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Abstract

In this paper we lay the foundation for data-driven 3D analysis of virtual fiber
systems with respect to their microstructure and functionality. In particular, we de-
velop a stochastic 3D model for systems of curved fibers similar to nonwovens, which
is fitted to tomographic image data. By systematic variations of model parameters,
efficient computer-based scenario analyses can be performed to get a deeper insight
how effective properties of this type of functional materials depend on their 3D
microstructure. In a first step, we consider single fibers as polygonal tracks which
can be modeled by a third-order Markov chain. For constructing the transition
function of the Markov chain, we formalize the intuitive notions of intrinsic fiber
properties and external effects and build a copula-based transition function such
that both aspects can be varied independently. Using this single-fiber model, in a
second step we derive a model for the entire fiber system observed in a bounded
sampling window and fit it to two different 3D datasets of nonwovens measured by
CT imaging. Considering various geometric descriptors of the 3D microstructure
related to effective properties of the pore space, we evaluate the goodness of model
fit by comparing geometric descriptors of the 3D morphology of model realizations
with those of tomographic image data.

Keywords: Stochastic modeling, curved fiber, polygonal track, Markov chain, transi-
tion function, copula, nonwoven material, 3D microstructure, tomographic image data,
segmentation, convolutional neural network
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1 Introduction

A wide range of applications from fuel cell technology [28], hygiene products [19] and
filtration [10] heavily depend on the usage of fiber-based materials like nonwovens. Here,
various properties of nonwovens like diffusivity or wettability must be tailored to meet
specific needs. Improving on these properties by means of traditional manufacturing
and testing is expensive and time-consuming. However, when the microstructure of a
nonwoven is known, numerical methods can be used for in-silico investigation of effective
properties. Combined with a stochastic microstructure model, this can be used to per-
form virtual materials testing by creating and investigating realistic structures which yet
have not been considered before. By this approach, insight into the relationship between
microstructure geometry and effective properties can be obtained at a low cost which
can then be used to streamline the procedure for developing materials with enhanced
properties [15, 27, 30].

Various stochastic microstructure models for nonwovens have been proposed in the lit-
erature which are used for different purposes like filter media [1, 2, 29, 37], gas-diffusion
layers in fuel cells [9, 28, 38] and general applications [5, 18, 21, 22, 36], while other
models are concerned with specific fiber properties like orientation and distance [4, 14].
In [34], we recently developed a stochastic model for creating single fibers similar to
those seen in various nonwoven materials. This model was based on representing fibers
using the so-called Frenet-Serret formulas, but did not include any information about
the global appearance of the fiber system. In the present paper, we adapt this model to
account for what one might intuitively describe as intrinsic properties of fibers as well
as external effects acting upon fibers. Roughly speaking, we formalize these notions by
considering all those properties as intrinsic which do not affect the global appearance of
fibers, where we consider as external effects only information about the global orienta-
tion of parts of fibers based on the distance of the fiber segments to the upper and lower
boundaries of the material. Combining both intrinsic properties and external effects
allows for the application of the developed model to describe entire fiber systems.

We assume that each fiber can be considered as a third-order Markov chain [26] and
model the transition function as a product of two (conditional) univariate probability
densities, one of which represents the intrinsic properties of fibers and the other one
represents the external effects. The underlying (unconditional) bi- and trivariate proba-
bility densities are in turn modeled by means of copulas [7, 17], which provide a powerful
tool for stochastic modeling of non-Gaussian correlated vector data. Together with a
simple model for the generation of initial points, this Markov chain constitutes the basis
of a model for entire fiber systems which we fit to two different 3D datasets of non-
wovens measured by CT imaging, see Figure 1, and processed using a convolutional
neural network [11, 12] to extract the center-lines of fibers. Considering various geo-
metric descriptors of the 3D microstructure related to effective properties of the pore
space, we evaluate the goodness of model fit by comparing geometric descriptors of the
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Figure 1: 3D view of the gray value image of Sample 1 (left) and Sample 2 (right).

3D morphology of model realizations with those of tomographic image data. For the
two different material samples considered in this paper, Figure 2 shows both segmented
3D images of measured fiber systems along with realizations of the respective fitted
models. The overall visual impression of Figure 2 is that measured and simulated fiber
systems are quite similar for each of the two samples, but rather different between the
two samples. This qualitative assessment will be specified later in the paper.

The rest of the paper is organized as follows. We first describe the methods used for
constructing and validating the model as well as the underlying measured data. In par-
ticular, we describe the stochastic 3D model for single curved fibers and entire fiber
systems, which is fitted to tomographic image data. Furthermore, we evaluate the good-
ness of model fit by comparing geometric descriptors of the 3D morphology of model
realizations with those of CT data. Finally, we discuss the obtained results and outline
possible further research.

2 Materials and methods

2.1 Description of nonwoven material

We investigated two samples of nonwoven materials in this paper. The size of Sample 1 is
11.2mm × 11.2mm × 1.9mm and that of Sample 2 is 10.8mm × 10.8mm × 2.1 mm. Sam-
ple 1 consists of a single type of circular Polyethylen-Polyethylenterephthalat (PE-PET)
fibers. The material has a solid volume fraction of 1.4% and an average fiber diameter
of 18.12 micron. Sample 2 consists of a single type of circular Polyethylenterephthalat
(PET) fibers. Its solid volume fraction of is 0.71% and fibers have an average diameter
of 22.65 micron. Both samples consist of staple fibers with lengths of a few millimeters
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Figure 2: Cutouts of measured (top) and simulated (bottom) fiber systems for Sample 1
(left) and Sample 2 (right). See also Figure 1.

and monodisperse diameters.

These nonwovens were specifically created to investigate the curvature of fiber systems.
The usual air bonding step was omitted to simplify the identification of individual fibers.
Similar materials are commonly used in hygiene products, making the results of this
research relevant for such applications. By employing these unique nonwovens, we can
explore the inherent curvature properties of fiber systems and gain valuable insights on
how to model these types of fiber systems.
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2.2 Data acquisition

The two nonwoven materials were scanned in a Scanco MicroCT50 micro-CT scanner
at a resolution of 2 micron and an energy of 45KeV. Overall 3600 projections were
taken using Off-Axis scanning. Each projection was integrated for 4.5 seconds. For
reconstruction the standard Feldkamp–Davis–Kress (FDK) [8] algorithm was used. A
visualization of the gray value images is shown in Figure 1. We use GeoDict [3] to
perform the necessary image processing steps and segmenting the scans into fibers and
background.

To analyze the fiber system within the nonwoven, the individual fibers are identified
and their geometry is analyzed. This is done with the FiberFind module of GeoDict.
The algorithm used in that module is described in [12]. As discussed there, this method
provides good results for nonwoven structures, especially those that are used in hygiene
products. It uses a neural network to identify the center line of each fiber in the seg-
mented micro-CT scan. This neural network was pre-trained on artificial models of
nonwoven structures to avoid manually labeling of training data and is included in Geo-
Dict. As a neural network architecture, a 3D U-Net [6] is used. The center lines of
the fibers labeled by the neural network are utilized to construct a graph representa-
tion of the complete fiber network. In the graph, endpoints are investigated to check
if they are true fiber endpoints. If fiber fragments are found that are well aligned and
the endpoints are close to each other the separation is considered an error and the frag-
ments are reconnected. After these corrections, each connected component of the graph
represents exactly one fiber. The connected components are then used to create ana-
lytic representations of the fibers, where each fiber is represented by a list of piece-wise
linear segments and respective diameters. The diameters are determined by averaging
the center-line values of an euclidean distance transform inside the fibers. Using these
analytic representation, various properties of the fibers, including orientation, curvature,
and length, can easily be computed.

2.3 Model for nonwoven materials

In the following, we develop a stochastic microstructure model for curved fiber systems.
This model is based on representing fibers as polygonal tracks which are then modeled
by a third-order Markov chain. We choose a specific approach to model the transition
function of this Markov chain and select and fit the underlying parametric distribution
families in a subsequent step. Finally, we validate the model by simulating artificial fiber
systems and statistically comparing them to data of measured fiber systems.
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2.3.1 Third-order Markov chain for modeling the trajectories of single fibers

To describe our model for entire fiber systems, we start by modeling single curved fibers.
For this purpose, we adapt the stochastic 3D model previously proposed in [34]. We as-
sume that fibers exhibit a circular cross-section with a constant radius δ > 0 and assume
that the center-lines of fibers can be modeled as finite cutouts of an infinite random polyg-
onal track, i.e., as parts of a sequence of random vectors . . . , P−2, P−1, P0, P1, P2, . . . : Ω →
R3 such that |Pn+1 − Pn| = c for each integer n ∈ Z = {. . . ,−1, 0, 1, . . .} for some con-
stant segment length c ∈ R, where | · | denotes the Euclidean norm. Choosing a constant
segment length hugely simplifies the definition of our model and by appropriately choos-
ing c, all fibers observed in measured data can be represented with reasonable accuracy.
Moreover, we assume that the random sequence {Pn, n ∈ Z} satisfies the following three
conditions.

(i) {Pn, n ∈ Z} forms a third-order Markov chain [26], i.e., for each n ∈ Z and
any finite subset I ⊂ Z with max{i : i ∈ I} < n − 3, the random vector Pn is
conditionally independent of the random vectors {Pi, i ∈ I}, under the condition
that the values of Pn−3, Pn−2, Pn−1 are given. Note that this assumption is justified
by the statistical analysis of measured and simulated image data performed later
on in this paper.

(ii) We furthermore assume that the Markov chain {Pn, n ∈ Z} is stationary, i.e., for
any finite subset I ⊂ Z and for each k ≥ 1, the distributions of the sequences
{Pi, i ∈ I} and {Pi+k, i ∈ I} coincide. The latter assumption is motivated by the
fact that from a statistical point of view the morphological properties of fibers do
not change along their trajectories.

(iii) Finally, we assume that the stationary Markov chain {Pn, n ∈ Z} is reversible,
i.e., for each k ≥ 1, the distributions of (P0, P1, . . . , Pk) and (P0, P−1, . . . , P−k)
coincide. This assumption is motivated by the circumstance that the statistical
behavior of fiber trajectories is the same regardless of whether we traverse them
forwards or backwards.

The conditions (i) - (iii) stated above imply that the distribution of the random sequence
{Pn, n ∈ Z} is fully characterized by the joint distribution of the four random vectors
P1, P2, P3, P4. In the following we assume that this distribution possesses a probability
density, which will be denoted by fP1,P2,P3,P4 : R4·3 → [0,∞). Thus, modeling the
random sequence {Pn, n ∈ Z} boils down to modeling the probability density fP1,P2,P3,P4

of (P1, P2, P3, P4).
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2.3.2 Isolating intrinsic fiber properties and external effects

Intuitively, one may be inclined to distinguish between intrinsic properties of the fibers
and external effects, which may influence the morphological properties of fibers. More
formally, we will model the probability density fP1,P2,P3,P4 by a product of three probabil-
ity densities of independent random vectors which represent the position and orientation
of fibers, intrinsic properties of fibers and external effects, respectively. For this purpose,
we are going to denote the x-, y- and z-coordinates of Pn byXn, Yn and Zn for each n ∈ Z
and use a similar notation for a realization pn of the random vector Pn = (Xn, Yn, Zn),
i.e., pn = (xn, yn, zn) ∈ R3.

As mentioned above, the model for fP1,P2,P3,P4 consists of three components. First
we consider the location of P1 and the orientation of the vector (P1, P2), which can
be expressed in terms the angle between P2 − P1 and the unit vector (1, 0) (pointing
along the x-axis), where, for now, we set aside the z-coordinates of P1 and P2. This
is, we model the joint density fX1,Y1,A0 : R2 × [−π, π] → [0,∞) of X1, Y1 and A0 =
ang((X2, Y2)− (X1, Y1)), where ang(p) denotes the angle between p = (px, py) ∈ R2 and
the unit vector (1, 0). We define ang(p) < 0 if p is below the x-axis, and ang(p) ≥ 0
otherwise. Note that in computer science, the mapping p 7→ ang(p) is often referred to
as the four-quadrant inverse tangent (denoted by atan2), i.e., ang(p) = atan2(py, px).
Note that, while the distribution of A0 observed in measured image data is not exactly
uniform, for simplicity of the model we assume A0 to be uniformly distributed on the
interval (−π, π).

Then, we model the behavior of the fibers in z-direction, which captures the most impor-
tant external effects for the data considered in the present paper. As the fiber systems
are bounded in z-direction by some (lower and upper) parallel planes, fibers should
not pierce through these planes, but, instead, be redirected towards the interior be-
tween the planes. We will model these external effects by appropriately modeling the
z-coordinates Z1, Z2, Z3, Z4 of P1, P2, P3, P4. In particular, we assume that the random
sequence {Zn, n ∈ Z} forms a stationary second-order Markov chain. This implies that
modeling the joint density fZ1,Z2,Z3,Z4 : R4 → [0,∞) of Z1, Z2, Z3, Z4 only requires mod-
eling the joint density fZ1,Z2,Z3 : R3 → [0,∞) of

(
Z1, Z2, Z3

)
, because it holds that

fZ1,Z2,Z3,Z4(z1, z2, z3, z4) = fZ1,Z2

(
z1, z2

)
fZ3|Z1=z1,Z2=z2

(
z3
)
fZ3|Z1=z2,Z2=z3

(
z4
)

(1)

for any z1, z2, z3, z4 ∈ R, where fZ3|Z1=zi,Z2=zi+1
: R → [0,∞) is the conditional density

of Z3 under the condition that Z1 = zi and Z2 = zi+1 for i = 2, 3 which is given by

fZ3|Z1=zi,Z2=zi+1
(zj) =

fZ1,Z2,Z3(zi, zi+1, zj)∫∞
−∞ fZ1,Z2,Z3(zi, zi+1, z)dz

for any zi, zi+1, zj ∈ R.

It is clear that, instead of modeling fZ1,Z2,Z3 , we may equivalently choose to model the
joint density of Z1, Z2 − Z1 and Z3 − Z2 which we will use in the following.
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Finally, to capture intrinsic fiber properties, we consider the curvature of the fibers
which is directly related to the angles between neighboring fiber segments Pn − Pn−1

and Pn+1 − Pn. To account for features like persistence of curvature, we do not model
these angles independently from each other, but by means of another stationary (first-
order) Markov chain. More precisely, as we need to keep these angles independent of the
z-coordinates Z1, Z2, Z3, Z4 of P1, P2, P3, P4, we only model the angles between the pro-
jections of consecutive fiber segments onto the x-y-plane. Thus, we consider the angles
A = A((X3, Y3)−(X2, Y2), (X2, Y2)−(X1, Y1)) and B = A((X4, Y4)−(X3, Y3), (X3, Y3)−
(X2, Y2)). Here, A : R2 × R2 → [−π, π] denotes the (signed) angle between two vectors
in the x-y-plane, i.e., A(s1, s2) = ang

(
s2
)
− ang

(
s1
)
for any s1, s2 ∈ R2, where ang(si) is

defined as described above. The joint density fA,B : [−π, π]2 → [0,∞) of A and B will
be the third building stone in our model for fP1,P2,P3,P4 .

In summary, we model the probability density fP1,P2,P3,P4 of P1, . . . , P4 as product of the
probability densities fX1,Y1,A0 , fZ1,Z2,Z3,Z4 and fA,B, i.e., for any p1, p2, p3, p4 ∈ R3 with
|p2 − p1| = |p3 − p2| = |p4 − p3| = 1 we put

fP1,P2,P3,P4(p1, p2, p3, p4) = f(X1,Y1),A0
((x1, y1), ang((x2, y2)− (x1, y1)))

×fZ1,Z2,Z3,Z4(z1, z2, z3, z4)fA,B

(
A(s

(x,y)
2 , s

(x,y)
1 ),A(s

(x,y)
3 , s

(x,y)
2 )

)
,

(2)

where s
(x,y)
i = (xi+1, yi+1) − (xi, yi) for i = 1, 2, 3. Note that using Eq. (1), the second

factor on the right-hand side of Eq. (2) can be written as product of uni- and bivariate
probability densities. Having this in mind, the transition function fP4|P1=p1,P2=p2,P3=p3 :
R3 → [0,∞) of the Markov chain {Pn, n ∈ Z} is given by

fP4|P1=p1,...,P3=p3(p4) =fZ3−Z2|Z1=z2,Z2−Z1=z3−z2(z4 − z3)

· f
B|A=A(s

(x,y)
2 ,s

(x,y)
1 )

(
A(s

(x,y)
3 , s

(x,y)
2 )

) (3)

for any p1, p2, p3, p4 ∈ R3 with |p2 − p1| = |p3 − p2| = |p4 − p3| = c, where c is the
constant segment length, f

B|A=A(s
(x,y)
2 ,s

(x,y)
1 )

: [−π, π] → [0,∞) is the conditional density

of B given that A = A(s
(x,y)
2 , s

(x,y)
1 ), and fZ3−Z2|Z1=z2,Z2−Z1=z3−z2 : [−1, 1] → [0,∞) is

the conditional density of Z3 − Z2 given that Z1 = z2 and Z2 − Z1 = z3 − z2.

2.3.3 Selecting parametric families of probability distributions

For utilizing the approach to modeling the transition function fP4|P1=p1,P2=p2,P3=p3 given
in Eq. (3), we have to decide on how to model the tri- and bivariate joint densities
fZ1,Z2−Z1,Z3−Z2 and fA,B of (Z1, Z2 − Z1, Z3 − Z2) and (A,B), respectively. For this,
we separately incorporate knowledge about the measured image data for Sample 1 and
Sample 2, respectively, into our model.
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Let NF ≥ 1 denote the number of fibers {Fi, 1 ≤ i ≤ NF } with lengths Li = |Fi|, which
have been extracted from the corresponding tomographic image, each of which consists
of Li+1 vertices {pi,k, 1 ≤ k ≤ Li + 1} for i ∈ {1, . . . , NF }. Then, we consider the set of
all quadruples Qi = {(pi,k, pi,k+1, pi,k+2, pi,k+3), 1 ≤ k ≤ Li − 2} of consecutive vertices
along each fiber Fi. Furthermore, we take the union set Q = ∪1≤i≤NF

Qi of all quadruples
and, for simplicity, rewrite their indices as Q = {(p1,j , p2,j , p3,j , p4,j), 1 ≤ j ≤ N} with
N = #(Q), where #(Q) denotes the cardinality of Q. Finally, we compute the corre-
sponding angles {(aj , bj), 1 ≤ j ≤ N} and z-coordinates

{(
z1,j , z2,j , z3,j

)
, 1 ≤ j ≤ N

}
.

Based on this data, we can choose appropriate types of distributions for fZ1,Z2−Z1,Z3−Z2

and fA,B. By examining the tomographic image data considered in this paper, it becomes
obvious that in both cases, i.e. for (Z1, Z2 − Z1, Z3 − Z2) and (A,B), the components
of these random vectors can neither be considered as normally distributed, see Figure 3,
nor independent, see Figure 4. Thus, we make use of copulas [17, 24] for modeling
these distributions, which provide a flexible approach to parametric modeling of multi-
variate non-Gaussian distributions. In particular for modeling the joint distribution of
(Z1, Z2 − Z1, Z3 − Z2), we employ an R-vine copula [7, 17].

Recall that due to the stationarity of the Markov chain {Pn, n ∈ Z}, only three different
marginal distributions need to be modeled. This is, we need to model the marginal
distributions of A,Z1 and Z2 − Z1. Based on two different samples of measured image
data, we model all three univariate distributions (of A,Z1 and Z2 − Z1) by generalized
normal distributions [23]. Further details on this parametric family of distributions can
be found in the appendix. As described there, we chose this family to get a common
best fit for both samples. This means that for choosing, e.g., a family of distributions for
A, we fit a wide variety of parametric families of univariate distributions to the values
of a obtained for both samples, where we used tools provided by the python package
SciPy [32] and, for each parametric family, compute the likelihood function as a measure
for the goodness-of-fit. Then, we choose the distribution family for which the maximum
of the likelihood functions among both datasets is largest, see Figure 3.

The dependence structure of the random vector (A,B) will be modelled by a bivariate
copula. Similar to the procedure described above for choosing univariate marginal dis-
tributions, we fit a wide range of parametric copula families to the respective data from
both measured samples using the python package pyvinecopulib [31]. Then, we choose
the copula which maximizes the goodness-of-fit among both samples with respect to the
likelihood function. Thereby, we use the Student’s t-copula to model the dependence
structure of (A,B), see Figure 4.

For modeling the dependence structure of (Z1, Z2 − Z1, Z3 − Z2), we employ an R-
vine copula as described in the appendix. For this, we need to model three bivariate
copulas, namely for the distributions of (Z3 − Z2, Z1) and (Z2 − Z1, Z1) as well as for
the conditional distribution of (Z3 − Z2, Z2 − Z1) conditioning on Z1. Note that, as
described in the appendix, this choice of an R-vine copula allows for the simulation of
Z3 − Z2, under the condition that the values of Z1 and Z2 − Z1 are given. Using the
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Figure 3: Empirical and fitted distributions of A,Z1 and Z2−Z1 for Sample 1 (top) and
Sample 2 (bottom). Note that B adheres to the same distribution as A, and
Z3 − Z2 has the same distribution as Z2 − Z1.

same approach as before, we choose to model the dependence structures of (Z3−Z2, Z1)
and (Z2 −Z1, Z1) by Clayton copulas and that of (Z3 −Z2, Z2 −Z1), conditional on Z1,
by a Student’s t-copula.
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2.3.4 Fitting model parameters

After having selected a parametric family of univariate probability distributions for the
(real-valued) random variables A,Z1, Z2−Z1 and parametric copula families for the two-
dimensional random vectors (A,B), (Z3 − Z2, Z1) and (Z2 − Z1, Z1) as well as for the
conditional distribution of (Z3 −Z2, Z2 −Z1) conditioning on Z1, we fit the parameters
of these univariate distributions and copulas, again using the data {(aj , bj), 1 ≤ j ≤ N}
and {(z1,j , z2,j , z3,j), 1 ≤ j ≤ N} described above.

Note that fitting the parameters of the univariate distributions is performed separately
for Sample 1 and Sample 2, respectively, by maximum-likelihood estimation provided by
SciPy. Figure 3 shows the fitted distributions and the underlying measured data. The
parameters of the fitted univariate distributions are given in Table 1.

Distribution Sample Parameters Location Scale Mean Var

A [rad] gen. normal 1 0.81 0 0.09 0 0.04
2 0.68 0 0.04 0 0.02

Z1 [mm] gen. normal 1 14.71 1.20 0.98 1.20 0.31
2 4.38 1.69 1.14 1.69 0.43

Z2 − Z1 gen. normal 1 1.69 0 0.02 0 0
[mm] 2 3.12 0 0.03 0 0

Table 1: Parameters of the fitted univariate distributions. Note that due to symmetry, we
would expect a mean (i.e., location) of 0 for the distributions of A and Z2−Z1,
which is in fact (almost) the case for the fitted values. The distribution of Z1

essentially dictates the extent of the structures in z-direction, where the mean
values corresponds to roughly half the thickness of the samples. Note that B
adheres to the same distribution as A, and Z3 − Z2 has the same distribution
as Z2 − Z1. The units given in the left columns apply also to the location and
scale parameters.

Analogously, using pyvinecopulib, the copula parameters are fitted separately for Sam-
ple 1 and Sample 2, respectively, based on maximum-likelihood estimation, see Table 2.

2.3.5 Simulating the entire fiber system

For simulating the entire fiber system, we fix a bounding cuboid W = [0, xmax] ×
[0, ymax]× [0, zmax] for some xmax, ymax, zmax > 0. While we may choose xmax and ymax

arbitrarily large, zmax directly relates to the distribution of Z1 which should be theoret-
ically limited to a bounded interval. In practice, however, the best fitting distribution
is unbounded and thus, we may choose, e.g., the 99.9%-quantile of this distribution as
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Copula Sample Parameters Rotation

(A,B) Student’s t 1 (0.66, 3.15) 0
2 (0.82, 3.11) 0

(Z3 − Z2, Z1) Clayton 1 0.05 90
2 0.06 90

(Z2 − Z1, Z1) Clayton 1 0.02 90
2 0.03 90

(Z3 − Z2, Z2 − Z1)|Z1 Student’s t 1 (0.93, 2.05) 0
2 (0.99, 5.00) 0

Table 2: Parameters of the fitted copulas. The results stated in the last three rows are
used to build a trivariate R-vine copula for (Z1, Z2 −Z1, Z3 −Z2). Parameters
for Student’s t-copulas are given as (ρ, ν).

zmax. As a further parameter, we choose the total length L > 0 of the fiber system
within W .

Note that we do not explicitly model the lengths of single fibers and assume that all fibers
span the whole sampling windowW which will be guaranteed by the following simulation
procedure. This assumption seems largely justified for the considered nonwovens.

To avoid edge-effects, for some r > 0 we repeatedly simulate fibers in a larger window
W̃ = [0− r, xmax + r]× [0− r, ymax + r]× [0, zmax]. This means, we start at some initial
vertices p1, p2, p3 and simulate {pi, i = 1, 2, . . .} according to the Markov chain approach

described above until the fiber leaves W̃ . Then, we consider those parts of the simulated
fiber which lie within the original bounding window W , i.e., {pkj−1, . . . , plj+1}, j ≥ 0,
where 1 < kj < lj , such that 0 ≤ xi ≤ xmax and 0 ≤ yi ≤ ymax for all i ∈ {kj , . . . , lj}
and xi /∈ [0, xmax] or yi /∈ [0, ymax] for both i = kj − 1 and i = lj + 1. These parts then
only start and end at the boundary of W . We stop simulation when the total length of
these parts reaches the value of L. Note that we did not extend W in z-direction as the
Markov chain {Zn, n ∈ Z}, which controls the z-coordinates, ensures that zi belongs to
the interval [0, zmax] for all i = 1, 2, . . ..

We choose the initial vertices p1, p2, p3 by simulating the z-coordinates z1, z2, z3 of
p1, p2, p3 using the (known) joint distribution of Z1, Z2 − Z1, Z3 − Z2. Furthermore, for
the first point p1 = (x1, y1, z1), we may simply choose (x1, y1) uniformly distributed
in [0, xmax] × [0, ymax]. Then, to generate (x2, y2), we simulate the angle between
(x2, y2) − (x1, y1) and the x-axis by drawing a sample from the uniform distribution
on the interval [−π, π]. Finally, to generate (x3, y3), we simulate the angle between
(x3, y3)− (x2, y2) and (x2, y2)− (x1, y1) which is drawn from the known distribution of
A. Together with the already fixed values of z1, z2, z3, we can then easily compute the
actual values of p2 = (x2, y2, z2) and p3 = (x3, y3, z3).

12



For drawing a point pn+1 conditional on pn−2, pn−1, pn, we employ the transition function
given in Eq. (3). For this, we independently simulate (xn+1, yn+1) and zn+1 using the fit-
ted distributions described above. Calculating the angle a between (xn, yn)−(xn−1, yn−1)
and (xn−1, yn−1) − (xn−2, yn−2) and then drawing from B conditional on A = a using
the probability density fB|A=a results in the angle between (xn+1, yn+1) − (xn, yn) and
(xn, yn) − (xn−1, yn−1). Furthermore, we draw the value of zn+1 − zn from the prob-
ability density fZ3−Z2|Z1=zn−1,Z2−Z1=zn−zn−1

of Z3 − Z2 conditional on Z1 = zn−1 and
Z2 − Z1 = zn − zn−1, and then set zn+1 accordingly. If zn+1 would be outside of the
interval [0, zmax], we reject it and draw a new value from the conditional distribution of
Z3 − Z2.

Fitting and simulation of the copula-based model described above were implemented in
python using, among others, the packages SciPy [32] and a slightly adapted version of
pyvinecopulib [31].

2.4 Validation measures

Various geometric descriptors of the 3D microstructure of porous media play an impor-
tant role for transport within the pore space. These descriptors are thus especially well
suited to compare the goodness-of-fit between measured image data and model realiza-
tions. Assume that we observe a porous material (in our case, a fiber system) in 3D
within a bounding cuboid W = [0, xmax]× [0, ymax]× [0, zmax] and with some transport
direction. In the data at hand, we take the z-axis as the transport direction, i.e., we
assume that transport through the nonwoven (as opposed to within) is of interest. For
reference, we define a “starting plane”, e.g., at z = 0 where transport starts and an
opposing “end plane”, e.g., at z = zmax where transport ends. In the following, we give
a short overview over the geometric descriptors considered in the present paper. For
more details and further applications, see e.g. [25].

The geodesic tortuosity is a measure for windedness of transport pathways (within the
pore space). For some point p = (x, y, z) ∈ W with z = 0 on the starting plane which
is contained in the pore space (i.e., not on a fiber), we compute the distance l of the
shortest path from p to the end plane through the pore space using Dijkstra’s algorithm
on the voxel grid. By definition, it holds that l ≥ d, where d denotes the distance between
starting and end planes, and we call the fraction l/d the tortuosity of the shortest path
starting at p. The distribution of these values for randomly selected points p is considered
as the tortuosity distribution.

The so-called constrictivity is a measure for the strength of bottleneck effects along
transport pathways. It is given as a fraction rmin

rmax
∈ [0, 1]. Here, rmax is the largest

radius such that at least 50% of pore space can be covered by (potentially overlapping)
spheres of radius rmax. Furthermore, rmin is the largest radius such that at least 50% of
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pore space can be covered by spheres of radius rmin intruding the pore space from the
starting plane. This is, a point p ∈ W inside the pore space is covered by such spheres if
there exists a point pc and a path from the starting plane to pc such that |pc− p| ≤ rmin

and the distance from any point on said path to the solid phase (i.e., the fibers) is larger
than rmin.

The spherical contact distance for a given point p ∈ W within the pore space is the
shortest distance from p to any point within the solid phase (i.e., the fibers). We consider
the distribution of these shortest distances for randomly selected points p.

3 Results

Recall that we fitted the copula-based model, which we consider in this paper, to two
different measured datasets of nonwoven structures, and we simulated artificial fiber
systems using the fitted models. For comparability, we chose the simulation window,
the total length of fibers and fiber diameter to match the values of the measured struc-
tures given in the Materials section. Figure 2 illustrates the measured fiber systems
along with the simulated structures. Visual comparison of these fiber systems shows a
good agreement of the overall morphological properties of measured and simulated fiber
systems. In addition, we quantitatively evaluate the agreement between measured and
simulated image data, where, among others, we use geometric descriptors of the pore
space morphology as explained in the Methods section. In the following, the term ”mea-
sured” refers to the experimentally measured nonwovens while ”simulated” describes the
structures obtained from the proposed model. All properties presented in the following
are calculated from both types of data in the same way.
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Figure 5: Distribution of fiber lengths, computed from measured image data (blue) and
model-based simulations (orange) of Sample 1 (left) and Sample 2 (right).

Considering the bounding window of each of these four datasets, we can compute the
specific fiber length, i.e. the total fiber length per unit volume and the porosity of the
structure, as shown in Table 3. While these descriptors are closely linked with each other,
porosity may not necessarily decrease with increasing number of fibers when fibers are
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overlapping. Note that, while overlapping fibers are not present in the measured data, we
model fibers independently of each other. Thus, we cannot guarantee non-overlapping
fibers in the simulations. If non-overlapping fibers are necessary, a suitable displacement
algorithm may be applied to the simulated structures. Comparing measured and simu-
lated systems with respect to these geometric descriptors shows a good agreement. Note
that the specific fiber lengths of measured and simulated systems are almost identical,
which would be expected by definition of the model. The number of fibers is closely
linked to the fiber length distribution as shown in Figure 5. While both the number of
fibers and the fiber length distribution match closely between measured and simulated
data for Sample 2, fibers tend to be significantly longer in the simulated data when
considering Sample 1 which is also reflected in the lower number of simulated fibers,
see Table 3. This is probably due to the fact that the measured data of Sample 1 has
almost four times the specific fiber length compared to Sample 2 which makes image
segmentation challenging and may lead to oversegmentation, i.e., splitting fibers into
shorter fragments. Recall that we did not explicitly model the lengths of single fibers
and assumed that each fiber spans the whole sampling window.

Sample Data Specific fiber length Number of fibers Porosity
[cm−2]

1 measured 4165 2189 0.987
1 simulated 4165 1308 0.987
2 measured 1081 530 0.997
2 simulated 1084 481 0.997

Table 3: Specific fiber length, number of fibers, and porosity, computed from measured
image data and model-based simulations of Samples 1 and 2.

Moreover, we computed the solid volume fraction of these structures for slices parallel
to the x-y-plane at different heights z ∈ [0, zmax]. Figure 6 shows the results which we
obtained for measured and simulated image data. Especially for Sample 2, they seem to
be in good agreement with each other.
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Figure 6: Solid volume fraction for slices at given z-position, computed from measured
image data (blue) and model-based simulations (orange) of Sample 1 (left) and
Sample 2 (right).
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For further validation, we estimated the distribution of the spherical contact distance d
to the fiber system from a randomly selected location within the pore space, see the first
column of Figure 7. For both Sample 1 and Sample 2, the obtained results show a good
agreement between simulated and measured structures. Furthermore, we computed the
distribution of geodesic tortuosity τ of pore space which is a descriptor of the windedness
of pathways, see the second column of Figure 7. Finally, for assessing local heterogeneity,
we divided each structure into 20 × 20 × 15 cutouts and computed the mean geodesic
tortuosity µ(τ) as well as the so-called constrictivity β of the pore space on each cutout
separately. The third and fourth columns of Figure 7 show histograms of the values which
we obtained for these pore space descriptors. It turned out that the overall agreement
between all these distributions is quite good.
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Figure 7: Distribution of geometric descriptors of the pore space morphology, computed
from measured image data (blue) and model-based simulations (orange) of
Sample 1 (top) and Sample 2 (bottom). Note that as tortuosity is measured
on a voxel grid, only finitely many different values of tortuosity can exist which
causes the void spaces between the bins in the distributions of tortuosity.

4 Discussion

In this paper we laid the foundation for data-driven 3D analysis of virtual fiber systems
with respect to their microstructure and functionality. In particular, we developed a
stochastic 3D model for systems of curved fibers similar to nonwovens, which is fitted
to tomographic image data. By systematic variations of model parameters, efficient
computer-based scenario analyses can be performed to get a deeper insight how effective
properties of this type of functional materials depend on their 3D microstructure.

The modeling approach was based on representing fibers as polygonal tracks which were
then modeled by means of third-order Markov chains. By choosing the transition func-
tion of these Markov chains to be the product of two (conditional) probability densities,
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we managed to isolate the influence of intrinsic fiber properties from that of exter-
nal effects. Modeling these two influencing factors separately yielded comprehensible
(conditional) probability densities which can be directly related to different aspects of
the geometry of single fibers as well as fiber systems. For a precise description of the
underlying multivariate distributions, we chose copulas which minimized the required
number of parameters. By construction, the model could be easily adapted to various
types of structures which we exemplified by fitting the model to two different measured
datasets of nonwovens. Artificial structures simulated by these fitted models resembled
the measured datasets with respect to various geometric descriptors of the pore space
morphology which are related to macroscopic physical properties of the underlying ma-
terial and were not used for model fitting. Moreover, the presented model is robust with
respect to oversegmentation of the data used for fitting.

As fitting the model and drawing realizations can be performed efficiently with relatively
low computational costs, the model is well suited for the development of a framework
for virtual materials testing and further investigation of the relationship between mi-
crostructure geometry and effective macroscopic properties. This will be investigated in
a forthcoming paper [35].

5 Utilized numerical tools

We used the python programming language to implement the model, simulate the struc-
tures, compute geometric descriptors and prepare most of the figures for this manuscript.
Notably, the following libraries were used: NumPy [13], SciPy [32], a slighty modified
version of pyvinecopulib [31], Numba [20] for accelerated execution and Matplotlib [16]
and seaborn [33] for creating most of the the figures.

GeoDict [3] was used to numerically compute the permeability and for 3D rendering of
selected structures.

6 Data availability

The data generated and analyzed during this study, i.e., the center-lines used to fit the
model and the center-lines of the simulated structures are available from the correspond-
ing author upon reasonable request.

17



7 Code availability

All formulations and algorithms necessary to reproduce the results of this study are
described in the “Results” and “Methods” sections.
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A. Appendix

A.1. Python package for fitting univariate probability distributions

In the context of the present paper, we need to model various univariate data by means of
parametric families of probability distributions. The python package SciPy [12] provides
tools for using—and especially for fitting—over 100 different distribution families. We
can directly exploit this package to fit a specific parametric probability distribution to
a given set of observations. Moreover, to choose the best suited distribution for the
dataset, we fit all distribution families available in SciPy to the data, where we use
the likelihood function as a measure for the goodness-of-fit for each fitted distribution.
Based on these values, we choose the best fitting distribution for the given dataset, i.e.,
we choose the distribution family for which the maximum of the likelihood functions
is largest. By this approach, we decide which parametric families we use to model
the marginal distributions of the random vectors comprised in the copula-based model
considered in the present paper.
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However, note that we base this decision on two datasets. While we may not assume
that a property follows the same type of distribution for both datasets, we would like our
model to be able to compare the different morphologies of both datasets with each other.
Thus, we would like to find a distribution family which (using different parameters)
captures the empirical distribution of the considered property for both datasets.

It turned out that for all univariate data considered in this paper, the generalized normal
distribution [7] provides the best fit. This is a parametric family of univariate distri-
butions with parameters µ ∈ R, α, β > 0, whose density fµ,α,β : R → [0,∞) is given
by

fµ,α,β(x) =
α, β

2αΓ(1/β)
exp

(
−(|x− µ|/α)β

)
, for all x ∈ R,

where µ, α and β are known as location, scale and shape parameters, respectively, and
Γ : [0,∞) → [0,∞) denote the gamma function. For our purposes, we need to determine
the distribution function and quantile function of the generalized normal distribution
which are computed numerically using the python package SciPy [12].

A.2. Sklar’s representation formula for multivariate distributions

For modeling multivariate probability distributions, different approaches exist. While
some univariate distribution families like normal, Student’s t [4], or von Mises [8] distri-
butions have multivariate counterparts with parametric probability densities, paramet-
rically describing the multivariate distribution of arbitrary random vectors (X1, . . . , Xd)
for any given integer d ≥ 2 requires more advanced theory. This is indeed the case for
the multivariate distributions considered in the present paper. For modeling such multi-
variate probability distributions, so-called copulas can be exploited [6, 9]. Using copulas,
the univariate marginal distributions of a random vector can be chosen separately and
fitted directly to the data. Then, in a second step, the dependence structure of the data
can be modeled by means of a copula, which turns the marginal distributions into the
desired multivariate distribution.

A d-variate copula is a d-variate (cumulative) distribution function C : [0, 1]d → [0, 1]
with uniform marginal distributions on the unit interval [0, 1]. According to Sklar’s
representation formula [6, 9], for any d-variate distribution function F : Rd → [0, 1] with
marginal distribution functions F1, . . . , Fd : R → [0, 1] a d-variate copula C : [0, 1]d →
[0, 1] exists such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for all x1, . . . , xd ∈ R . (1)

Note that in the case when the joint distribution function F : [0, 1]d → [0, 1] of a certain
random vector (X1, . . . , Xd) has a probability density f : Rd → [0,∞), this leads to
an equivalent version of Eq. (1) in terms of the probability density c : [0, 1]d → [0,∞)
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corresponding to C. Namely, then it holds that

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) f1(x1) . . . fd(xd)) for all x1, . . . , xd ∈ R , (2)

where fi : R → [0,∞) is the density corresponding to Fi for i ∈ {1, . . . , d}.

Furthermore, the transformed components F1(X1), . . . , Fd(Xd) of the random vector
(X1, . . . , Xd) are then uniformly distributed on [0, 1]. Thus, after fitting the marginal

density fi : R → [0,∞) to a dataset (x
(1)
i , . . . , x

(N)
i ) ∈ RN for each i = 1, . . . , d as

described above, and after computing the cumulative distribution functions F1, . . . , Fd,
which is typically done by numerical integration of f1, . . . , fd, respectively, the trans-

formed data (F1(x
(j)
1 ), . . . , Fd(x

(j)
d )), 1 ≤ j ≤ N , can be used to fit a parametric proba-

bility density c : [0, 1]d → [0,∞).

Various parametric models for copulas are considered in the literature [6, 9], many of
which are so-called Archimedean copulas C : [0, 1]d → [0, 1] with

C(u1, . . . , ud) = ψ−1(ψ(u1) + . . .+ ψ(ud)) for all u1, . . . , ud ∈ [0, 1],

where the so-called generator function ψ : [0, 1] → [0,∞) is a continuous, strictly decreas-
ing convex function such that ψ(1) = 0 and ψ−1 is the pseudo-inverse of ψ. Examples
of Archimedean copulas which we use in the present paper include the Clayton copula
with generator function ψθ : [0, 1] → (0,∞) given by

ψθ(u) =
u−θ − 1

θ
for all u ∈ [0, 1]

and some parameter θ ∈ [−1,∞) \ {0}.

Furthermore, some copulas correspond to known multivariate probability distributions.
This is due to the fact that for any d-variate cumulative distribution function F : Rd →
[0, 1] as considered above, it can be easily shown that by the function C : [0, 1]d → [0, 1]
with

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F

−1
d (ud)) for all u1, . . . , ud ∈ [0, 1]

a d-variate copula is given which can be used to model F . Commonly used copulas
derived in this way include the Student’s t-copula which is based on the multivariate
Student’s t-distribution. In the 2-dimensional case, this distribution is defined by its
probability density fν,µ,Σ : R2 → [0,∞) function with

fν,µ,Σ(x) =
Γ [(ν + 2)/2]

Γ(ν/2)νπ |Σ|1/2

[
1 +

1

ν
(x− µ)⊤Σ−1(x− µ)

]−(ν+2)/2

for all x ∈ R2,

for some degree of freedom ν > 0, location vector µ ∈ R2 and positive-definite scale
matrix Σ ∈ R2×2. Note that for the definition of the copula, µ and the diagonal elements
of Σ are irrelevant and can be set to 0 and 1, respectively. This leaves the bivariate
Student’s t-copula with two parameters: ν > 0 for the degree of freedom, and ρ > 0 for
the non-diagonal entries of Σ of the underlying bivariate t-distribution.
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A.3. R-vine copulas

While especially Archimedean copulas can easily be used for any dimension d ≥ 2,
many multivariate distributions in higher dimensions can not be expressed by means of
Archimedean copulas. Then, so-called R-vine copulas provide a flexible approach which
can be used for modeling arbitrary multivariate distributions. A general theory and
some applications of R-vine copulas can be found, e.g., in [1, 2, 3, 6]. In the present
paper, we use an approach similar to R-vine copulas to model the trivariate probability
densities which have been used in the model.

Let X = (X1, X2, X3) be a three-dimensional random vector with joint probability
density f : R3 → [0,∞), marginal densities f1, f2, f3 : R → [0,∞) and corresponding
cumulative distribution functions F1, F2, F3 : R → [0, 1]. Then, using Eq. (2) and Bayes’
theorem of probability calculus, the trivariate density f can be written as

f(x1, x2, x3) = c2,3|X1=x1
(F2|X1=x1

(x2), F3|X1=x1
(x3))

× c2,1(F2(x2), F1(x1)) c3,1(F3(x3), F1(x1))

× f1(x1)f2(x2)f3(x3) ,

(3)

for all (x1, x2, x3) ∈ R3 such that f(x1, x2, x3) > 0. Here, ci,1 is the copula density corre-
sponding to the distribution of (Xi, X1) for i = 2, 3, and c2,3|X1=x1

is that corresponding
to the distribution of (X2, X3) conditional on X1 = x1. Furthermore, Fi|X1=x1

denotes
the distribution function of Xi conditional on X1 = x1 for i = 2, 3.

For computational feasibility, one generally assumes that the bivariate copula density
c2,3|X1=x1

does not depend on the specific value x1 of X1, denoting it by c2,3|1, see [5]. We
also remark that the order of the entries X1, X2, X3 of the random vector (X1, X2, X3)
can be changed, i.e., on the right-hand side of Eq. (3) one can condition on X2 = x2 or
X3 = x3, instead of conditioning on X1 = x1. In this way, the right-hand side of Eq. (3)
can be adjusted to suit the needs for further use of this copula representation formula.

A.4. Fitting of copula densities

For fitting a multivariate probability density f : Rd → [0,∞) to data, we need to fit
the copula density c : [0, 1]d → [0, 1] appearing on the right-hand side of Eq. (2), where
we exploit the C-library vinecopulib and its python bindings (pyvinecopulib) [11] for
choosing an appropriate copula model and calibrating it to given data. For a large variety
of parametric copula families, this package provides tools for data fitting, simulation and
further purposes.

For d = 2, similar to choosing marginal distributions as described above, we choose
bivariate copula families which perform equally well for two different datasets. More
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precisely, for fitting the copula density c : [0, 1]2 → [0, 1], after choosing appropriate

marginal distribution functions F1 and F2 for a dataset (x
(1)
1 , x

(1)
2 ), . . . , (x

(N)
1 , x

(N)
2 ) and

transforming the data into the dataset (u
(1)
1 , u

(1)
2 ), . . . , (u

(N)
1 , u

(N)
2 ), where u

(i)
j = Fj(x

(i)
j )

for i = 1, . . . , N and j = 1, 2, we use the tools provided by vinecopulib to fit various

copula models to (u
(1)
1 , u

(1)
2 ), . . . , (u

(N)
1 , u

(N)
2 ). In particular, for each dataset extracted

from Sample 1 and Sample 2, respectively, and for each bivariate copula model provided
by vinecopulib, we compute the log-likelihood function and finally choose the copula such
that the minimum of the maximum log-likelihood among both datasets is maximized.
Similar to the method explained above for choosing the marginal distributions, this
ensures that the behavior of both datasets can be captured equally well using the same
copula, albeit with different parameters.

Note that also in the three-dimensional case (d = 3), for fitting a trivariate proba-
bility density f : R3 → [0,∞) to data, we only need to fit bivariate copulas, using the
representation formula given in Eq. (3). For example, for fitting the (unconditional) cop-
ula density c2,1 appearing on the right-hand side of Eq. (3), after choosing appropriate

marginal distribution functions F2 and F1 for a dataset (x
(1)
2 , x

(1)
1 ), . . . , (x

(N)
2 , x

(N)
1 ) and

transforming the data into the dataset (u
(1)
2 , u

(1)
1 ), . . . , (u

(N)
2 , u

(N)
1 ), where u

(i)
j = Fj(x

(i)
j )

for i = 1, . . . , N and j = 1, 2, where we again use the tools provided by vinecopulib to

fit various copulas, but now to the dataset (u
(1)
2 , u

(1)
1 ), . . . , (u

(N)
2 , u

(N)
1 ). Moreover, as in

the two-dimensional case described above, for each dataset extracted from Sample 1 and
Sample 2, respectively, and for each bivariate copula model provided by vinecopulib, we
compute the log-likelihood function and choose the copula such that the minimum of
the maximum log-likelihood among both datasets is maximized. The other (uncondi-
tional) copula density c3,1 on the right-hand side of Eq. (3) is fitted to data in the same
way. For fitting the (conditional) copula density c2,3|1 on the right-hand side of Eq. (3),

we consider the dataset (x
(1)
1 , x

(1)
2 , x

(1)
3 ), . . . , (x

(N)
1 , x

(N)
2 , x

(N)
3 ) and transform it into the

dataset (u
(1)
1 , u

(1)
2 , u

(1)
3 ), . . . , (u

(N)
1 , u

(N)
2 , u

(N)
3 ),as described above for the two-dimensional

case. Then, using so-called h-functions, we further transform the latter dataset into the

dataset (ũ
(1)
2 , ũ

(1)
3 ), . . . , (ũ

(N)
2 , ũ

(N)
3 ), where ũ

(i)
j = hj,1(u

(i)
j , u

(i)
1 ) for i = 1, . . . , N and

j = 2, 3 and hj,1(uj , u1) = P(Uj ≤ uj | U1 = u1) for j = 2, 3. Here, (Uj , U1) denotes a
two-dimensional random vector with (joint) probability density cj,1 for j = 2, 3. Finally,

the copula density c2,3|1 is fitted to the dataset (ũ
(1)
2 , ũ

(1)
3 ), . . . , (ũ

(N)
2 , ũ

(N)
3 ), as described

above.

A.5. Drawing samples from conditional probability densities

For simulation purposes, we need methods to draw samples from (conditional) distribu-
tions modeled by a copula approach as given in Eqs. (1) and (3), where we use the tools
provided by vinecopulib [11].
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For conditional sampling, we first consider the two-dimensional case where, according
to Eq. (1), the joint distribution function of (X1, X2) is given by the marginal distrinu-
tion functions F1 : R → [0, 1] and F2 : R → [0, 1] of X1 and X2, respectively, and the
copula C : [0, 1]2 → [0, 1] describing the joint distribution function of U1 = F1(X1) and
U2 = F2(X2). Drawing a value x2 from X2 conditional on X1 = x1 can be performed
by drawing a value u2 from U2 conditional on U1 = F1(x1) and setting x2 = F−1

2 (u2).
For this, we employ the inverse of the so-called first h-function h : [0, 1]2 → [0, 1] corre-
sponding to the copula C which is defined as

h(u1, u2) = P(U2 ≤ u2 | U1 = u1) for any u1, u2 ∈ [0, 1], (4)

where the inverse h−1 : [0, 1]2 → [0, 1] of this function is computed with respect to the
second argument, i.e., h−1(u1, v) is the v-quantile of the distribution of U2 conditional
on U1 = u1. For some copulas, analytical methods to evaluate the h-functions and their
inverse exist while for others, numerical methods can be used. For the copulas used in
our model, they are implemented in vinecopulib [11]. Now, we can apply the inversion
method for simulating from the distribution of U2 conditional on U1 = u1 [10]. This
is, drawing a sample x2 ∈ R from X2 conditional on X1 = x1 amounts to drawing a
sample v ∈ [0, 1] from the (standard) uniform distribution on the unit interval [0, 1] and
computing

x2 = F−1
2 (h−1(F1(x1), v)) .

We use this approach to sample the angle B conditional on the value of A.

In the three-dimensional case, we need to sample a random variable X3 conditional on
two random variables X1 and X2, where the joint density of (X1, X2, X3) is given by the
copula representation as stated in Eq. (3).

For doing this, we use the so-called Rosenblatt transform [6] which, in the three-dimensional
case, maps a sample (x1, x2, x3) of (X1, X2, X3) onto a sample (r1, r2, r3) of (R1, R2, R3),
where R1, R2, R3 are independent random variables which are uniformly distributed on
[0, 1] such that

r1 = F1(x1),

r2 = F2|X1=x1
(x2),

r3 = F3|X1=x1,X2=x2
(x3),

where F1 : R → [0, 1] denotes the cumulative distribution function of X1 and F2|X1=x1

and F3|X1=x1,X2=x2
denote the conditional distribution functions of X2 conditional on

X1, and X3 conditional on X1 and X2, respectively. When the corresponding densities
are non-zero, the inverse Rosenblatt transform can be obtained by

x1 = F−1
1 (r1),

x2 = F−1
2|X1=x1

(r2), (5)

x3 = F−1
3|X1=x1,X2=x2

(r3).
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As R1, R2, R3 are independent, drawing from X3 conditional on X1 = x1 and X2 =
x2 can be performed by drawing r3 from the uniform distribution on [0, 1] and then
computing x3 using the inverse Rosenblatt transform, see Eq. (5). As the joint density
of (X1, X2, X3) can be expressed by the pair-copula representation as stated in Eq. (3),
the expression for x3 given above can be written as

x3 = F−1
3 (h−1

1,3(r1, h
−1
2,3|1(r2, r3)), (6)

where r1 = F1(x1), r2 = h1,2(r1, F2(x2)) and h1,3, h1,2, h2,3|1 : [0, 1]
2 → [0, 1] are h-

functions similar to Eq. (4) given by

h1,2(u1, u2) = P(U2 ≤ u2 | U1 = u1),

h1,3(u1, u3) = P(V3 ≤ u3 | V1 = u1),

h2,3|1(u2, u3) = P(W3 ≤ u3 |W2 = u2)

for u1, u2, u3 ∈ [0, 1]. Here, the random vectors (U2, U1), (V3, V1) and (W2,W3) are dis-
tributed according to the copula densities c2,1, c3,1, c2,3|1 appearing in Eq. (3), respec-
tively. As in the two-dimensional case, the inverse h-functions in Eq. (6) are computed
with respect to the second argument and are implemented in pyvinecopulib [11]. We use
this approach for simulating Z3 − Z2 conditional on the values of Z2 − Z1 and Z1.
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