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Abstract

We develop a physics-informed neural network pipeline for solving linear elastic micromechanics in three
dimensions, on a statistical volume element (SVE) of a polycrystalline material with periodic geometry. The
presented approach combines a convolutional neural network containing residual connections with physics-
informed non-trainable layers. The latter are introduced to enforce the strain field admissibility and the
constitutive law in a way consistent with so-called fast Fourier transform (FFT) algorithms. More precisely,
differential operators are discretized by finite differences in accordance with the Green operator used in
FFT computations and treated as convolutions with fixed kernels. The deterministic relationship between
crystalline orientations and stiffness tensors is transferred to the network by an additional non-trainable
layer. A loss function dependent on the divergence of the predicted stress field allows for updating the
neural network’s parameters without further supervision from ground truth data. The surrogate model
is trained on untextured synthetic polycrystalline SVEs with periodic boundary conditions, realized from
a stochastic 3D microstructure model based on random tessellations. Once trained, the network is able
to predict the periodic part of the displacement field from the crystalline orientation field (represented as
unit quaternions) of an SVE. The proposed self-supervised pipeline is compared to a similar one trained
with a data-driven loss function instead. Further, the accuracy of both models is analyzed by applying
them to microstructures larger than the training inputs, as well as to SVEs generated by the stochastic 3D
microstructure model, utilizing various different parameters. We find that the self-supervised pipeline yields
more accurate predictions than the data-driven one, at the expense of a longer training. Finally, we discuss
how the trained surrogate model can be used to solve certain inverse problems on polycrystalline domains
by gradient descent.

Keywords: Physics-informed, surrogate model, polycrystalline materials, statistical volume element,
periodic boundary conditions, linear elasticity.

1. Introduction

The determination of the mechanical response of polycrystalline materials is a long-standing subject of
research that involves complex physical phenomena at different scales [1, 2, 3]. Homogenization theory [4, 5]
and computational tools such as the finite element method (FEM) [6] and fast Fourier transform (FFT) [7]
techniques have commonly been employed to account for both microstructural and mechanical aspects,
through constitutive equations that model the material’s behavior. In polycrystalline materials, microscopic
local fields emerge from the interaction between grains, i.e. small anisotropic monocrystalline domains. To
understand how the morphology of grains and their crystalline orientations impact mechanical properties, a
high-dimensional space must be explored, which limits the use of finite element computations due to their high
computational cost [8]. Whenever periodic boundary conditions are appropriate, numerical computations
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on representative volume elements (RVEs) can be carried out instead with FFT solvers, which are based on
Green’s function [9] and allow for cheaper computations [10, 11].

More recently, machine learning (ML) techniques have been developed as well in order to address me-
chanical problems in materials engineering [12]. These methods include forward problems, i.e. the discovery
of solutions to partial differential equations (PDEs) as well as inverse design problems, that is, finding
structures or materials with prescribed properties. In particular, specialized neural networks have been de-
veloped to predict the effective mechanical properties of composite materials [13]. Notably, graph neural
networks (GNN) have been proposed to predict effective properties of polycrystalline microstructures by
mathematically treating them as a graph [14]. Additionally, ML techniques have been used for parametric
multi-objective optimization of crystallographic orientation distribution functions employing Rodrigues axis-
angle parametrization [15]. While that method improves the interpretability of microstructure descriptors,
defining the optimization objectives require pre-processing steps. Recent works have combined CNNs with
image data of heterogeneous materials, including modeling of nonlinear behavior [16, 17].

While the data-driven or supervised approach for surrogate models of differential systems has been the
state-of-the-art for a long time, the physics-informed perspective not only improved generalization capability,
but also reduced the amount of training data required. This paradigm, pioneered by Lagaris et al. [18] and
rediscovered with modern implementations by Raissi et al. [19] enables the injection of conservation and
evolution laws into loss functions of artificial neural networks, resulting in ML algorithms that better capture
the underlying laws between initial or boundary conditions and simulation outputs. Such neural networks are
commonly called physics-informed neural networks (PINNs). Neural networks that minimize the potential
energy [20] were also proposed to alleviate numerical instabilities frequently occurring when solving physical
PDEs. More generally, the PINN framework was applied to linear elastic micromechanics [21], where a
multilayer perceptron takes the coordinates of each point in the undeformed material as input features and
outputs both 2D displacement and stress fields. While succeeding in achieving learning in a self-supervised
manner and for different types of boundary conditions, the model is used as an exact solver rather than as
a surrogate model and, consequently, cannot be applied to unseen geometries without retraining. Therefore,
the PINN approach can benefit from architectures that take spatial correlations into account such as CNNs
or GNNs. Convolutional PINNs have been applied to self-supervised segmentation of images of composite
materials [22], in which the approach of discretizing differential operators such as gradient and divergence
of tensor fields as non-trainable convolutions is particurlarly useful. More recently, transformer neural
networks have been applied to predicting elastic fields of 2D composite materials, with improvements in
computational costs compared to FFT algorithms [23] for high Young’s modulus ratio. Other applications
of PINNs to micromechanics concern the combined use of genetic algorithms and deep learning techniques
to tune the mechanical properties of polycrystalline materials [24], in which efforts are made towards the
optimization of that class of materials, however with a fully-supervised approach applied to 2D images.

Standard solvers remain the preferred way to solve systems of PDEs in complex heterogeneous media
because of their reliability and determinism. However, the PINN framework is proven to be particularly
convenient for solving inverse problems [25] and optimization problems [26], which cannot be tackled with
simple micromechanical solvers and require additional algorithms. For instance, some of such non-trivial
problems could be addressed with neural networks and gradient descent schemes, by means of a fully differ-
entiable neural network that estimates linear elastic full-fields of SVEs defined on polycrystalline domains.
As a step towards that, we apply concepts from PINNs and stochastic geometry to train a neural network
that maps the discretized field of crystalline orientations of an SVE to the solution field of the linear elastic
problem with periodic boundary conditions. The rest of this paper is organized as follows. The stochastic 3D
microstructure model and the physical problem to be solved are described in Sections 2 and 3, respectively.
Both surrogate models, one trained with a self-supervised learning strategy, and another trained with a data-
driven approach, are detailed in Section 4. The predictions of the two methods are compared with respect
to performance and computational cost in Section 5. The generalizability for larger input microstructures
and for slightly different grain morphologies is also analyzed. Additionally, two potential applications of
the proposed surrogate model are formulated, namely: finding a crystalline orientation field that matches
a given strain field, and optimizing the set of orientations for an objective based on the strain energy field
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spatial maximum and penalization on the macroscopic anisotropy. Finally, Section 6 concludes.

2. Stochastic 3D model of virtual polycrystals

In this section, a stochastic 3D microstructure model to generate virtual polycrystals is introduced.
Realizations of this model are employed as training input for the surrogate models introduced in Section 4.
The present stochastic 3D microstructure model is a special case of the one proposed in [27], which allows for
modeling crystallographic twin relationships between neighboring grains. Hereafter, all realizations of the
virtual polycrystals are defined on a bounded cubic sampling window Ω ⊂ R3 representing an elementary
cell of a periodic material.

To model the polycrystalline grain architecture, a Voronoi tessellation (see [28, Section 9.2]) was employed.
Based on a set of so-called seed points s1, . . . , sN ∈ Ω for some integer N ∈ N, the Voronoi tessellation
subdivides the sampling window Ω into N subsets with non-overlapping interiors, called grains. For 1 ≤ n ≤
N , the n-th grain Gn consists of all points x ∈ Ω, whose distance to the seed point sn ∈ Ω is smaller than
or equal to the distances to all other seed points. Mathematically, Gn is defined by

Gn =
{
x ∈ Ω : dper(x, sn) ≤ dper(x, sm) for all m ̸= n

}
, (1)

where dper : Ω×Ω → [0,∞) denotes the Euclidean distance in Ω with respect to periodic boundary conditions.
Note that all grains of the Voronoi tessellation G1, . . . , GN are convex polytopes.

The seed points s1, . . . , sN of the Voronoi tessellation are modeled by a Matérn hardcore point process,
with some intensity λ > 0 and hardcore radius r > 0, see Section 5.4 in [28]. The hardcore condition is
understood with respect to the periodic distance in Ω. This point process is a thinning of a homogeneous
Poisson point process, such that the distance dper( · , · ) between an arbitrary pair of points is larger than the
hardcore radius r.

Furthermore, each grain G of the Voronoi tessellation G1, . . . , GN is assigned a crystallographic orienta-
tion O, represented as an element of SO3, the space of rotations in R3 around the origin. Each orientation
O is sampled independently from the uniform distribution on SO3, according to the algorithm provided
in [29]. This procedure mimics an untextured polycrystal. We follow [30] and represent orientations O ∈
SO3 as unit quaternions. Each unit quaternion, in turn, can be expressed as an element on the 3-sphere
S3 = {q ∈ R4 : |q| = 1} ⊂ R4.

The surrogate models described in Section 4 are trained on realizations of the stochastic 3D model on a
cubic sampling window Ω = [0, 32]3, whose discretization contains 323 voxels. The underlying point patterns
were generated by a Matérn hardcore process with intensity λ = 15/323 ≈ 4.58 · 10−4 and a hardcore radius
r = 5. The expected number of grains in Ω is equal to 15, whereas each grain is represented by approximately
2200 voxels on average. This is sufficient to represent each grain as well as the fields within a crystal at a
sufficiently high resolution, while limiting the computational cost for training the neural network.

To validate the performance of the models introduced in Section 4, they are applied to microstructures
exhibiting statistically different properties compared to the ones used for model training. For this purpose,
in Section 5, a larger sampling window Ω = [0, 64]3 is considered, containing approximately 120 grains
at the same resolution. Furthermore, the two surrogate models were applied to microstructures drawn
from the stochastic microstructure model, where the parameters λ and r of the Matérn hardcore process
were systematically varied. Specifically, all combinations of intensities λ ∈ {12.5/323, 15/323, 17.5/323} and
hardcore radii r ∈ {2.5, 5, 7.5} were taken into account. Realizations of the stochastic 3D model for different
combinations of parameter values are presented on Figure 1.

3. Computational homogenization in linear elasticity

This section details the set of partial differential equations solved in linear elastic micromechanics. In
statics, the strong form of the balance of momentum equation is given by

div(σ) + f = 0, (2)
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λ = 12.5/323, r = 2.5

λ = 12.5/323, r = 7.5

λ = 17.5/323, r = 2.5

λ = 17.5/323, r = 7.5

Figure 1: Realizations of the stochastic microstructure model for different combinations of parameter values (coloring based on
grain labels).

where 0 denotes the null vector, σ the rank-2 Cauchy stress tensor, f the body forces vector and div(·)
the divergence operator, which is defined by div(σ) = ∇ · σ. We assume that in the micromechanical scale
(around several tens of micrometers), body forces arising from gravitational effects can be neglected: f = 0.
σ verifies

t = σ · n, (3)

where t denotes a vector of surface forces, the symbol “·” tensor contraction and n the normal to a surface.
In infinitesimal strain theory, a strain rank-2 tensor ε can be expressed as

ε = gradsym(u), (4)

where u is the vector of displacements and gradsym(·) denotes the symmetrized gradient operator given by

gradsym(u) =
1
2 (∇u+∇u⊤). Furthermore, we assume a local linear elastic behavior, i.e.,

σ = C : ε. (5)

where C denotes the local rank-4 stiffness tensor. Eqs. (2), (4) and (5) are assumed to be fulfilled everywhere
in R3. We also assume periodic boundary conditions, such that

σ · n−#, u = E · x+ u∗ for x ∈ Ω, u∗#, (6)

where E denotes the macroscopic strain tensor, u∗ the periodic part of the displacement vector, # the
periodicity and −# anti-periodicity. By the divergence theorem [31], also referred to as Gauss theorem, it
can be shown that ⟨ε⟩ = E, where ⟨ · ⟩ denotes spatial average over Ω. Note that

⟨u∗
i,j⟩ =

1

V0

∫
Ω

u∗
i,j dV =

1

V0

∫
∂Ω

u∗
inj dS = 0, (7)

where V0 refers to the volume of Ω, dV to a volume element, dS to a surface element, and u∗
i to the i-th

component of u∗, while u∗
i,j = ∂u∗

i /∂xj . The work of internal forces yields

Wint =

∫
Ω

1

2
σ : εdV =

1

2
⟨σ : ε⟩ = 1

2
Σ : E, (8)

where the macroscopic stress tensor is defined as Σ = ⟨σ⟩. The effective stiffness tensor of the considered
unit cell can be numerically obtained by imposing E and computing σ, for a variety of loads, such as
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extension, compression and shear. In the following, we use FFT numerical schemes to estimate the tensor
fields u∗(x) ∈ R3 and ε(x), σ(x) ∈ R3×3 for x ∈ Ω, which depend on the full microstructure and crystal
orientations. Furthermore, the divergence and gradient operators are discretized in the Green operator as
backward and forward finite differences, respectively [32]. In Section 4, this same problem, including the
discretization, is solved by training a surrogate neural network.

4. Physics-informed surrogate model for linear elastic computations of polycrystals

In this section, the surrogate models’ architectures are described, as well as the motivations for the choice
of their layers, both trainable and non-trainable. In Section 4.1, the complete framework is explained, with
a highlight on the non-trainable physics-informed layers that introduce favorable inductive bias into the
learning process. Subsequently, in Section 4.2, the trainable layers of the surrogate model are described,
along with some intuition behind the choice of hyperparameters.

4.1. General approach

We now introduce a framework for surrogate modeling computations of the linear elastic behavior of
polycrystalline materials. It makes combined use of non-trainable physics-informed layers and trainable
layers. The update of the trainable parameters were done with two different approaches. The first one makes
use of a self-supervised loss function while the second one employs a standard data-driven loss function for
regression problems, i.e. the mean square error (MSE), between the predictions and the ground truth derived
from FFT computations.

Recall from Section 3, that the stress and strain fields follow directly from the periodic part of the
displacement field u∗(x). Therefore, for a given set of grainwise crystalline orientations represented by a
unit quaternion field q(x) ∈ R4 for a x ∈ Ω and a fixed macroscopic strain loading E ∈ R3×3, the predictions
of the strain and stress fields follow from that of the periodic part of the displacement, denoted by

û∗(x) = N (Λ; q(x),E), (9)

where Λ is a set of learned parameters and N a function representing the action of a neural network. The
choice of the architecture of the neural network and related hyperparameters directly determines its number
of trainable parameters and consequently the number of degrees of freedom. Figure 2 shows the structure of
the proposed neural network pipeline. The input contains information about the crystalline orientation and
the morphology of the grains in the polycrystalline microstructure, i.e. the crystalline orientation field q(x),
containing four unit quaternion real-valued components at each voxel. It is passed to a series of trainable
layers denoted 3D ResNet, which returns the field û∗(x), containing voxelwise displacement components.
In order to reduce the complexity of the task, non-trainable physics-informed layers operate over both q(x)
and û∗(x), such that certain physical a priori constraints are verified by construction.

First, the stiffness tensor field is obtained from q(x) with C(x) = G(x) :: C0, where the symbol “::”
represents a quadruple tensor contraction. The rank-8 rotation tensor G for stiffness tensors is given by
GijklIJKL = gIigJjgKkgLl [33], where g denotes the rotation matrix from the laboratory reference frame
to that of the grains. We follow [30] (Section A.15) and express g in terms of q as the “passive” rotation
matrix:

g =

 q̄ + 2q22 2(q2q3 + q1q4) 2(q2q4 − q1q3)
2(q2q3 − q1q4) q̄ + 2q3

2 2(q3q4 + q1q2)
2(q2q4 + q1q3) 2(q3q4 − q1q2) q̄ + 2q4

2

 , (10)

with q̄ = 2q21 − qiqi.
Second, the predicted strain field ε̂∗(x) is obtained from E and û∗(x), by means of another non-trainable

layer that performs:

ε̂(x) = E +
1

2
(∇û∗(x) +∇û∗⊤(x)), (11)

which directly follows from Eqs. (4) and (6). Consistently with the FFT scheme, differentiation in the
gradient operator is implemented voxelwise via forward finite differences. Finally, the stress field is computed
by double contraction of the tensor fields C(x) and ε̂(x), i.e. σ̂(x) = C(x) : ε̂(x).
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3D ResNet

self-supervised data-driven

Figure 2: Diagram of the proposed physics-informed surrogate model for solving linear elasticity in polycrystals. Layers with
learnable parameters are represented in green, while non-trainable operations are represented in blue. c ∈ {1, 2, 3, 4}, i, j, k, l ∈
{1, 2, 3}, x, y, z ∈ {1, . . . , 32}. The self-supervised loss function is denoted by Ldiv(σ̂) = λ1⟨|div(σ̂(x))|⟩ while the data-driven
loss function is denoted by Lsup(σ̂,σ) = λ2[⟨(σ̂xx(x)− σxx(x))2⟩+ ⟨(σ̂xy(x)− σxy(x))2⟩+ ⟨(σ̂xz(x)− σxz(x))2⟩+ ⟨(σ̂yy(x)−
σyy(x))2⟩+ ⟨(σ̂yz(x)− σyz(x))2⟩+ ⟨(σ̂zz(x)− σzz(x))2⟩], λ1 = 1× 10−7, λ2 = 1× 10−10.

We emphasize that this operation produces, by construction, a compatible strain field, i.e. ∇×(∇×ε̂)⊤ =
∇× (∇× (E+ 1

2 (∇û∗ +∇û∗⊤))⊤ = 0. However, mechanical equilibrium (Eq. (2)) is not verified in general.
This is similar to the FFT direct scheme, where the strain compatibility condition and constitutive law is
enforced at each iteration, but equilibrium only upon convergence. In the neural network framework, this
property can only be verified by training with respect to a loss function. We consider two of them, where
the first one, denoted by Ldiv, consists of a self-supervised method that minimizes

Ldiv(σ̂) = λ1⟨|div(σ̂(x))|⟩. (12)

The parameter λ1 in Eq. (12) was empirically chosen such that the loss function Ldiv(σ̂) lies in the range
(0, 1) at the first epoch. Moreover, we employ backward finite differences as in [34] to estimate the divergence
operator, as used in the FFT “direct” scheme. For the sake of limiting computational time, finite differences
in Eqs. (11) and (12) are implemented as convolutions with non-trainable (3, 3, 3) kernels containing weights
with values equal to ±1 or 0. Representations of the kernels that compute backward and forward differences
along the x axis are shown on Figure 3. For comparison purposes, we also investigate a data-driven training
strategy and use the following supervised loss function:

Lsup(σ̂,σ) = λ2

∑
i,j

(
1− δij

2

)
⟨(σ̂ij(x)− σij(x))

2⟩ (13)

where δij is the Kronecker symbol and we choose λ2 analogously to the self-supervised case.

4.2. Trainable layers

Given that both the input and output of the proposed surrogate neural network are 3D multichannel
images, its architecture is inspired by state-of-the-art neural networks designed for computer vision tasks.
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Figure 3: Schematic representation of the non-trainable 3D convolution kernels of size 3 used for performing forward (a) and
backward (b) finite differences along the x-axis. Gray, red and blue represent 0, -1 and +1 values, respectively.

More precisely, architectures involving convolutions were considered, as these operations are translation
equivariant, i.e. a translational shift in the input causes an equal translational shift in the output. It is
important to note that the FFT computations for which we want to build a surrogate are also equivariant with
respect to translations. Inspired by [35, 36] we make use of a convolutional network with residual connections
(ResNet) to solve a 3D voxelwise regression problem. In the proposed neural network architecture, we discard
downsampling operations such as pooling and convolutional layers with stride1 larger than one, as these
operations break translation equivariance [37].

The architecture of the proposed 3D ResNet is detailed on Figure 4. First, all convolutions are performed
with cubic kernels of size k = 3, which is the smallest odd-sized kernel, allowing for local feature extraction.
Further, the kernel stride is set to one voxel. Padding is performed such that the output of each convolution
has the same spatial dimensions as the input. Note that the microstructure, as well as the physical problem
exhibit periodic boundary conditions, which motivates periodic padding, also called circular padding in the
adopted PyTorch framework [38].

The proposed 3D ResNet is a composition of a series of layers, namely convolution, instance normalization,
activation and residual block. More exactly, the first layer is a 3D convolutional layer, whose output number
of channels is set to Nf = 256. Next, instance normalization is done on the output of each convolution,
allowing for the use of higher learning rates. This choice yields better performance than batch normalization
on small batches, as normalization parameters are calculated independently for each instance or sample. For
detailed information on that operation, we refer to [39]. Subsequently, the Leaky ReLU function [40] is used
as an activation function, given by

Leaky ReLU(x) = ReLU(x)− βReLU(−x), β ∈ (0, 1) (14)

where ReLU(x) = (x + |x|)/2. Recall that activation functions serve as a way to introduce mathematical
non-linearities in the fitted function. Contrarily to the ReLU function, the Leaky ReLU function’s derivative
is non-zero for inputs x ∈ (−∞, 0], thus preventing the well-known dead neuron phenomenon [41]. Then,
the resulting tensors are processed through a sequence of layers called “residual block” (see Figure 5).
This involves processing an input feature map F through a composition of layers (convolution, instance
normalization, activation, convolution and instance normalization) to obtain a partial output F(F ). Finally,
F +F(F ) is passed to a Leaky ReLU layer. Note that the residual connection implies that all the dimensions
of the feature maps are unchanged.

Since the initial convolutional layers are supposed to learn rather local geometric features present in
the input data, later layers process less significant long-range correlations. This intuition motivates the
reduction of the channel dimension as the information is propagated through the neural network. Thus,

1The term “stride” corresponds to the translational step performed by a convolutional kernel along the spatial dimensions.
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Conv3d (Nf output channels)

InstanceNorm3d

LeakyReLU

Residual block (Nf output channels)

Conv3d (Nf/2 output channels)

InstanceNorm3d

LeakyReLU

Residual block (Nf/2 output channels)

Conv3d (Nf/4 output channels)

InstanceNorm3d

LeakyReLU

Residual block (Nf/4 output channels)

Conv3d (Nf/8 output channels)

InstanceNorm3d

LeakyReLU

Residual block (Nf/8 output channels)

Conv3d (3 output channels)

Unit quaternion components (n, n, n, 4)

Linear displacements (n, n, n, 3)
1

Figure 4: Schematic representation of the proposed 3D ResNet. In the first 3D convolution layer, the number of channels is
taken from 4 to Nf . Cubic kernels of size k are employed, with constant-resolution periodic padding and unit stride. Next,
an instance normalization layer and a Leaky ReLU activation function act on the resulting tensors. Then, a residual block
(see Figure 5) is applied on resulting the feature maps, with the number of channels left unchanged. The channel number is
reduced by a factor of 2 by the following convolution, whose output passes through an instance normalization and an activation
function. This series of layers is repeated until a final convolution reduces the number of channels to 3.

Residual Block

Conv3d InstanceNorm3d LeakyReLU

skip connection (identity)

Conv3d InstanceNorm3d ⊕
add

F(F ) + F

LeakyReLU
F

F(F )

1

Figure 5: Schematic representation of a residual block, used in the 3D ResNet (Figure 4). It consists of processing an input
feature map F through a series of layers, namely a convolution, an instance normalization, an activation function, another
convolution and another instance normalization, whose output is added to the input of the residual block and passed to the
final activation function.
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Figure 6: Number of multiply-accumulate operations (MAC), computed using the ptflops library [43] versus number of voxels
in input data for inferences of the proposed surrogate model on SVEs of various sizes.

the aforementioned series of layers is repeated with a halving of the output number of channels in each
convolutional layer (except for convolutions inside residual blocks) until the number of channels reaches
Nf/8 = 32. Finally, a convolutional layer takes the channel number to 3, which is the number of components
of the periodic part of displacement field.

The selection of the amount of halvings in the number of channels was conditioned by the relation between
the size n of the training microstructures and the size of the receptive field r0. In the present architecture,
r0 is determined by r0 = L(k− 1) + 1, where L denotes the number of convolutional layers and k the kernel
size. We choose L such that r0 ≤ n. Indeed, in the case of periodic padding, a receptive field larger than
the input will induce a learning bias characterized by spurious long range correlations, as the receptive field
will cover simultaneously some voxels and their periodic replications. Thus, generalizability for inputs larger
than n is impaired, as the network “expects” in the input geometry a periodicity that is no longer present.
In the present work, we chose r0 = 27 voxels, which is consistent with that restriction, as n = 32 for the
training data. The number of trainable parameters in the neural network is 5, 893, 059.

Moreover the numerical effort of the proposed pipeline was analyzed. The numerical effort of a 3D
convolutional layer scales as ∼ n3cincoutk

3, where n3 is the number of voxels of the input microstructure;
cin and cout the number of input and output channels, respectively; and k the size of the cubic kernel. As a
consequence of a receptive field with fixed size, the numerical effort of an inference by the neural network is
therefore in O(n3), as confirmed on Figure (6). This is in contrast to the O(n3 log(n3)) complexity for FFT
computations [11], altough alternative FFT schemes may have the same complexity as ours [42]. Regarding
costs for inference with CPU only, a 323 microstructure takes 4.6 s and 2.2 GB of random-access memory
(RAM) and 36.5 s, 17.5 GB, respectively, for a 643 microstructure. Despite that, modern implementations of
FFT simulations are still much cheaper in terms of time and memory. For instance, a 643-voxel computation
takes about 0.4 s and 59.2 MB of memory. We do not intend to propose an even cheaper alternative to
these, but rather a building block for solving non-trivial problems, such as inverse problems, some of which
are briefly presented in Section 5.4.

5. Results and discussion

In this section, we compare the performance of each learning strategy and their associated computational
costs. Additionally, we study how both approaches perform on microstructures exhibiting statistically differ-
ent properties compared to the ones utilized for training. More precisely, microstructures on larger domains
as well as microstructures with different expected numbers and sizes of grains are considered.
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5.1. Experiments

During training, we enforce a time-independent uniaxial extension as macroscopic strain together with
periodic boundary conditions, consistently with FFT computations, which can be mathematically expressed
as

E =

 εxx εxy εxz
εyy εyz

Sym. εzz

 =

 1 0 0
0 0

Sym. 0

 (15)

The reference stiffness tensor C0 models purely γ-phased TiAl polycrystals with tetragonal symmetry [44],
given by

C0 =


C0

1111 C0
1122 C0

1133 C0
1123 C0

1113 C0
1112

C0
2222 C0

2233 C0
2223 C0

2213 C0
2212

C0
3333 C0

3323 C0
3313 C0

3312

C0
2323 C0

2313 C0
2312

C0
1313 C0

1312
Sym.

C0
1212

 =


183 74 74 0 0 0

183 74 0 0 0
178 0 0 0

105 0 0
105 0Sym.

78

×103 MPa,

(16)
i.e. the Young modulus along the x and y axis and the in-plane shear modulus in (x, y) axis is slightly stiffer
compared to the Young modulus along the z axis or the out-of-plane shear modulus.

The dataset used in this study consists of 7000 virtual random polycrystalline microstructures of size
323 drawn from the stochastic microstructure model described in Section 2, along with the corresponding
stress fields obtained with a standard FFT solver. Recall that these microstructures are multi-channel
images, where each voxel contains the real-valued components of a unit quaternion, which represents its
crystallographic orientation. The data is split into training, validation and test sets, with proportions of 5/7
for training, 1/7 for validation and 1/7 for testing.

The optimization of the network’s trainable weights was done using the Adam algorithm [45], with batch
size equal to 1, and initial learning rate set to 1×10−3. Unitary batch size is used for the sake of minimizing
RAM consumption and reducing implementation complexity. In order to prevent overfitting, a criterion
was defined to stop the training before reaching the maximum number of epochs. Let e and e + 1 denote
two consecutive epochs and Le and Le+1 the corresponding evaluations of the loss function. Further, let
δmin ≥ 0 denote the minimum amount of improvement. An improvement with respect to the loss function
is characterized by Le+1 < Le − δmin. Moreover, the so-called “patience” parameter defines the maximum
number of epochs without improvement in the validation loss before stopping the training. In this study, the
training procedure is stopped if the best validation loss does not improve within 15 epochs, with δmin = 0.

5.2. Learning strategies: self-supervised vs. data-driven

In this section, we discuss the results of each learning approach for the previously defined set of hyperpa-
rameters and boundary conditions. Because the values of both loss functions cannot be directly compared,
in order to fairly evaluate and compare the quality of the predictions, we use the mean absolute error (MAE)
function as a metric which is defined by

MAE(σ̂,σ) =
1

6

∑
i≤j

⟨|σ̂ij(x)− σij(x)|⟩. (17)

Figure 7 shows the evolution of the loss functions Lsup and Ldiv as well as the MAE metric for both
training and validation datasets. The data-driven pipeline performs worse on the validation dataset than the
self-supervised one with respect to the lowest validation MAE: 12,193 MPa for the self-supervised training
versus 12,234 MPa for the data-driven one. Also interestingly, whereas the validation loss and MAE of
the data-driven model start increasing after around 50 epochs, indicating a degraded generalization ability
(overfitting), the validation loss and MAE kept decreasing for the self-supervised training for considerably
longer, until the early stopping criterion was met. That behavior suggests an inherent regularization property
of the self-supervised loss function Ldiv.
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Figure 7: Evolution of the loss functions and the MAE during the training of the self-supervised and data-driven models.

In addition to the MAE, the mean relative error MRE was also computed for the predicted stress field
component σ̂xx and predicted Von Mises equivalent stress field σ̂eq. This metric is given by

MRE(σ̂xx, σxx) =

〈
σ̂xx(x)− σxx(x)

σxx(x)

〉
, (18a) MRE(σ̂eq, σeq) =

〈
σ̂eq(x)− σeq(x)

σeq(x)

〉
. (18b)

Regarding the performance over the 323 test dataset, the MRE committed by the self-supervised model is
2.16% for σ̂xx and 3.99% for σ̂eq, whereas for the data-driven model, these values are respectively 2.86%
and 4.82%. Figure 8 shows the cumulative distribution functions of the relative error fields on σ̂xx and σ̂eq.
We observe that this error is lower than 5% for 93% of the voxels in the self-supervised σ̂xx fields and only
84% for the data-driven counterpart. Regarding self-supervised σ̂eq fields, 69% of the voxels are found in a
5% or lower relative error threshold, whereas for the data-driven predictions, 60% of voxels are present in
the aforementioned threshold. In summary, both training strategies have a better accuracy for the σxx com-
ponent than for σeq. Furthermore, the predictions of the self-supervised neural network are more accurate
than those of the data-driven pipeline, for both σ̂xx and σ̂eq.

Moreover, we investigated the accuracy of both training approaches when applied to larger input mi-
crostructures, with same expected grain size. More specifically, inference was performed on 125 microstruc-
tures of size 643 at the same voxel resolution. In order to visually assess the spatial distribution of the errors,
Figures 9 and 10 show 3D plots of 323 and 643 test inputs, their corresponding ground truths, predictions
for both trained models and MAE fields. In the present work, the error field (expressed in MPa) is evaluated
in terms of L1-norm, which is less sensitive to outliers, compared to the L2-norm. It was found that the self-
supervised predictions have an MRE of 2.39% for σ̂xx, and 4.57% for σ̂eq, while for the data-driven model,
these metrics are 2.85% and 4.90% respectively. For a relative error threshold of 5% or less on σ̂xx, 91% of
the voxels in the self-supervised predictions are included, whereas only 84% of the data-driven predictions
are included. For σ̂eq, these values are 62% and 59%, respectively. Accordingly, the performances of the two
approaches are slightly worse on the larger domain, which is related to the fact that 323 microstructures were
used for training. Indeed, correlations at distances longer than 27 voxels, the size of the receptive field, are
not taken into account. The domain outside the receptive field is much smaller in the 323 microstructrue,
than in the 643 polycrystal.

The effective stiffness tensor C∗ can be estimated from the test dataset, following either an energetic or
mechanical definition, i.e.

⟨σ : ε⟩ = E : C∗
e : E, ⟨σ⟩ = C∗

m : E. (19)

As a result of the Hill theorem [46] the two definitions above are equivalent and C∗ = C∗
e = C∗

m when the
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stress is divergence-free. This is not true in the present case and therefore the two estimates provided by the
surrogate model are different, i.e. C∗

e ̸= C∗
m. Nevertheless, the minimization of the potential elastic energy

requires that [47]
⟨σ : ε⟩ ≥ E : C∗ : E. (20)

Therefore, the energetic definition provides an upper-bound of the exact effective stiffness tensor, i.e.,

C∗
e ≥ C∗, (21)

in the sense of positive definite tensors. This property also holds in more general situations, see [48] Fig-
ure (11) shows correlations between the estimate C∗

m,1111 and the ground truth C∗
1111, computed from FFT.

As for the energetic definition, the elastic modulus C∗
m,1111 is systematically overestimated compared to

C∗
1111. This bias is an effect of the constraint imposed on the strain field, which in the present case, is

rigorously admissible. Despite this, both the self-supervised and data-driven neural networks are capable
of accurately predicting the correlation between the crystalline orientation fields and their corresponding
mechanical properties. Furthermore, the bias is slightly lower for the self-supervised pipeline than for the
data-driven one.

Finally, histograms of the σxx, σ̂xx, σeq and σ̂eq fields were computed (Figure 12). The presence of high
stress values are slightly overestimated, consistently with the predictions for the effective elastic moduli,
which are stiffer than FFT estimates.

5.3. Accuracy for varied parameters of the stochastic microstructure model

The accuracy of both training methods was also evaluated for microstructures exhibiting different statisti-
cal properties than the ones used for training. More precisely, the parameters of the stochastic microstructure
model, introduced in Section 2, were systematically varied to derive a different number of seed points, which
are more or less homogeneously distributed in space. It is worth recalling that the training dataset is com-
posed of microstructures of size 323, based on a Matérn hardcore point process with intensity λ = 15/323

and hardcore radius r = 5. The chosen intensity corresponds to an expected number of 15 grains. Exper-
iments were done for several configurations of expected number of grains (determined by the intensity of
the Matérn hardcore process) and hardcore radii. More precisely, both surrogate models were applied on
microstructures generated by all combinations of intensity λ ∈ {12.5/323, 15/323, 17.5/323} (corresponding
to 12.5, 15 and 17.5 expected grains) and hardcore radius r ∈ {2.5, 5, 7.5}. Tables 1 and 2 indicate the MRE
for both models and for both σ̂xx and σ̂eq.

Interestingly, both models performed better on the microstructures exhibiting different statistical descrip-
tors than those used for neural network training. Indeed, slightly lower errors are observed for structures
generated with either a higher hardcore radius or a higher number of grains. The first case corresponds to
a higher repulsion distance between seed points, and lead to more regular cells, whereas in the second case
the grains have lower volume.

5.4. Potential applications

In this section, we propose two applications of the physics-informed surrogate model which are not further
investigated and left to future work. We first describe an inverse problem consisting of finding uniform-per-
grain crystallographic orientations given a known target strain field εDIC, such as that obtained by digital
image correlation (DIC). It can be expressed by:

min
ωgc∈S3

Lsup(C : ε̂,C : εDIC), (22)

subject to the constraints:

ε̂(x) = E+
∇û∗(x) +∇û∗⊤(x)

2
, û∗(x) = N (Λ; q(x),E), qc(x) = Lg(x)ωgc, Lg(x) =

{
1, if x ∈ Gg,

0, otherwise.

(23)
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Matérn hardcore radius r
Expected number of grains 2.5 5 7.5

12.5 2.34%, 3.03% 2.31%, 2.97% 2.24%, 2.92%
15 2.12%, 2.83% 2.16%, 2.86% 2.07%, 2.77%
17.5 2.08%, 2.78% 2.04%, 2.78% 2.00%, 2.70%

Table 1: MREdiv(σxx, σ̂xx) and MREsup(σxx, σ̂xx) values calculated for test datasets containing 1000 × 323 microstructures
for varying combinations of parameters. Recall that, for training, r = 5 and 15 is the number of expected grains.

Matérn hardcore radius r
Expected number of grains 2.5 5 7.5

12.5 4.27%, 5.16% 4.21%, 5.04% 4.14%, 4.98%
15 3.92%, 4.78% 3.99%, 4.82% 3.86%, 4.68%
17.5 3.86%, 4.68% 3.82%, 4.68% 3.74%, 4.53%

Table 2: MREdiv(σeq, σ̂eq) and MREsup(σeq, σ̂eq) values calculated for test datasets containing 1000× 323 microstructures for
varying combinations of parameters. Recall that, for training, r = 5 and 15 is the number of expected grains.
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Figure 8: Cumulative distribution functions for the relative error fields on σ̂xx (left) and σ̂eq (right) over the test dataset for
both self-supervised and data-driven learning strategies and both input sizes (323 and 643 microstructures).
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Figure 9: Comparison between 323 and 643 input samples (coloring based on grain labels) in the test dataset, corresponding
stress field component σxx ground truths from FFT computations and the predictions made by the trained neural networks, as
well as MAE fields. Values in MPa.
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|σ̂eq − σeq| (MPa), self-supervised model
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Figure 10: Comparison between 323 and 643 input samples (coloring based on grain labels) in the test dataset, corresponding
Von Mises equivalent stress σeq ground truths from FFT computations and the predictions made by the trained neural networks,
as well as MAE fields. Values in MPa.
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test datasets.
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In the above, ω is the set of grainwise unit quaternions to be updated after each step of a gradient descent
optimization scheme. The location tensor Lg(x) indicates whether the grain of label g is present on voxel x.

A second application concerns optimization problems in the general framework of homogenization. One
may for instance, seek to minimize the spatial maximum of the strain energy field in the space of isotropic
polycrystalline microstructures. Such a problem can be approximated as:

min
ωgc∈S3

β1 max

(
1

2
ε̂(x) : C(x) : ε̂(x)

)
+ β2|C∗

m − P (C∗
m)| (24)

subject to the same constraints (23). Here β1,2 are numerical coefficients and P (C∗
m) is the Euclidean

projection of C∗
m onto the space of isotropic stiffness tensors [49] and | · | is the Frobenius norm. This term

is used to penalize macroscopically anisotropic responses. This problem can be interesting in a context of
damage mechanics, when local maxima in the strain energy field are preferential locations for the onset of
cracks [50].

6. Conclusion

In this work, we proposed a physics-informed framework for solving linear elasticity on polycrystals
by using a fully translation equivariant 3D ResNet as the trainable part of the surrogate model. Non-
trainable layers inspired by the operations performed by conventional physical PDE solvers inject beneficial
inductive biases into the learning process, improving the interpretability of the neural network and rendering
supervision with ground truth data unnecessary. Heuristics for hyperparameter selection based on the
network’s receptive field and available training data were proposed. A highlight of the developed model is
that it constitutes a fully differentiable expression that links microstructure orientation fields to stress fields,
therefore enabling the resolution of inverse problems.

Both self-supervised and data-driven learning settings were analyzed and compared with respect to the
average relative error committed voxelwise. While the self-supervised approach is more computationally
expensive, it yields slightly better accuracy than its data-driven counterpart while allowing to train a sur-
rogate model in the absence of ground truth data. Furthermore, no overfitting was characterized for the
self-supervised method. Apart from better accuracy, the self-supervised approach allows for greatly reduced
RAM memory usage during training compared to the data-driven counterpart, as ground truth stress fields
are ultimately needless. We also showed that the proposed surrogate models can be accurately applied to
inputs with sampling windows larger than that used during training, as well as microstructures with sta-
tistically slightly different geometric properties. An important feature of these models is that they produce
strictly compatible strain fields. As a consequence, the predictions of the effective response are slightly biased
towards stiffer values.

Our pipeline is restricted to the linear elastostatic behavior of polycrystals. Thus, it is not necessary to
consider the loading history, but only its final state, which is linearly proportional to the imposed macro-
scopic strain E. Accounting for the evolution of the response across different time steps, with nonlinear or
irreversible constitutive laws, is beyond the scope of this study. Another point worth commenting is the
self-supervision of the stress divergence field over the entire domain. More computationally frugal ways for
positioning collocation points could be used. The chosen method assumes that every possible collocation
point is equally important a priori, which is not intuitively true, considering that mechanical fields are
rather homogeneous inside grains and highly discontinuous at boundaries. Assigning random positions for
collocation points is a possibility to address that, although grain boundaries might be underrepresented,
which would reduce the overall accuracy. One could argue in favor of a pre-processing step for identifying
stress concentration zones, but that could turn out to be less efficient than the present approach. More-
over, the neural networks’ robustness can be further increased by using a more diverse training dataset i.e.
microstructures generated with different stochastic algorithms, expected grain sizes and spatial resolutions.

Finally, two potential applications of the presented surrogate model were proposed: inverse problems
involving the optimization of the set of crystallographic orientations for different objectives and subject to
certain constraints, among which fixed grain shapes.
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