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Abstract

Simulations of organic semiconducting devices using drift-diffusion equations are

vital for the understanding of their functionality as well as for the optimization of

their performance. Input parameters for these equations are usually determined from

experiments and do not provide a direct link to the chemical structures and material

morphology. Here we demonstrate how such a parametrization can be performed by

using atomic-scale (microscopic) simulations. To do this, a stochastic network model,

parametrized on atomistic simulations, is used to tabulate charge mobility in a wide

density range. After accounting for finite-size effects at small charge densities, the

data is fitted to the uncorrelated and correlated extended Gaussian disorder models.

Surprisingly, the uncorrelated model reproduces the results of microscopic simulations
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better than the correlated one, compensating for spatial correlations present in a mi-

croscopic system by a large lattice constant. The proposed method retains the link to

the material morphology and the underlying chemistry and can be used to formulate

structure-property relationships or optimize devices prior to compound synthesis.

1 Introduction

The optimization of organic photovoltaic cells,1,2 light emitting diodes,3 and field effect tran-

sistors4 requires the improvement of the charge-carrier mobility, µ, of an organic semiconduc-

tor, which depends on charge-carrier density, ρ, external electric field, F, and temperature,

T .5–10 Different experimental setups have been proposed to measure these dependencies, e.g.

time-of-flight,11,12 field effect transistor,13–15 diode,3 microwave conductivity,16 or charge ex-

traction by linearly increasing voltage17 measurements. They each operate at different charge

densities and hence should be accompanied by an appropriate model in order to recover the

full dependence.18 Analytical expressions have therefore been proposed by analyzing vari-

ous model systems9,19–22 and are routinely used to interpret experiments23–27 as well as to

parametrize charge transport models. While being useful for the fine-tuning of the device

performance for a specific material combination, these parametrizations do not directly re-

late the chemical structure or material morphology to charge mobility and hence cannot be

applied to compound screening.

Computer simulations can help to retain the link to the chemical structure and should

ideally provide the mobility µ as a function of ρ, T, F over the ranges relevant for use in device

simulations. At an atomistic level of detail, which is required for describing morphologies and

charge transfer processes without fitting parameters,28–31 it is possible to study only relatively

small systems comprising up to several thousands of molecules and concomitantly at high

carrier densities. Larger systems and thereby lower carrier densities can be simulated by

employing a stochastic model32,33 parametrized on the distribution and correlation functions

of atomistic simulations, both for morphologies and transport parameters. With the help of
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stochastic models, the dependence of mobility on charge density and field can, in principle,

be tabulated and used to solve the macroscopic drift-diffusion equations. In practice, the

range of charge densities accessible to stochastic simulations is still limited and pronounced

finite-size effects occur,34 especially at low densities. In this work we illustrate how to

overcome these limitations and parametrize the analytical expressions resulting from the

Gaussian disorder models. To do this, we tabulate the mobility as a function of charge

density using atomistic (microscopic and stochastic) approaches, eliminate finite-size effects

at small carrier densities, and then fit the data to the analytical forms provided by the

extended and extended correlated Gaussian disorder models.

The approach is illustrated on an amorphous phase of dicyanovinyl-substituted quaterthio-

phene (DCV4T), whose chemical structure is shown in Figure 1(a). DCV4T is a thermally

stable dye35,36 with a small optical band gap, which renders it as an excellent donor for bulk

heterojunction solar cells.37–42 When mixed with C60, DCV4T retains (at least partially)

its crystallinity.43–45 Here, however, we will study pure amorphous (glassy) systems, where

morphological disorder results in a large energetic disorder and hence pronounced finite size

effects, making these systems ideal for illustrating and testing the method.

2 Methodology

To perform molecular dynamics simulations, the reparametrized43,45 version of the OPLS46,47

force field and the GROMACS package were used.48 An amorphous phase of DCV4T has been

generated using the isothermal-isobaric (NPT) ensemble with the Berendsen barostat and

thermostat49 by equilibrating 4096 molecules at T = 800 K for 10 ns, quenching the system

to T = 300 K, and equilibrating again for 10 ns. The final cubic box of 13.7×13.7×13.7 nm3

is shown in Figure 1(d).

Charge transport simulations were carried out using the VOTCA package.28 The rates

of a charge transfer reaction were evaluated using the high temperature limit of the Marcus
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Figure 1: (a) chemical structure, (b) electrostatic potential (at ±0.7V ), (c) highest occu-
pied molecular orbital, and (d) amorphous morphology of 4096 molecules of dicyanovinyl-
substituted quaterthiophene (DCV4T).

theory50,51

ωij =
2π

~
J2
ij√

4πλijkBT
exp

[
−(∆Eij − λij)2

4λijkBT

]
, (1)

where ∆Eij = Ei − Ej is the energy difference between localized states, λij is the reorga-

nization energy, and Jij is the electronic coupling. For each molecule i with center-of-mass

coordinate ri the site energy was calculated as Ei = Eint
i +Eel

i +Epol
i +qF·ri, where Eint

i is the

internal molecular energy, i.e., the adiabatic ionization potential of the molecule. Eel
i is the

electrostatic energy due to variations of the local electric field, evaluated using atomic partial

charges. The corresponding electrostatic potential, which demonstrates the acceptor-donor-

acceptor character of the molecule, is shown in Figure 1(b). Epol
i is the induction energy,

evaluated using the Thole model,52,53 qF · ri is the energy due to the interaction of charged

molecules with an external electric field. The corresponding parameters can be found in the

supporting information of Refs.43,45 Note that the acceptor-donor-acceptor architecture of

DCV4T, in combination with non-planar molecular geometries in the amorphous morphol-
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ogy, leads to large molecular dipolar moments and pronounced spatially correlated energetic

disorder of σ = 0.253 eV.

Electronic couplings were evaluated for all molecule pairs in the neighbor list using the

semi-empirical ZINDO method.54,55 The frozen core approximation was used, i.e., the HOMO

orbital, which is shown in Figure 1(c), provides the main contribution to the diabatic states

of the dimer. The neighbor list was constructed using a cutoff of 0.7 nm between rigid

fragments (thiophenes and dicyanovinyl groups).

The variable-step-size implementation of the kinetic Monte Carlo algorithm was used to

solve the master equation28 and simulate charge dynamics in the system. Coulomb interac-

tion between charges was accounted for approximately by excluding double occupancy of a

site. For 4096 molecules one to sixteen charges per simulation box were used, corresponding

to hole densities of 0 (no interactions for a single charge carrier) to 6.22× 1018 cm−3, which

covers typical values for OFET measurements.18 Simulation times varied between 0.1 s and

0.0001 s, depending on the number of carriers (systems with many carriers undergo faster

relaxation). The mobility µ was evaluated by averaging over several trajectories and all

carriers, µ = 1
NF 2

∑N
k=1 〈vk · F〉, where vk is the velocity of carrier k, and 〈· · · 〉 denotes the

average over all runs.

High computational costs limit the accessible system size in atomistic simulations. There-

fore a stochastic model32,33 was used to reproduce distribution functions for center of mass

positions, site energies, pair connection and transfer integrals. Positions were parametrized

using the thinning of a Poisson process: we first generated a purely random pattern of

points (candidates for site positions) such that the number M of points in a given volume V

is Poisson distributed, M ∼ Poi(ρsiteV ), with ρsite > 1.59 denoting the density of points per

unit volume. In a second step points that are too close to each other (i.e., the unphysical

situation of overlapping molecules) were deleted by assigning a radius Rn = rh +Xn to each

point and deleting those points for which a sphere of radius Rn is contained in the sphere of

another point with radius Rm > Rn. Here rh = 0.1 nm is the minimum separation observed
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in the atomistic data and Xn is a (positive) Gamma-distributed random variable, mimicking

the freedom in molecular orientation. The procedure was repeated until the desired density

of ρsite = 1.59 nm−3 was obtained, in agreement with the atomistic data. The stochastic

model for site positions has been validated by comparing the atomistic and stochastic pair

correlation functions g(r) (see the supporting information for details).

Site energies with spatial correlation were generated using a moving-average proce-

dure.32,33 The main idea is to decompose the site energy into two contributions, one that is

a site-specific Gaussian distributed random variable and another one that is the sum run-

ning over all neighbors, with another set of previously fixed Gaussian distributed random

variables. Since any sum of independently Gaussian distributed variables is again Gaussian

distributed, we obtain Gaussian distributed random variables with spatial correlation. The

necessary parameters for the method are obtained by fitting the resulting correlation func-

tion κ(r) against its atomistic counterpart (see Figure 3). The neighbor list of the stochastic

model was generated by picking a point and connecting to it all neighboring points in a

sphere of a radius rmin = 0.633 nm, chosen since in the atomistic data any two points of

distance r ≤ rmin are connected. In a second step, points within a sphere of a larger radius

rmax = 2.5 nm are connected with a random acceptance criterion chosen such that the av-

erage and minimum coordination numbers observed in the atomistic data are reproduced.

This algorithm reproduces the probability of two sites being connected (see the support-

ing information) and retains the same average number of connections per site (coordination

number). Transfer integrals Jij for all connected sites have been modeled by mimicking

the Gaussian distributions of log10

(
J2
ij/eV2

)
for sites at a fixed separation, for which the

distance-dependent mean and variance values have been calculated from the atomistic data.

With point positions, site energies, and electronic couplings at hand we evaluated hopping

rates using 1. The use of the stochastic model allowed us to study eight times larger systems

and, consequently, a wider range of charge densities, down to ρ = 0.97× 1017cm−3.

In order to eliminate finite-size effects at small charge densities, an extrapolation pro-
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cedure has been used, where mobilities are first simulated at elevated temperatures (for

the energetic disorder of 0.253 eV an estimate for a non-dispersive temperature regime is

T & 1700 K34) and then fitted to the relation

µ(T ) =
µ0

T
3
2

exp

(
−
( a
T

)2
−
(
b

T

))
, (2)

which then gives a non-dispersive mobility value at room temperature.

In order to fit the mobility-density dependence of the atomistic and stochastic models,

Gaussian disorder models where used. They are based on Monte Carlo simulations in lattices

that were used for a parametrization of µ(ρ, T, F ) and thus allow the extraction of, e.g.,

the disorder parameter from experiments. The original version20 was later extended to

include correlated disorder,21 finite charge density in the extended Gaussian disorder model

(EGDM9) as well as a combination of both in the extended, correlated Gaussian disorder

model (ECDM22). Key equations are recapitulated in the supporting information.

3 Results

The mobility versus field dependencies for the microscopic (atomistic and stochastic) models

are shown in Figure 2(a). One can see that the mobility increases by four orders of magni-

tude with the increase of charge density from 1016 cm−3 to 1019 cm−3. The reason for this

increase is that at high densities deep energetic traps are filled, detrapping the rest of carri-

ers. Since detrapping is stronger than the slow-down due to blocked pathways, the overall

mobility increases.10 One can also see that the stochastic and microscopic simulations agree

at high charge densities but are off by orders of magnitude at small densities. The stark

disagreement is due to finite-size effects: sampling of the density of states is limited to a

relatively small number of site energies (since periodic boundary conditions are used), re-

sulting in logarithmically slow convergence of the carrier energy with system size and hence

overestimation of the mobility.34 Since the microscopic system is eight times smaller than
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Figure 2: (a) Mobility versus the square root of applied field for charge densities ranging
from 9.7 × 1016(light color) to 6.2 × 1018cm−3 (dark color). The zero-density limit is given
in black. Solid lines correspond to the atomistic system (4096 molecules) while dashed lines
represent a stochastic system (ca. 32000 hopping sites). (b) Microscopic mobilities (squares)
fitted to the EGDM (solid lines) and ECDM (dashed lines) models.

the stochastic one, the finite size effects are significantly more pronounced (hotter carriers

in a smaller simulation box), leading to orders of magnitude differences in mobility values.

For the atomistic and stochastic models, the energetic disorder, σ, zero-field mobility,

µ0(300 K), and an effective lattice spacing, a, can be obtained directly from the distribu-

tion of site energies, diffusion constant (using the Einstein relation), and material density,

respectively. Assuming a cubic lattice, we obtain a = 3
√
V/N = 0.86 nm, the variance of site

energies σ =
√

1
N

∑
i (Ei − 〈E〉)2 = 0.253 eV, and µ0(300 K) = 3.5 × 10−10 cm2/Vs (for the

system of 32000 molecules).

These results can be compared by fits of EGDM and ECDM to the obtained mobility

dependence. A direct fit of the data as obtained by the microscopic simulations yields

parameters which are completely unphysical, e.g., µECDM
0 (300 K) ≈ 1013 cm2/Vs. The reason

for this is that the zero-density mobility of the microscopic model is subject to substantial

finite-size effects.34 Extrapolating the microscopic data to a system of an infinite size, as
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described in the methodology section, we obtain a non-dispersive zero-density mobility of

∼ 10−17 cm2/Vs, lowering the finite size biased value by seven (!) orders of magnitude.

Including this value in the fit then yield physically reasonable parameters.

Table 1: Lattice spacing, energetic disorder, and mobility at zero field and density of the
atomistic, EGDM, and ECDM models. µ0 is calculated at 300 K.

a [nm] σ [eV] µ0(300 K) [cm2/Vs]
microscopic 0.86 0.253 2.0× 10−17

EGDM 1.79 0.232 2.1× 10−17

ECDM 0.34 0.302 3.3× 10−18

Fitting results are summarized in Figure 2(b) and Table 1. Apart from a zero-density

point, densities between 7.76 × 1017cm−3 and 6.22 × 1018cm−3 were used, for which the

transport is non-dispersive at room temperature. One can see that the values for σ and

µ0(300 K) obtained from the fit to the EGDM model are very similar to the microscopic

model. The value of the lattice constant is, however, significantly larger. The physical reason

for this is the absence of spatial correlations in EGDM, which is effectively compensated by

an increased hopping range. The ECDM yields a much smaller lattice constant, larger

energetic disorder, a smaller value of µ0(300 K). Overall, the ECDM provides a worse fit

of the data (smaller slope at high densities), which is surprising since it includes spatial

site energy correlations. Both models, of course, incorporate certain assumptions, e.g., they

are parametrized on simulations using Miller-Abrahams rates,56 i.e., without accounting for

polaronic effects.7 The energetic disorder considered in the models ranges from σ = 0.05 eV

up to 0.16 eV (for T = 300 K), while an energetic disorder of 0.253 eV is predicted by the

microscopic simulations, which is outside the parametrization interval. The main issue,

however, lies in spatial correlations. ECDM site energies, Ei, are evaluated as

Ei = −
∑
j 6=i

qpj (rj − ri)

ε |rj − ri|3
, (3)

where pj is a randomly oriented dipole moment of fixed absolute value and ε is the material’s
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Figure 3: Site energy correlation function, κ(r). While the agreement between atomistic
and stochastic model is good, the proportionality κ(r) ∝ r−1 assumed in the ECDM fails
especially at small distances.

relative permittivity. The resulting energetic disorder has a width of σ = 2.35 q p/ε a2 21,57

and the energy correlation function for a simple cubic lattice can be approximated by21,22,58

κ(r) = κ0 a σ
2 r−1 with a constant coefficient κ0. The energetic correlation in this model

is fully determined by the energetic disorder, σ, while in microscopic simulations based on

realistic morphologies materials with the same energetic disorder may have different strengths

of correlation. Furthermore, a comparison of the r−1 proportionality in the ECDM to the

observed microscopic correlation (see Figure 3) shows that, especially at small distances, the

model is unable to capture the spatial correlation. A possible reason is that in DCV4T not

only the orientation of dipoles is random, but also their absolute values can differ significantly

for different molecules. Indeed, an analysis of the dipole moments in the DCV4T morphology

shows that the two most frequent molecular geometry conformations have absolute values of

1.4 Debye and 12.3 Debye

Experimental OFET mobility measurements in polycrystalline (or partially amorphous)

films report mobilities of 10−4 cm2/Vs36,43 (for a carrier density of about 5 × 1018 cm−3).

Though the simulated values are reasonable, a direct comparison to experiment is not possible
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since we study a completely amorphous system: due to increased energetic disorder we obtain

two orders of magnitude lower mobility values.

4 Conclusions

To summarize, we have demonstrated how the dependence of mobility on external field and

charge density can be parametrized using atomistic simulations. Two important steps in

these procedures are (i) the parametrization of a stochastic network model, which helps

to treat large systems and to increase the range of accessible charge densities; (ii) the ex-

trapolation of dispersive mobilities at small charge densities to non-dispersive values, thus

removing artifacts related to finite size effects inherently present in small periodic systems.

For an organic dye considered here, DCV4T, the EGDM provides reasonable fits of the Poole-

Frenkel dependencies, compensating for spatial correlations, which are present in amorphous

DCV4T, by a large lattice constant. The ECDM yields worse fitting, in spite of explicit treat-

ment of spatial site energy correlations. This has been shown to be a result of the model

correlation differing from the microscopically observed one. The proposed approach relates

the chemical structure, morphology, and microscopic transport parameters to an analytical

expression for mobility and therefore can be used to optimize organic devices on a macro-

scopic scale.

Acknowledgement

This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under the

Priority Program “Elementary Processes of Organic Photovoltaics” (SPP 1355), BMBF grant

MESOMERIE (FKZ 13N10723) and MEDOS (FKZ 03EK3503B), and DFG program IRTG

1404. We are grateful to Moritz Philipp Hein for helpful discussions regarding the OFET

measurements and to Carl Poelking, Falk May, Christian Lennartz, and Kostas Daoulas for

a critical reading of the manuscript.

11



Supporting Information Available

Parametrization of the stochastic model and of Gaussian disorder models and the extrapo-

lation to non-dispersive transport is available in the supporting information.

This material is available free of charge via the Internet at http://pubs.acs.org/.

References

(1) Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.

(2) Kirchartz, T.; Nelson, J. Device Modelling of Organic Bulk Heterojunction Solar Cells ;

Top. Curr. Chem.; Springer Berlin Heidelberg, 2013; pp 1–46.

(3) Blom, P.; De Jong, M. IEEE Journal of Selected Topics in Quantum Electronics 1998,

4, 105–112.

(4) Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210.

(5) Baranovskii, S. D.; Rubel, O.; Thomas, P. Journal of Non-Crystalline Solids 2006,

352, 1644–1647.

(6) Brondijk, J. J.; Maddalena, F.; Asadi, K.; van Leijen, H. J.; Heeney, M.; Blom, P.

W. M.; de Leeuw, D. M. physica status solidi (b) 2012, 249, 138–141.

(7) Fishchuk, I. I.; Arkhipov, V. I.; Kadashchuk, A.; Heremans, P.; Bässler, H. Phys. Rev.
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