since
a tessellation of the same type (among others) was fitted to the
simulated image dataset, it is clear that theoretically a perfect
match could have been achieved. However, whether or not this
global optimum is actually found depends strongly on the initial
generators. In the present investigation, we made sure that no
information leaked from the generation of the simulated image
data to the choice of initial generators (apart from the image data,
of course).

The tessellation underlying the simulated data was created as
follows in the cubic sampling window W � [0, 299]3. The seed
points {si}nTi�1 were a realization of a Matérn hardcore process with
(overall) intensity λsim > 0 and hardcore radius rsim > 0. We refer
to Chiu et al. (2013) for additional details. The weights were then
independently drawn: in the case of additive weights {wi}nTi�1, from
a (0,∞)-truncated normal distribution with (untruncated) mean
μsim > 0 and variance σ2sim > 0, and, in the case of multiplicative
weights {mi}nTi�1, from an inverse gamma distribution with shape
parameter αsim > 0 and scale parameter βsim > 0. To mitigate
boundary effects, the seed point process was simulated in a larger
window, and only those generators whose cell was located at least
partly within the actual simulation window were retained (this
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procedure is called plus-sampling in the literature—see e.g. Chiu
et al. (2013)).

In our case, the parameters of the random tessellation model
were set as follows: λsim � 0.0000205, rsim � 14.1, μsim � 27.4,
σ2sim � 9.25, αsim � 1.5 and βsim � 0.0939. In total, the resulting
realization had nGT � 1073 cells and was discretized in the
window Wsim � {0, . . . , 299}3 by assigning each voxel a label
associated with the simulated cell in which the corresponding
voxel coordinate is located. This is described by the mapping
Isim: Wsim → {1, . . . , nGT}, the values of which are hereafter

referred to as smooth simulated image data. All voxels were
considered during the fitting (i.e., XF � Wsim).

Once the simulated image dataset was obtained, different
tessellation models were successively fitted to it, and their
goodness of fit was evaluated using the performance measures
from Section 3.1. A schematic overview of this procedure is
depicted in Figure 2. A visual comparison of the ground truth
image data and the fits is given in Figure 3, whereas numerical
fitting results are presented in Table 1.

3.2.2 Perturbed Grain Labels
One of the main goals of the present paper is to investigate the
fitting of tessellations to image data containing rough grain
boundaries—which may result, for example, from
measurement uncertainties. For an in-depth analysis of this
scenario, the grain labels of the simulated image data from
Section 3.2.1 were perturbed such that the originally smooth
boundaries exhibited a similar degree of roughness as in the
experimental image data. With this approach, it was possible to
vary the intensity of the perturbation and to study the robustness
of the fitting even for degrees of boundary roughness well beyond
that observed in experiment. Another benefit was the ability to
evaluate the goodness of fit with respect to the (true) smooth
grain boundaries instead of with respect to the perturbed grain
boundaries that were input to the fitting procedure (Figure 4).

FIGURE 2 |Schematic overview of the fitting of tessellations to simulated
image data having smooth grain boundaries and validation of the resulting fits.
Orthogonal 2D slices through 3D datasets are shown.

FIGURE 3 | Two-dimensional slices through (A) the simulated ground truth image data and the corresponding fitted tessellations: (B)–(E) were obtained by the
gradient descent-based method described in Section 2.3, whereas (F) followed from the direct approach described in Section 2.4.2.
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Intuitively, the perturbed simulated image data was generated
by computing a binary image of the grain boundaries from the
smooth simulated image Isim considered in Section 3.2.1. Then,
the grain boundaries were blurred. The resulting grayscale image
was used to define probabilities with which the grain labels of
voxels in Isim were reassigned to labels drawn from each voxel’s
near vicinity. This way, a grain label is most likely to be changed
when a voxel is located near a grain boundary, while the labels of
voxels closer to a grain center will usually remain unchanged. A
similar tendency is evident in the raw experimental data
(Figure 1).

More precisely, the perturbation probabilities were obtained as
follows. First, a ‘subvoxel’ boundary image Ib: Wp

pert → {0, 1} of
the smooth simulated image Isim was computed according to

Ib y( ) � 1 if #N b y( )> 1,
0 otherwise,

{
with

N b y( ) � {Isim x1, x2, x3( ): xk � yk ± 1
2

if yk odd, and

xk � yk

2
if yk even, k � 1, 2, 3}

for y � (y1, y2, y3) ∈ Wp
pert � {0, . . . , 598}3. This means Ib(y) is

labeled as a boundary voxel whenever the setN b(y) contains
at least two distinct grain labels. Effectively, this amounts to
assigning boundary locations by considering an upsampled
version of Isim with nearly twice the number of voxels in each
spatial dimension. So, if two neighboring voxels in Isim have
different labels, a boundary is drawn between these voxels in
Ib—see Figure 5. Next, a Gaussian blur (Russ and Neal,
2017) with standard deviation σ ≥ 0 (where σ � 0 implies no
blurring) was applied to the boundary image Ib to obtain the
blurred boundary image Iblur: Wp

pert → [0, 1]. Here, the
values of voxels in Wp

pert are scaled such that their
minimum and maximum are equal to 0 and 1,
respectively. Since σ determines how far into a grain the
perturbations occur, we call it the perturbation spread.
Finally, the perturbation probability image
Iprob: Wpert → [0, 1] was acquired by a subsequent
downsampling to the original resolution of Isim:

Iprob x( ) � 1
8

∑
z1 ,z2 ,z3∈ 0,1{ }

Iblur 2x1 + z1, 2x2 + z2, 2x3 + z3( )

for x � (x1, x2, x3) ∈ Wpert � Wsim. During this calculation,
values outside the domain of Iblur were set equal to 0.

The smooth simulated image Isim was perturbed by considering
the random variables Zx with values in {1, . . ., nGT} such that

Zx � Isim x( ) with probability Iprob x( ),
Isim y( ) with probability 1 − Iprob x( ),{

for each voxel x ∈ Wpert, where y is the closest voxel in Isim to x for
which Isim(y) ≠ Isim(x) (ties are broken by choosing a grain label
uniformly at random). We assume that all Zx are stochastically
independent of each other. The perturbation
Ipert: Wpert → {1, . . . , nGT} of the smooth simulated image Isim
was then obtained as a realization of the random variables
{Zx}x∈Wpert

. Note that Ipert is a function of the perturbation
spread σ ≥ 0 and that, even for the case σ � 0, perturbations
can still occur within a voxel of the grain boundaries, as Iprob can

TABLE 1 | Values of performance measures for various tessellation models fitted
to the smooth simulated image data, considering the fraction of correctly
assigned voxels Fc, the fraction of correctly assigned boundary voxels FB

c , the
fraction of empty cells F0, the fraction of cells for which all cell neighbors are correct
N0, and the mean number of incorrect cell neighbors �N. The fits were obtained
by the cross-entropy approach (“initial configuration”) described in Section 2.4.1,
the gradient descent-based approach described in Section 2.3, and the “direct
approach” described in Section 2.4.2.

Fc FB
c F0 N0

�N

Laguerre (initial configuration) 0.516 0.324 0.005 0.064 6.289
Laguerre 0.802 0.562 0.036 0.114 3.290
Multiplicatively weighted Laguerre 0.987 0.948 0.058 0.587 0.634
Diagonal GBPD 0.988 0.952 0.056 0.644 0.529
GBPD 0.979 0.909 0.055 0.579 0.624
GBPD (direct approach) 0.824 0.551 0.004 0.271 1.392

FIGURE 4 | Schematic overview of the generation of perturbed simulated grain labels and validation of their fits. Orthogonal 2D slices through 3D datasets
are shown.
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FIGURE 5 | Two-dimensional example of (A) a 3 × 3-pixel grain label image Isim with three grain labels (green, red and blue) and (B) its “subvoxel”
boundary image Ib. Two pixels of the boundary image (one at location (3, 1) and another at (1, 4)) are superimposed on their corresponding locations in the
grain label image (dotted squares). Effectively, the set N b(·) contains all grain labels covered by these shifted pixels. The cardinality of the set N b((1, 4)) is
therefore 2, whereas #N b((3,1)) � 3. If the indices specifying the location of a pixel in the boundary image are all even, this pixel lies entirely within the
bounds of a single pixel in the grain label image; consequently, the cardinality ofN b(·) is always 1, and the pixel in Ib will always be assigned the value of zero
(shaded black in the boundary image).

FIGURE 6 | Two-dimensional slices through the simulated image data Isim following perturbation of the latter with Ipert, shown in (A–F) for different values of the
perturbation spread σ ≥ 0.
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take non-zero values. Since there were no background voxels in
Ipert, we set XF � Wpert.

Several different values of the perturbation spread σ are
considered in the present paper. In Figures 6, 2D slices

through the resulting perturbed simulated image data are
shown. For each of these datasets the same fittings as in
the previous section were performed. As the perturbations
are assumed to have originated from measurement errors,

FIGURE7 | Fraction of correctly assigned voxels plotted against the perturbation spread σ, evaluated for all voxels in the image dataset and for the boundary voxels.

FIGURE 8 | Two-dimensional slices through (A) the smooth simulated image Isim and (B)–(F) tessellations fitted to the perturbed simulated image data Ipert with σ �
1. The fits in (B)–(E) were obtained by the gradient descent-based method described in Section 2.3, whereas (F) followed from the direct approach described in
Section 2.4.2.
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the fits were compared to the smooth image data instead
of evaluating the goodness of fit with respect to the
perturbed image data (cf. Figure 4). The dependence of
the quality of fit on the perturbation spread σ is visualized in
Figure 7. For σ � 1, a visual comparison of the fitted
tessellations to the smooth simulated image data is shown
in Figure 8, whereas in Table 2 numerical fitting results
are given.

3.3 Experimental Data
In this section, the fitting method described in Section 2.3 is
tested with realistic grain boundaries. For this purpose,
experimental image data obtained from a 3DXRD mapping of
an AlCu sample (Section 2.1) was used. As with the simulated
data of Section 3.2, we first consider image data with smooth
grain boundaries before tackling a dataset with rougher
boundaries (Figure 1). The goal is to assess the robustness of
the fitting procedure with respect to real-world grain boundary
perturbations—originating, e.g., from measurement
uncertainties—and also to determine whether the custom of
preprocessing raw experimental image data to obtain smoother

TABLE 2 | Values of performance measures for various tessellation models fitted
to the perturbed simulated image Ipert with σ � 1 and evaluated with respect to
the smooth simulated image Isim.

Fc FB
c F0 N0

�N

Laguerre (initial configuration) 0.505 0.318 0.006 0.062 6.222
Laguerre 0.796 0.546 0.036 0.130 3.236
Multiplicatively weighted Laguerre 0.941 0.761 0.083 0.376 1.118
Diagonal GBPD 0.940 0.757 0.063 0.427 0.980
GBPD 0.951 0.792 0.050 0.486 0.781
GBPD (direct approach) 0.822 0.549 0.002 0.286 1.349

TABLE 3 | Values of performance measures for various tessellation models fitted
to the smoothed experimental image data.

Fc FB
c F0 N0

�N

Laguerre (initial configuration) 0.595 0.373 0.000 0.089 3.219
Laguerre 0.845 0.566 0.021 0.293 1.266
Multiplicatively weighted Laguerre 0.936 0.688 0.050 0.446 0.993
Diagonal GBPD 0.955 0.758 0.031 0.543 0.779
GBPD 0.970 0.831 0.047 0.624 0.679
GBPD (direct approach) 0.903 0.619 0.000 0.324 1.163

FIGURE 9 | Two-dimensional slices through (A) the raw experimental ground truth image data and (B)–(F) the corresponding fitted tessellations. The fits in (B)–E)
were obtained by the gradient descent-based method described in Section 2.3, whereas (F) followed from the direct approach described in Section 2.4.2. Note that
the 2D slice shown in (A) differs from that shown in Figure 1A.
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(and, thus, physically more sensible) grain boundaries prior to
fitting is actually necessary.

3.3.1 Smoothed Grain Boundaries
The image IE,smooth gained from an AlCu sample exhibits
smooth grain boundaries after being preprocessed with
a phase field algorithm (Section 2.1). Tessellation fitting
was performed with respect to all foreground voxels
XF � {x ∈ WE,smooth: IE,smooth(x)> 0}. The numerical results of
the fitting are presented in Table 3. Because 2D slices through
these fitted tessellations were found to be qualitatively similar to
those shown in Figure 9—which were obtained from fits to the
raw experimental map—we omit the images of tessellations fitted
to the smoothed experimental data.

3.3.2 Raw Grain Boundaries
The raw experimental image data, described by the mapping
IE,raw (see Section 2.1), was not subjected to the phase field
smoothing step following tomographic reconstruction of the
3DXRD measurement. For this reason, artifacts attributable to
measurement uncertainties are visible at and near the grain
boundaries (cf. Figure 1A). In contrast to the fitting of
tessellations to the perturbed simulated image data of Section
3.2.2, in the present case we evaluate the quality of fit with respect
to the same data that was used as the input dataset (i.e., the raw
experimental map). One might consider treating IE,smooth as a
good approximation of the true, unobserved grain boundaries;
however, since some grains were removed by the smoothing step,
the number of grains in the ‘reference’ dataset would differ from
the number of cells in the fitted tessellations. As a result, the
performance measures of Section 3.1 would no longer be
applicable. A visual comparison of the fits to the raw
experimental image data is shown in Figure 9, and the
numerical results are presented in Table 4. Here, all
foreground voxels XF � {x ∈ WE,smooth: IE,smooth(x)> 0} were
considered during the fitting.

4 DISCUSSION

4.1 Fitting Results
As seen in Section 3.2.1, the fitted multiplicatively weighted
Laguerre tessellation, the diagonal GBPD and the GBPDmatched
the smooth simulated image data very well, and a near perfect
voxelwise accuracy was obtained. Between these tessellation
models, there were only minor differences in the goodness of

fit. Most notably, the GBPD was slightly worse at reconstructing
the boundary voxels (see Table 1). Nevertheless, no significant
decline in goodness of fit was observed even for the tessellation
models that employ more parameters than necessary to describe
the ground truth image data (which was generated from a
multiplicatively weighted Laguerre tessellation). Furthermore,
except for the number of empty cells, the gradient descent-
based fitting procedure described in Section 2.3 achieved a
notably better fit than the good results obtained by the direct
approach of Teferra and Rowenhorst (2018) (see Section 2.4.2).
On the other hand, in light of the results given in Table 1 for the
initial Laguerre tessellation and the improved generators that
resulted from the fitting procedure of Section 2.3, it is clear that
the Laguerre tessellations with their flat boundaries (see
Figure 3B) lacked sufficient flexibility for an accurate
reconstruction of the ground truth data. However, the gradient
descent-based fitting procedure still managed to bring about a
significant improvement compared to the initial generators from
the cross-entropy approach. This can likely be traced to the fact
that the gradient descent-based approach considers a volume-
based objective function (see Section 2.3) rather than an
interface-based one (see Section 2.4.1). In general, we cannot
expect to solve such a high-dimensional optimization problem by
finding its global optimum; this would be equivalent to finding a
perfect reconstruction of the multiplicatively weighted Laguerre
tessellation that underlays the ground truth image data.
Nevertheless, the fitted tessellations were quite close to the
optimum, despite having been obtained by a local
optimization method.

When it comes to the perturbed simulated image data
investigated in Section 3.2.2, it is somewhat surprising how
well the voxels of the smooth simulated image data could be
reconstructed even from very noisy input image data (see
Figure 7). As the same effect is observed for all three fitting
methods considered in the present paper—i.e., the cross-entropy
approach (Section 2.4.1), the direct approach (Section 2.4.2),
and the gradient descent-based method (Section 2.3)—we
attribute this robustness against perturbations to the inherent
smoothing property of tessellations. Another observation that
might surprise is the finding that the results for the direct
approach were practically independent of the perturbation
spread σ, but, just as in the case of the smooth simulated
dataset, the gradient descent-based fitting procedure of Section
2.3 was able to surpass the direct method. The proposed method
also achieved a better accuracy of the boundary voxels. In the
latter case, however, some degradation could be observed with
increasing σ. Some part of this degradation can be explained by
the fact that a procedure producing more accurate
approximations of the grain boundaries in the first place is
going to be more sensitive to noise in the grain boundaries.
Naturally, the deterioration in the fit of the boundary voxels also
influences the considered grain neighborhood characteristics N0

and �N—compare Tables 1, 2. Nevertheless, the decline in
goodness of fit with σ is still well within reason, given the
high noise level of the input image data (see Figure 6). In
fact, from a visual comparison of the raw experimental image
data in Figure 1B to the perturbed simulated image data in

TABLE 4 | Values of performance measures for various tessellation models fitted
to the raw experimental image data.

Fc FB
c F0 N0

�N

Laguerre (initial configuration) 0.595 0.378 0.000 0.101 3.221
Laguerre 0.846 0.576 0.021 0.288 1.316
Multiplicatively weighted Laguerre 0.935 0.696 0.053 0.443 0.987
Diagonal GBPD 0.951 0.754 0.044 0.510 0.847
GBPD 0.966 0.820 0.045 0.622 0.652
GBPD (direct approach) 0.901 0.627 0.000 0.329 1.146
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Figure 6, it can be seen that the case with the lowest level of noise
(i.e., σ � 0) comes closest to the considered experimental data.
This indicates that the gradient descent-based fitting procedure
described in Section 2.3 is not only able to deal with the present
level of measurement artifacts but also with much noisier
scenarios.

For the experimental image data investigated in Sections
3.3.1, 3.3.2, quite high voxelwise accuracies Fc and FB

c were
observed, particularly for the more sophisticated tessellation
models, as they are better at describing non-convex grain
morphologies. Despite this fact, with respect to Fc and FB

c the
simpler Laguerre tessellation does a better job of fitting the
experimental datasets than the simulated image—compare
Tables 3, 4; Table 1. The same is true when considering the
grain neighborhood characteristicsN0 and �N. As could already be
anticipated from our analysis of the perturbed simulated image
data, there was no significant difference in goodness of fit to the
smoothed versus to the raw experimental datasets (for all
performance measures). This leads us to conclude that there is
no benefit to smoothing the grain boundaries in experimental
image data prior to tessellation fitting.

One of the main advantages of the gradient descent-based
fitting procedure described in Section 2.3 compared to other
optimization approaches lies in its runtime performance. This
comes from the reformulation of the objective function and the
resulting ability to employ efficient gradient descent optimization
algorithms. Another reason is the fact that the objective function
and its gradient can both be computed on multiple CPU cores or
even on GPUs. This opens up the possibility of reducing the (wall
clock) time for the fitting procedure by employing hardware
having a higher degree of parallelism (such as GPUs), which
would not be so readily feasible for sequential fitting procedures.
As runtime benchmarks are notorious for their dependence on a
multitude of factors (in this case, for example, on the number of
generators/grains, the number of voxels, the computer hardware,
etc.), the runtimes quoted in Table 5 for the fitting of tessellations
to the smoothed experimental image data should be taken with a
grain of salt. In this particular case, the slower fitting of the GBPD
model than the other tessellations can be attributed not only to
the increased number of parameters but, more importantly, to the
fact that a less efficient software implementation had to be used to
compute the GBPD distance function. That being said, to achieve
such a high goodness of fit for a dataset with 531 × 321 × 321
voxels and 938 grains, the runtimes are quite competitive,
especially for the other tessellation models.

4.2 Other Fitting Approaches in the
Literature
The fitting results for the direct approach of Teferra and
Rowenhorst (2018) (Section 2.4.2) were discussed in the
previous section. For all datasets, the direct approach delivered
reasonably good fits of GBPDs, but they were consistently worse
than those obtained by the gradient descent-based fitting
procedure of Section 2.3. The only exception here is the fact
that the direct method produced very few empty cells. Its main
benefit, however, is the very short runtime of only a couple of
seconds. Therefore, the direct approach is a good choice if a
tessellation must be found quickly, but if the focus lies on the
quality of fit, the gradient descent-based method developed in the
present paper may be more suitable.

In Šedivý et al. (2016), still another method for fitting
GBPDs was proposed, in which—similar to the present
paper—a volume-based objective function is optimized.
However, instead of a gradient descent method, Šedivý
et al. employed a global stochastic optimization technique,
the simulated annealing algorithm. As the name implies, this
technique is inspired by the annealing (heat treatment) of
metals. Specifically, during each iteration of the optimization,
a random modification of the previous generators is
proposed. These changes are accepted depending on
whether the objective function is improved as well as on
the current value of the ‘temperature.’ Here, the parameter
‘temperature’ governs the likelihood that a change in
generators is accepted even though it leads to a worse
value of the objective function. As the temperature is
decreased over the course of the optimization, the
probability increases that only improvements in the fit are
accepted. In Šedivý et al. (2016), this fitting procedure was
applied to both simulated and experimental image data. For
the former case, which was a realization of a random GBPD,
the quality of fit of the simulated annealing approach (Fc �
0.975, N0 � 0.604, �N � 0.57) was similar to the results
obtained in Section 3.2.1 of the present paper. However,
since the simulated datasets were drawn from two different
models (GBPD vs. multiplicatively weighted Laguerre
tessellation), direct comparison warrants caution.
Regarding the runtime of the fitting routine, it is
mentioned in Šedivý et al. (2016) that roughly 19 h were
needed to carry out 10 million optimization iterations on an
Intel Xeon E3-1240 CPU with four 3.4 GHz cores (slightly
slower than the Intel Core i7-4770K used in the present
paper). The procedure stopped after 13 million iterations,
which corresponds to a total runtime of about 24 h. When
comparing this to the 16:42 h that the same fitting took in the
present paper (see Table 5), we note that the dataset
considered by Šedivý et al. had only about a 10th the size
(1803 vs. 531 × 321 × 321 voxels) but more than twice as many
grains (1894 vs. 938 grains). A direct comparison to their
experimental dataset is omitted, as the two datasets are quite
different. In summary, the goodness of fit achieved by the
simulated annealing approach applied to simulated data was
similar to that achieved by the gradient descent-based fitting

TABLE 5 | Runtimes for the fitting of tessellation models to the smoothed
experimental image dataset. System A employed only a CPU (Intel Core i7-
4770K with four 3.50 GHz cores), whereas System B performed some of the
computations on a GPU (CPU: AMD Ryzen 5 3600 with six 3.6 GHz cores; GPU:
NVIDIA GeForce RTX 3060).

Tessellation model System A System B

Laguerre 6:07 h 1:12 h
Multiplicatively weighted Laguerre 6:27 h 1:13 h
Diagonal GBPD 8:26 h 1:19 h
GBPD 16:42 h 3:58 h
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procedure of the present paper, but the runtime reported in
Šedivý et al. (2016) was significantly longer.

5 CONCLUSION

In this paper, a novel method for fitting distance-based
tessellations, such as the Laguerre tessellation or generalized
balanced power diagrams, to 3D image data was developed.
With this approach, it is possible to obtain parametric
representations of the curved grain boundaries of real
polycrystalline materials. The method employs efficient
gradient descent optimization, with the technique proving to
be capable of reconstructing a tessellation from its discretized
image. Nearly identical fits were obtained when the procedure
was applied to smoothed versus raw experimental data. From the
observed robustness against noise in the input image data, we
conclude that there is no benefit to smoothing an experimental
image dataset prior to fitting it with a tessellation model.

The proposed method could facilitate the study of physical
phenomena like curvature-driven grain growth, in which smooth
representations of grain boundaries—such as those provided by
tessellation models—are required for accurate calculations.
Furthermore, the fitted tessellations could serve as the basis
for stochastic models of polycrystalline microstructures. These
models could potentially enable researchers to investigate
mechanical properties of material samples in silico instead of
through resource-intensive laboratory experimentation.
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