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Abstract: Practically all particle separation processes depend on more than one particulate property. 1

In the case of the industrially important froth flotation separation, these properties concern wettability, 2

composition, size and shape. Therefore, it is useful to analyze different particle descriptors when 3

studying the influence of particle wettability and morphology on the separation behavior of particle 4

systems. A common tool for classifying particle separation processes are Tromp functions. Recently, 5

multivariate Tromp functions, computed by means of non-parametric kernel density estimation, 6

have emerged which characterize the separation behavior with respect to multidimensional vectors 7

of particle descriptors. In the present paper, an alternative parametric approach based on copulas 8

is proposed in order to compute multivariate Tromp functions and, in this way, to characterize 9

the separation behavior of particle systems. In particular, bivariate Tromp functions for the area- 10

equivalent diameter and aspect ratio of glass particles with different morphologies and surface 11

modification have been computed, based on image characterization by means of mineral liberation 12

analysis (MLA). Comparing the obtained Tromp functions with one another reveals the combined 13

influence of multiple factors, in this case particle wettability, morphology and size, on the separation 14

behavior and introduces an innovative approach for evaluating multidimensional separation. In 15

addition, we extend the parametric copula-based method for the computation of multivariate Tromp 16

functions, in order to characterize separation processes also in the case when image measurements 17

are not available for all separated fractions. 18
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1. Introduction 20

Considering the increasing amount of natural resources needed for everyday life, 21

mining and recycling industries are permanently aiming for the optimization of existing 22

processes and the development of novel technologies in order to improve the yield of 23

valuable materials. One of the most important techniques in the mining industry for the 24

processing of fine mineral particles (i.e. particles within the size range from 20 µm to 25

200 µm) is flotation. This separation technique exploits the differences in wettability of 26

various minerals, i.e., particles that are rather hydrophobic will attach to air bubbles and 27

can be recovered as a froth, while rather hydrophilic particles remain in the suspension. 28

However, in recent years it has been shown that other particle properties, e.g. given by 29

descriptors of their size or shape, can also influence the separation process. Studies, which 30

were focusing on the suspension zone during flotation, demonstrated that irregularly 31

shaped particles have higher flotation recoveries when compared to rather spherical par- 32

ticles, since it is assumed that their sharp edges facilitate the rupture of the liquid film 33

between the particle and the bubble [1–4]. This is supported by latest research including 34

discrete element method simulations of particle-bubble interactions comparing spheres 35

and irregularly shaped particles [5]. On the other hand, studies focusing on the froth zone 36

did not yield such clear results, since some studies stated that the entrainment of unwanted 37

gangue particles increases with particle roundness, whereas other studies claimed that the 38
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entrainment is higher for elongated particles [6–8]. Regarding particle size, it is known that 39

flotation is most efficient for particles with intermediate size ranges. The flotation of very 40

fine particles (smaller than 10 µm) is a challenging task and is accompanied by high levels 41

of entrainment or slime coating, resulting in low grade concentrates [9–12]. 42

In order to improve the separation efficiency for particle systems with a high amount of 43

fines, a novel flotation apparatus has been designed, see Section 2.2 for details. It combines 44

the advantages of agitator-type froth flotation, i.e., high turbulences for efficient particle- 45

bubble collisions, and column flotation, i.e., reducing entrainment due to the fractionating 46

effect of the column. Flotation experiments were carried out using simple particle systems 47

consisting of magnetite as the non-floatable and glass particles with varying morphologies 48

and with three different wettability levels as the floatable fraction. The wettability of 49

the glass particles has been adjusted via an esterification reaction with alcohols prior to 50

flotation, where the resulting particle wettability has been analyzed by optical contour 51

analysis. Then, having two systems of differently shaped glass particles, where each particle 52

system is available for three different wettability states, the influence of particle wettability 53

and morphology on the separation process can be investigated via multivariate stochastic 54

modeling of morphological particle descriptors. In this way, information regarding the 55

combined effect of multiple factors on the flotation separation behavior can be obtained. 56

In particular, the flotation experiments performed in the framework of this paper serve 57

as basis for demonstrating the use of Tromp functions as a flexible tool for evaluating the 58

influence of particle wettability and morphology on the separation behavior [13–15]. In 59

order to achieve this goal, a suitable characterization of the particle systems is necessary, 60

which can be achieved by determining probability densities of particle descriptors of the 61

particle systems under consideration. Thus, for each particle system, a representative 62

fraction of feed material as well as the separated valuable (concentrate) and non-valuable 63

(tailings) fractions have been imaged using a mineral liberation analyzer. 64

Recently, multivariate Tromp functions computed by means of non-parametric kernel 65

density-based estimation have been used to characterize the separation behavior with 66

respect to multidimensional particle descriptor vectors [13]. However, estimating multivari- 67

ate probability densities of particle descriptor vectors in this way requires sufficiently large 68

sample sizes [16]. Therefore, we propose an alternative parametric modeling approach 69

in order to determine multivariate Tromp functions from scanning electron microscopy- 70

based image data of the feed and separated fractions, where the underlying multivariate 71

probability densities of particle descriptor vectors are obtained by utilizing Archimedean 72

copulas [17,18]. More precisely, these probability densities are modeled by first fitting 73

(univariate) marginal densities of the individual particle descriptors, followed by the com- 74

putation of an adequate copula density, which captures the dependencies between the 75

particle descriptors. For the flotation-based separation process considered in the present pa- 76

per, the parametric modeling approach for the computation of multivariate Tromp functions 77

is applied to characterize the influence of changes in particle wettability and morphology 78

on the behavior of the separation process. 79

Furthermore, the parametric modeling approach described above is extended by an 80

optimization routine in order to analyze the behavior of separation processes also in the 81

case when image measurements are not available for all separated fractions. Another 82

potential application of this optimization routine is to reduce the measurement effort in a 83

series of separation experiments for a given feed material and various separated fractions. 84

The rest of this paper is organized as follows. In Section 2.1, the particle systems are 85

described from which feed materials for the separation tests have been prepared. The 86

flotation-based separation process itself is explained in Section 2.2. Then, in Section 2.3, 87

a description of the microscopy technique follows which is used to generate image data 88

for a quantitative analysis of the separation results. Various aspects of multivariate Tromp 89

functions are considered in Section 2.4. Their values are given by means of multivariate 90

probability densities of particle descriptor vectors, which are stochastically modeled in 91
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Section 2.5. Section 3 contains the results derived in this paper. They are discussed in 92

Section 4. Finally, Section 5 concludes. 93

2. Materials and Methods 94

2.1. Materials 95

The particle systems from which feed compositions for the separation tests have been 96

prepared are visualized in Figure 1. They consist of magnetite representing the non-floatable 97

material and of glass particles with two different morphologies, spheres and fragments, 98

serving as floatable material. Ultrafine size fractions of magnetite have been purchased from 99

Kremer Pigmente, Germany, where an analysis via X-ray diffraction confirmed its purity. 100

Glass spheres and fragments both consist of soda-lime glass and have been purchased from 101

VELOX, Germany, as SG7010 and SG3000, respectively. The purchased glass spheres already 102

had particle sizes below 10 µm (SG7010), whereas for getting glass fragments coarser glass 103

spheres (SG3000, 30− 50 µm) were milled and the desired particle size fraction (< 10 µm) 104

was obtained by air classification. The corresponding particle size distributions for all three 105

particle systems, obtained by laser diffraction and represented as probability densities, are 106

visualized in Figure 1d. This measurement technique assumes that the observed particles 107

are spherical, which is in particular not the case for magnetite and glass fragments. Hence, 108

image measurements of the particle systems under consideration as shown in Figure 1a-c 109

are required to determine the particle shape descriptors. 110
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Figure 1. SEM images of the floatable fractions of glass spheres (a) and glass fragments (b), and
the non-floatable fraction of magnetite (c); the corresponding particle-size probability density of
volume-equivalent diameter obtained by laser diffraction (d).

To keep the particle systems considered in this paper as simple as possible and to rule 111

out effects of other flotation reagents during the flotation process, such as collectors or 112

depressants, the glass particle wettability is adjusted prior to flotation via an esterification 113

reaction using alcohols. By choosing primary alcohols with differing alkyl chain lengths 114

the resulting particle wettability can be adjusted as the hydrophobicity increases along 115

with the alkyl chain length of the alcohol. To obtain the defined wettability states the glass 116

particles are functionalized using the primary alcohols 1-hexanol (C6, Carl Roth ≥ 98%, 117

used as received) and 1-decanol (C10, Carl Roth ≥ 99%, used as received). In total, three 118

different wettability states of glass spheres and glass fragments are used for flotation: 119
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pristine, unesterified, hydrophilic particles (C0), particles esterified with 1-hexanol (C6) that 120

exhibit a medium hydrophobicity, and particles esterified with 1-decanol (C10) that are 121

strongly hydrophobic, as shown in Figure 2 by means of contact angles that were measured 122

on identically treated glass slides. The resulting particle systems with differing levels of 123

hydrophobicity have been analyzed extensively with respect to their wettability and wetting 124

ability by inverse gas chromatography, phase transfer as well as optical contour analysis, 125

see [19] for details. All flotation experiments have been carried out on a binary model 126

system, with the glass particles representing the floatable and magnetite the non-floatable 127

fraction with a weight ratio of 1 : 9. 128
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Figure 2. Contact angles of the pristine glass slides (C0) and those esterified with 1-hexanol (C6) and
1-decanol (C10) measured in sessile drop mode via optical contour analysis. The glass slides have the
same chemical composition as the glass particles used in this study and were cleaned and esterified
in the same way as the glass particles.

2.2. Flotation-based separation process 129

Figure 3 shows the newly designed MultiDimFlot separation apparatus that was used 130

for all flotation experiments considered in this study. It was designed specifically for the 131

separation of very fine particles and combines the highly turbulent suspension zone from 132

mechanical froth flotation using a conventional batch flotation cell (12 cm× 12 cm) with a 133

bottom-driven rotor-stator system (Magotteaux) and the fractionating effect from column 134

flotation. Process parameters were the same for all flotation experiments with an airflow 135

rate of 2 l/ min, rotational speed of 500 min−1, and a superficial gas velocity of 1.7 cm/s. 136

Different column lengths are available, as shown in Figure 3, but all the tests of this study 137

have been carried out using the longest column length of 100 cm with an inner diameter 138

of 5 cm. All experiments have been conducted in batch mode using 4.8% (w/w) pulp 139

density and poly(ethylenglycol) (PEG, Carl Roth) with a molecular weight of 10.000 g/mol 140

as frother. Due to the modification of the particle wettability by esterification with alcohols 141

before flotation, no conditioning is required prior to the separation process as no additional 142

chemicals for reactions or adsorption need to be added. The frother solution with a PEG 143

concentration of 10−5 M with a background solution of 10−2 M KCl solution has a pH 144

of 9 after dispersing the particles using an Ultra Turrax (dispersion tool S25N-25F) from 145

IKA, Germany, for 1 min at 11.000 min−1. Flotation experiments have been carried out 146

for 15 min with concentrates being taken after 1, 2, 3, 4, 5, 6, 8, 10, 12 and 15 mins. Post- 147

processing of the concentrates and tailings include centrifugation to dewater the products, 148

followed by gravimetric analysis for mass balancing and X-ray fluorescence (with the S1 149

TITAN handheld device, Bruker) and mineral liberation analysis of the dried samples for 150

quantifications of the recoveries and compositions. 151

2.3. Mineral liberation analysis 152

For a quantitative analysis of separation results, representative fractions of the above 153

mentioned particle systems prior to and after separation have been imaged using a mineral 154

liberation analyzer (MLA). More precisely, the particles to be imaged have been embedded 155
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(a) (b)

Figure 3. Schematic drawing of the MultiDimFlot separation apparatus (a) and its implementation in
the lab (b).

in an epoxy resin, followed by grinding and polishing, in order to expose a planar surface 156

section through the particles. Then, the MLA measurements were performed by deploying 157

a FEI Quanta 650F (Thermo Fisher Scientific, Waltham, MA, USA) for SEM imaging and 158

two Bruker Quantax X-Flash 5030 EDS (Bruker Corporation, Billerica, MA, USA) for 159

energy-dispersive X-ray spectroscopy measurements. The samples were scanned using the 160

extended electron backscatter diffraction liberation analysis. During imaging consistent 161

operating conditions were applied to all the samples with a pixel size of 0.25 µm. In general, 162

more than 200.000 particles were analyzed during a single MLA image measurement. Using 163

the MLA software suite, version 3.1.4, we obtained for each imaged planar section a false 164

color image I : W → {0, 1, 2 . . . , }, where the set W ⊂ Z2 of pixels is given by W = W ′ ∩Z2
165

for some rectangular sampling window W ′ ⊂ R2. The pixel values of the image I provide 166

information about the mineralogical composition of the sample. More precisely, if I(x) = 0 167

for some x ∈W, then the pixel corresponds to the epoxy resin (background), whereas for 168

I(x) = 1 the MLA system detected a mineral (e.g., magnetite) at the position of the pixel 169

x. Furthermore, the MLA software suite segmented the image I into individual particles, 170

i.e., it is possible to extract sets P ⊂ W of pixels associated with planar section of particles. 171

Thus, together with the mineralogical information provided by the MLA system, for any 172

given fraction of the particle system (i.e., magnetite, glass fragments and spheres) we can 173

determine corresponding pairwise disjoint sets P1, . . . , PN ⊂ W for some integer N > 0, 174

each of which is associated with the planar section of a particle belonging to the given 175

fraction. 176

2.4. Multivariate Tromp functions 177

The morphology of particles can be described by d-dimensional descriptor vectors 178

x = (x1, . . . , xd) ∈ Rd, where d > 0 is some integer and the entries of x either characterize 179

the shape or size of the particles. The entirety of particle descriptor vectors associated with 180

particles of the feed material observed by MLA measurements can be modeled by a number- 181

weighted multidimensional probability density, which will be denoted by f f : Rd → [0, ∞) 182

in the following. Analogously, the descriptor vectors for particles in the concentrate can be 183

modeled by a number-weighted multidimensional probability density f c : Rd → [0, ∞). 184

Then, the number-weighted multivariate Tromp function T : Rd → [0, ∞) (also referred to 185

as multivariate separation function) is given by 186

T(x) =


nc

nf

f c(x)
f f(x)

, if f f(x) > 0,

0, if f f(x) = 0,
(1)
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for each x ∈ Rd, where nc and nf denote the number of particles in the concentrate and 187

the feed, respectively. Note that in case of 2D-image data it is reasonable to use number- 188

weighted probability densities in order to describe particle systems. However, different 189

measurement techniques obey varying physical principles which may result in differently 190

weighted probability densities. For example, when considering aerodynamic lenses for 191

the separation of airborne particles [20], particle systems in the separation process are 192

described by mass-weighted probability densities. Thus, Tromp functions are then defined 193

by mass-weighted probability densities [13,14]. 194

In the following we show how the value T(x) of the Tromp function given by Equa- 195

tion (1) can be interpreted as separation probability of a particle having the descriptor vector 196

x, to be separated into the concentrate, and we discuss the equivalence of number-weighted 197

and mass-weighted Tromp functions, see Section 2.4.1. Then, in Section 2.4.2 we explain 198

how computational issues can be solved in case of computing Tromp functions from image 199

measurements. Moreover, in Section 2.4.3 we propose a method for computing Tromp func- 200

tions when only partial information about the fractions in separation processes is available, 201

e.g. when only the feed and a single separated fraction is measured. In Section 2.4.4, we 202

present a scheme that constrains the set of admissible particle descriptors for which we 203

compute the separation probability. 204

2.4.1. Interpretation of multivariate Tromp functions as separation probabilities 205

To begin with, we provide a reasoning which shows now why the value T(x) of the 206

Tromp function given by Equation (1) can be interpreted as separation probability of a 207

particle having the descriptor vector x, to be separated into the concentrate. Let X be 208

a d-dimensional random vector, whose probability distribution is given by the density 209

f f. Thus, X can be interpreted as a (random) particle descriptor vector of the “typical 210

particle” in the feed. Note that integration of the density f f allows for the computation of 211

probabilities that the random particle descriptor vector X belongs to some cuboidal sets 212

B ⊂ Rd, i.e., such probabilities are given by 213

P(X ∈ B) =
∫

B
f f(x)dx. (2)

Normally, the probability density f f is determined from measurements, see Section 2.5. 214

Furthermore, let Z be a binary random variable with values in the set {0, 1} such 215

that the event Z = 1 corresponds to the case that the typical particle is separated into the 216

concentrate. One method to determine the distribution of Z is to compute the probability 217

of the event Z = 1, which can be done by considering the ratio of the number of particles 218

in the concentrate and feed, respectively, i.e., 219

P(Z = 1) ≈ nc/nf. (3)

The value of P(Z = 1) can be interpreted as the probability that a particle taken at random 220

from the feed is separated into the concentrate. Note that the separation outcome typically 221

depends on particle descriptors (e.g., large particles might have a larger separation probabil- 222

ity than smaller particles). Therefore, the (conditional) probability P(Z = 1 | X = x) of the 223

event Z = 1 can change when conditioning it with respect to some specific deterministic 224

descriptor vector x. The values P(Z = 1 | X = x) for x ∈ Rd can be interpreted as a 225

separation probability function which assigns each particle with a descriptor vector x its 226

corresponding separation probability. In order to determine P(Z = 1 | X = x), we make 227

use of the probability density f c of descriptor vectors for particles in the concentrate. 228

More precisely, using the notion of the typical particle X and the separation outcome Z, 229

the distribution of descriptor vectors for particles in the concentrate is given by conditioning 230

on the event Z = 1, i.e., by P(X ∈ B | Z = 1) for each cuboidal set B ⊂ Rd. Since 231
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we additionally assumed that the distribution of descriptor vectors associated with the 232

concentrate has the density f c, we get that 233

P(X ∈ B | Z = 1) =
∫

B
f c(x)dx. (4)

On the other hand, we can represent such probabilities by 234

P(X ∈ B | Z = 1) =
P(X ∈ B, Z = 1)

P(Z = 1)
=

1
P(Z = 1)

∫
B
P(Z = 1 | X = x) f f(x)dx, (5)

where the first equation is true due to the definition of conditional probabilities and the 235

second equation holds due to the law of total probability. In both Equations (4) and (5), the 236

probability P(X ∈ B | Z = 1) has a representation as an integral on the domain B, for any 237

cuboidal set B ⊂ Rd. Consequently, we can assume that the integrands coincide, i.e., we get 238

f c(x) =
1

P(Z = 1)
P(Z = 1 | X = x) f f(x) for each x ∈ Rd.

Therefore, we immediately get a formula for the separation probability P(Z = 1 | X = x), 239

i.e., we get 240

P(Z = 1 | X = x) = P(Z = 1)
f c(x)
f f(x)

for each x ∈ Rd.

Now, comparing the right-hand side of this equation with the right-hand side of Equation 241

(1), and taking Equation (3) into account, we get that T(x) ≈ P(Z = 1 | X = x) for each 242

x ∈ Rd. In other words, the value T(x) of the Tromp function as defined in Equation (1) 243

can be interpreted as the separation probability. 244

Note that the computational formula given in Equation (1) requires number-weighted 245

probability densities f c and f f. However, some measurement techniques yield so-called 246

mass-weighted probability densities of descriptor vectors. In such a scenario it is a common 247

approach to determine mass-weighted multivariate Tromp functions which are defined 248

by a (scaled) fraction of mass-weighted probability densities. We now show that such 249

mass-weighted Tromp functions approximately coincide with the number-weighted Tromp 250

function given in Equation (1) and, consequently, can also be interpreted as separation 251

probability. 252

Therefore, let m : Rd → [0, ∞) be a function which maps a descriptor vector x 253

of particles onto their mass m(x), see e.g. [21]. Then, the mass-weighted probability 254

densities f f
m, f c

m : Rd → [0, ∞) of descriptor vectors of particles in the feed and concentrate, 255

respectively, are given by 256

f f
m(x) =

f f(x)m(x)∫
Rd f f(y)m(y)dy

and f c
m(x) =

f c(x)m(x)∫
Rd f c(y)m(y)dy

, (6)

for each x ∈ Rd assuming that
∫
Rd f f(y)m(y)dy and

∫
Rd f c(y)m(y)dy are finite positive 257

numbers, respectively. Furthermore, the mass-weighted multivariate Tromp function 258

Tm : Rd → [0, 1] of a separation process is given by 259

Tm(x) =


mc
mf

f c
m(x)

f f
m(x)

, if f f
m(x) > 0,

0, if f f
m(x) = 0,

(7)

for each x ∈ Rd, where mc/mf is the yield (i.e., the total mass mc of particles in the 260

concentrate divided by the total mass mf of particles in the feed). 261

The Tromp functions T and Tm given in Equations (1) and (7), respectively, take on 262

similar values , i.e., it holds that Tm(x) ≈ T(x) for each x ∈ Rd. Indeed, inserting the 263
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definitions of the mass-weighted probability densities f f
m and f c

m given in Equation (6) into 264

Equation (7), we get that 265

Tm(x) =
mc

mf

∫
Rd m(x) f f(x)dx∫
Rd m(x) f c(x)dx

f c(x)
f f(x)

for each x ∈ Rd.

Note that the total mass mf of particles in the feed can be approximated by the number of par- 266

ticles nf times the expected mass of particles in the feed which is given by
∫
Rd m(x) f f(x)dx, 267

i.e., mf ≈ nf
∫
Rd m(x) f f(x)dx. Analogously, we get that mc ≈ nc

∫
Rd m(x) f c(x)dx. Insert- 268

ing these expressions for mf and mc into Equation (8) we obtain that 269

Tm(x) ≈
nc
∫
Rd m(x) f c(x)dx

nf
∫
Rd m(x) f f(x)dx

∫
Rd m(x) f f(x)dx∫
Rd m(x) f c(x)dx

f c(x)
f f(x)

=
nc

nf

f c(x)
f f(x)

= T(x), (8)

for each x ∈ Rd. 270

2.4.2. Reconstructing the density of descriptor vectors for particles in the feed 271

The computation of Tromp functions as quotients of probability densities by means 272

of Equations (1) or (7) is often problematic because we have to ensure that this function 273

only takes values between zero and one. When computing Tromp functions via quotients, 274

numerical instabilities can occur which can cause a Tromp function to take values greater 275

than one. This is due to a Tromp function being rather sensitive to denominator values 276

which are close to zero, e.g., when there are relatively few particles with certain descriptor 277

vectors within the feed, yet such particles occur enriched within the concentrate. In addition, 278

it should be noted that the image measurements of feed, concentrate and tailings are only a 279

statistically representative sample for the corresponding particle systems. More precisely, 280

in theory the union set of particle descriptors corresponding to all particles within the 281

concentrate and tailings should be equal to the set of particle descriptors associated with 282

feed particles. However, in image data solely small traces of feed/concentrate/tailings 283

particles are observed such that the validity of this equality can be violated. 284

In order to avoid this issue, it is useful to have in mind that the probability density of 285

descriptor vectors of particles in the feed can be considered to be a convex combination of 286

the probability densities f c and f t [15]. Namely, the probability density f f can be given by 287

f f(x) = λ f c(x) + (1− λ) f t(x), (9)

for all x ∈ Rd with some mixing parameter λ ∈ [0, 1], which describes the ratio of particles 288

in the concentrate and tailings. In case of number-weighted probability densities, the 289

mixing parameter λ is given by 290

λ =
nc

nf
. (10)

In case of mass-weighted probability densities, this parameter corresponds to the yield 291

given by the weighting constant in Equation (7). 292

Using Equation (9), the Tromp function given in Equation (1) can be written as 293

T(x) =

{
λ · f c(x)

λ f c(x)+(1−λ) f t(x) , if λ f c(x) + (1− λ) f t(x) > 0,

0, if λ f c(x) + (1− λ) f t(x) = 0,
(11)

for all x ∈ Rd. The representation of Tromp functions by Equation (11) has several ad- 294

vantages, because T(x) can then be computed without information regarding particles in 295

the feed. It is enough to obtain image measurements of the concentrate and the tailings. 296

Moreover, using Equation (11), the Tromp function takes values between zero and one and 297

its computation is numerically stable, in comparison to the computation of Tromp functions 298



9

by means of Equation (1). This is due to the replacement of the critical denominator in 299

Equation (1) by the robust reconstructed probability density f f given in Equation (9). 300

2.4.3. Computation of Tromp functions for partially available separated fractions 301

Tromp functions can be computed by means of Equation (11) if image measurements 302

are available for the concentrate and tailings. However, in practice, MLA measurements of 303

concentrate or tailings are often unavailable or incomplete. For example, in the flotation- 304

based separation process described in Section 2.2 (and analyzed in Section 3.2), the problem 305

arises that the concentrate consists of several fractions of concentrates. Thus, to compute 306

the Tromp function for the complete concentrate (i.e., the union of all single concentrate 307

fractions), all concentrate fractions must be mixed in the measurement process to obtain 308

a single measured fraction for the concentrate. This would lead to a loss of information 309

regarding the individual concentrate fractions. Alternatively, the probability densities of 310

the descriptor vectors of particles in the complete concentrate could be computed as a 311

convex combination of the probability densities of the descriptor vectors of particles in the 312

individual concentrates. But, this method would be rather time consuming because for an 313

increasing number of output fractions, the effort required for MLA measurements and the 314

estimation procedure of the probability densities of particle descriptors for each individual 315

concentrate increases significantly. 316

Therefore, we present an approach to compute Tromp functions when no measure- 317

ments are available for some of the separated fractions by solving a minimization problem. 318

In particular, we consider the case when image measurements are available only for feed 319

and tailings, using the probability densities f t and f f instead of f c and f t. To redeem the 320

numerical issues, which can occur when estimating the probability density f f from image 321

measurements as described in Section 2.4.2, we exploit the fact that f f can be expressed as 322

a convex combination of f c and f t, where we replace the (unknown) probability density 323

f c of descriptor vectors associated with particles in the complete concentrate by some 324

parametric approximation f̃ c : Rd → [0, ∞). More precisely, we assume that f̃ c is a member 325

of a parametric family { fθ : θ ∈ Θ} of multivariate probability densities, e.g., the density 326

of a multivariate normal distribution or a copula-based distribution model as described 327

in Section 2.5, where Θ ⊂ Rd′ denotes the set of admissible parameters for some integer 328

d′ ≥ 1. Then, f̃ c can be determined by solving the following minimization problem: 329

f̃ c = arg min
θ∈Θ

∫
Rd
| f f(x)− (λ fθ(x) + (1− λ) f t(x))|dx, (12)

i.e., the function f̃ c : Rd → [0, ∞) minimizes the integral on the right-hand side of Equa- 330

tion (12). 331

Note that the number-weighted mixing parameter λ in Equation (12) cannot be com- 332

puted directly if there is no information on the concentrate available. Instead we can 333

determine λ by solving the equation 334

(1− λ) =
nt

nf
. (13)

We also remark that in case of using Equation (12) to obtain an approximation for f c and 335

then computing the Tromp function T utilizing Equation (11), T takes values between zero 336

and one by definition. 337

2.4.4. Restriction of Tromp functions 338

Formally, Tromp functions are defined for all d-dimensional descriptor vectors x ∈ 339

Rd, see Equations (1) and (11). However, for descriptor vectors x ∈ Rd such that the 340

corresponding particles are not (or only rarely) observed in the feed, i.e., for which the 341

value of f f(x) is equal or close to zero, the value of T(x) is not meaningful. Therefore, we 342

present a scheme that constrains the set of admissible particle descriptors for which we 343
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compute the separation probability T(x). More precisely, we compute the Tromp function 344

only for descriptor vectors belonging to the set A ⊂ Rd which is given by 345

A = {x ∈ Rd : f f(x) > ε}, (14)

where ε = inf
{

s ∈ [0, ∞) :
∫

x∈Rd : f f(x)≤s f f(x)dx ≥ q
}

for some q ∈ [0, 1]. Note that the 346

threshold q can be used to specify how likely it must be that particles with certain descriptor 347

vectors are observed in the feed for the Tromp function to provide sufficient information 348

about the separation probability of such particles. 349

2.5. Stochastic modeling of particle descriptor vectors 350

In the rest of this paper we mainly focus on the analysis and modeling of two- 351

dimensional particle descriptor vectors x ∈ R2. 352

For particles observed in a planar section of a three-dimensional particle system, it is 353

possible to compute various size and shape descriptors using the particle-wise segmentation 354

of 2D images obtained by MLA measurements within some sampling window W ⊂ Z2, 355

see Section 2.3. A question of particular interest is how such particle descriptors can be 356

exploited in order to study the influence of particle morphology on separation processes. 357

Therefore, in Section 2.5.1 we specify a pair of size and shape descriptors which can 358

be easily determined from planar cross sections of particles. Then, in Section 2.5.2, we 359

discuss methods for modeling the distribution of single particle descriptors with univariate 360

probability densities. The parametric copula-based procedure, which is used for modeling 361

the distribution of pairs of such descriptors, is explained in Section 2.5.3. By applying 362

the methods given in Sections 2.5.1-2.5.3 to image data acquired before and after the 363

application of a separation procedure, we can then determine bivariate Tromp functions 364

for characterizing the behavior of separation processes under consideration, see Section 3. 365

2.5.1. Size and shape descriptors 366

In order to characterize the size of a particle P′ ⊂ W ′ observed within the sampling 367

window W ′ ⊂ R2, we determine the area-equivalent diameter of P′ which is given by 368

dA(P′) = 2

√
A(P′)

π
, (15)

where A(P′) denotes the area of P′. Note that A(P′) is computed from image data by 369

counting the number of pixels belonging to the correspondingly discretized particle cross- 370

section P ⊂W. 371

Furthermore, we determine the so-called minimum and maximum Feret diameters 372

dmin(P′) and dmax(P′) of P′, by deploying the algorithm given in [22]. More precisely, 373

dmin(P′) and dmax(P′) are the smallest and largest edge lengths of a minimum rectangular 374

bounding box B(x∗, y∗, α∗, β∗, θ∗) of P′. Such a bounding box can be determined by solving 375

the minimization problem 376

(x∗, y∗, α∗, β∗, θ∗) = arg min
(x,y,α,β,θ)∈R4×[0,π),

0<α≤β,
P′⊂B(x,y,α,β,θ)

α · β, (16)

where B(x, y, α, β, θ) denotes a rectangle with edge lengths 0 < α ≤ β which is rotated by 377

θ ∈ [0, π) around its center (x, y) ∈ R2. Then, the minimum and maximum Feret diameters 378

of P′ are given by dmin(P′) = α∗ and dmax(P′) = β∗, respectively. This provides the aspect 379

ratio ψ(P′) of P′, which is given by 380

ψ(P′) =
dmin(P′)
dmax(P′)

. (17)
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Note that the aspect ratio ψ defined in Equation (17) is a shape descriptor which allows 381

to distinguish between elongated (ψ(P′) � 1) and non-elongated particles (ψ(P′) ≈ 1). 382

Analogously to the computation of the area of a particle cross-section from image data, 383

we compute the minimum and maximum Feret diameters dmin(P′) and dmax(P′) of P′ by 384

rescaling their values with the pixelsize. 385

2.5.2. Univariate stochastic modeling of single particle descriptors 386

By computing the size and shape descriptors introduced in Section 2.5.1 for all particles 387

P1, . . . , PN ⊂ W, we obtain a sample of particle descriptor vectors which characterizes the 388

particle system observed in the underlying image I : W → {0, 1, 2, . . .}. More precisely, we 389

determine the two-dimensional descriptor vectors x(1), . . . , x(N) ∈ R2, where the first entry 390

is the area-equivalent diameter and the second entry is the aspect ratio of the corresponding 391

particle, i.e., x(i) = (d(i)A , ψ(i)) for i = 1, . . . , N. 392

For each entry of the particle descriptor vectors we fit a univariate probability density 393

from a parametric family { fθ : θ ∈ Θ} of probability densities fθ : R→ [0, ∞) (e.g., the den- 394

sities of normal, log-normal, gamma, or beta distributions), where Θ is the set of admissible 395

parameters, see Table 1. The best fitting density and the corresponding parameters are 396

chosen by means of the maximum-likelihood method [23]. 397

Table 1. Parametric families of univariate distributions used in Section 3.1 for fitting the marginal
probability densities of the bivariate probability densities f f, f c and f t.

Parametric family Probability density

Normal fθ(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 , θ = (µ, σ) ∈ R× (0, ∞)

Log-normal fθ(x) = 1√
2πσ2x2

e−
(log(x)−log(µ))2

2σ2 1(0,∞)(x), θ = (µ, σ) ∈ R× (0, ∞)

Gamma fθ(x) = 1
bkΓ(k) xk−1e

(
− x

b

)
1(0,∞)(x), θ = (k, b) ∈ (0, ∞)2

Beta fθ(x) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1
1(0,1)(x), θ = (α, β) ∈ (0, ∞)2

In applications it might be not sufficient to only use parametric families of unimodal 398

probability densities, like those ones mentioned in Table 1. Instead, bimodal densities 399

might provide better fits, which can be achieved by considering convex combinations 400

fθ1,θ2 = w fθ1 + (1− w) fθ2 of unimodal probability densities fθ1 , fθ2 : R→ (0, ∞) for some 401

θ1, θ2 ∈ Θ, where w ∈ (0, 1) is some mixing parameter. However, this increases the number 402

of model parameters. In order to avoid making the model too complex, while increasing 403

the likelihood of the fitted distribution, the best fitting distribution is selected according to 404

the Akaike information criterion [24]. 405

2.5.3. Bivariate stochastic modeling of pairs of particle descriptors 406

The procedure for modeling the distribution of single particle descriptors as stated in 407

Section 2.5.2 does not capture information about the correlation between the descriptors. 408

Therefore, to get a more comprehensive probabilistic characterization of the observed 409

particle system, we fit a bivariate probability density to the sample of two-dimensional 410

descriptor vectors x(i) = (d(i)A , ψ(i)) for i = 1, . . . , N. For this, we use the fact that each 411

bivariate probability density f : R2 → [0, ∞) can be represented in the form 412

f (x) = f1(x1) f2(x2)c(F1(x1), F2(x2)) , (18)

for all x = (x1, x2) ∈ R2, where f1, f2 : R → [0, ∞) denote the (univariate) marginal 413

densities corresponding to f , i.e., f1(x1) =
∫
R f (x1, y2)dy2 and f2(x2) =

∫
R f (y1, x2)dy1 414

for all x1, x2 ∈ R. Moreover, F1, F2 : R → [0, 1] are the cumulative distribution functions 415

corresponding to f1 and f2, respectively, and c : [0, 1]2 → [0, ∞) is a bivariate copula density, 416
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i.e., a bivariate probability density with uniform marginal distributions on the unit interval 417

[0, 1], see e.g. [18]. 418

Analogously to the situation which has been discussed in Section 2.5.2 for the fitting 419

of univariate probability densities, in the literature various parametric families of bivariate 420

copula densities are considered. In the present paper, we focus on parametric families of 421

so-called Archimedean copulas, namely Clayton, Frank, Gumbel, and Joe copulas as well 422

as rotated versions of these copula families [18,26], see also Table 2. Then, by means of 423

maximum-likelihood estimation and using the Akaike information criterion, we determine 424

the best fitting bivariate probability density f : R2 → [0, ∞) for the sample x(i) = (d(i)A , ψ(i)) 425

with i = 1, . . . , N. See also [17,25], where this approach has been applied for parametric 426

stochastic modeling of similar types of particle-discrete image data. 427

Table 2. Parametric copula families used in Section 3.1 for fitting the bivariate densities f f, f c, and f t.

Parametric family Copula density

Clayton cθ(u1, u2) = (θ + 1)(u1u2)
−(θ−1)(u−θ

1 + u−θ
2 − 1)−

2θ+1
θ , θ ∈ (0, ∞)

Frank cθ(u1, u2) =
θ(1−e−θ)e−θ(u1+u2)

1−e−θ−(1−e−θu1 )(1−e−θu2 )
, θ ∈ (0, ∞)

Gumbel cθ(u1, u2) =
∂2

∂u1∂u2
e−((− log(u1))θ+(− log(u2))θ)

1
θ , θ ∈ (1, ∞)

3. Results 428

As already mentioned above, wettability properties of particles cannot be observed 429

in MLA data, but the effect of wettability on the separation behavior of particles can be 430

analyzed by comparing multivariate Tromp functions. In this section, bivariate Tromp 431

functions are computed in terms of two particle descriptors: the area-equivalent diameter 432

and the aspect ratio of particles, which can be determined from image data. More precisely, 433

we compute Tromp functions for the flotation-based separation process stated in Section 2.2, 434

which has been performed on two particle systems (spheres and fragments) with three 435

different levels of wettability. Recall that these wettability scenarios are denoted by C0, 436

C6, and C10, respectively. Overall, we analyze the separation process by computing and 437

analyzing Tromp functions for six different systems of glass particles, where we do not 438

have full information on the concentrate. Thus, in Section 3.1, we present the results 439

which have been obtained for fitting bivariate probability densities to various samples 440

of two-dimensional descriptor vectors of glass particles, exploiting the methods stated 441

in Sections 2.5.2 and 2.5.3. Then, in Section 3.2, we use the fitted probability densities to 442

compute and analyze the corresponding Tromp functions. 443

3.1. Fitted univariate and bivariate probability densities 444

Recall that by f f we denote the probability density of descriptor vectors of the glass 445

particles observed in the feed. Furthermore, the probability density of descriptor vectors 446

of particles in the concentrate for unesterified particles will be denoted by f c
C0

, and for the 447

differently modified particles by f c
C6

and f c
C10

. Analogously, let f t
C0

, f t
C6

and f t
C10

denote the 448

corresponding probability densities of particle descriptor vectors in the tailings. 449

Since for the separation experiments performed in the framework of this paper we do 450

not have full information about the complete concentrate, Tromp functions are computed 451

by means of the minimization procedure stated in Section 2.4.3. For this, we first fit the 452

probability densities f f, f t
C0

, f t
C6

, and f t
C10

of the area-equivalent diameter and aspect ratio 453

of particles observed in the image data for feed and tailings, where we use the parametric 454

(copula-based) distribution models as described in Section 2.5.3, see Tables 3 and 4. 455
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Table 3. Bivariate probability density f f fitted to samples of descriptor vectors from image data.
The subscript of the parameters indicates whether the parameter corresponds to the first or second
probability density of the mixture of univariate probability densities.

Type of
particles

Descriptor Parametric family of
distributions/copulas

Fitted parameter values

dA Log-normal-Log-normal mixture µ1 = 2.54, σ1 = 0.13, µ2 = 3.58, σ2 = 0.22, w = 0.25
Spheres ψ Normal-Normal mixture µ1 = 0.89, σ1 = 0.04, µ2 = 0.62, σ2 = 0.15, w = 0.70

(dA, ψ) Gumbel θ = 1.36

dA Log-normal-Log-normal mixture µ1 = 2.18, σ1 = 0.05, µ2 = 2.74, σ2 = 0.15, w = 0.31
Fragments ψ Normal-Normal mixture µ1 = 0.62, σ1 = 0.13, µ2 = 0.86, σ2 = 0.04, w = 0.89

(dA, ψ) Frank θ = 0.55

Table 4. Bivariate probability densities f t
C0

, f t
C6

and f t
C12

fitted to samples of descriptor vectors from
image data. The subscript of the parameters indicates whether the parameter corresponds to the first
or second probability density of the mixture of univariate probability densities.

Type of
particles

Esterifica-
tion

Descriptor Parametric family of
distributions/copulas

Parameter values

dA Gamma-Log-normal mixture k = 81.91, b = 0.03, µ = 3.51, σ = 0.25, w = 0.22
C0 ψ Normal-Normal mixture µ1 = 0.58, σ1 = 0.12, µ2 = 0.82, σ2 = 0.06, w = 0.71

(dA, ψ) Clayton θ = 0.09
dA Log-normal-Normal mixture µ1 = 0.24, σ2 = 3.11, µ2 = 5.62, σ2 = 1.67, w = 0.93

Spheres C6 ψ Normal-Normal mixture µ1 = 0.77, σ2 = 0.09, µ2 = 0.54, σ2 = 0.10, w = 0.44
(dA, ψ) Clayton θ = 0.07

dA Log-normal-Log-normal mixture µ1 = 0.22, σ2 = 2.96, µ2 = 0.26, σ2 = 5.64, w = 0.84
C10 ψ Beta α = 7.23, β = 4.47

(dA, ψ) Frank θ = 0.99

dA Log-normal-Log-normal mixture µ1 = 2.51, σ1 = 0.14, µ2 = 3.88, σ2 = 0.27, w = 0.32
C0 ψ Normal-Normal mixture µ1 = 0.76, σ1 = 0.09, µ2 = 0.55, σ2 = 0.11, w = 0.38

(dA, ψ) Frank θ = 0.82
dA Log-normal-Log-normal mixture µ1 = 2.43, σ1 = 0.12, µ2 = 3.85, σ2 = 0.27, w = 0.28

Fragments C6 ψ Normal-Normal mixture µ1 = 0.78, σ1 = 0.08, µ2 = 0.55, σ2 = 0.11, w = 0.34
(dA, ψ) Frank θ = 0.78

dA Log-normal-Log-normal mixture µ1 = 4.00, σ1 = 0.26, µ2 = 2.58, σ2 = 0.15, w = 0.62
C10 ψ Normal-Normal mixture µ1 = 0.75, σ1 = 0.09, µ2 = 0.52, σ2 = 0.10, w = 0.43

(dA, ψ) Frank θ = 1.00

Recall that, as stated in Section 2.4.2, the probability density f f can be given by 456

f f(dA, ψ) = λi f c
Ci
(dA, ψ) + (1− λi) f t

Ci
(dA, ψ), (19)

for all pairs (dA, ψ) ∈ [0, ∞) × [0, 1] and for each i ∈ {0, 6, 10}, where λi is the mixing 457

parameter corresponding to the wettability scenario Ci, given as the number of particles in 458

the complete concentrate divided by the number of particles in the feed. The numbers of 459

particles observed in the image data of feed and tailings for glass spheres and fragments 460

and for the wettability scenarios C0, C6 and C10 are presented in Table 5, where the number 461

of particles in the complete concentrate has been determined by means of Equation (13). 462

Table 5. Number of glass particles in feed, tailings and complete concentrate

Feed Tailings Concentrate
Esterification C0 C6 C10 C0 C6 C10

Spheres 69762 3492 1371 486 66270 68391 69276
Fragments 19851 4275 3507 1417 15576 16344 18434
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From a formal point of view, the probability densities f f, f t
C0

, f t
C6

and f t
C10

could be 463

computed first from image data and then used to approximately obtain f c
C0

, f c
C6

, and f c
C10

464

by means of Equation (12). But, this would have the disadvantage that the validity of 465

Equation (19) would be violated in the sense that, in general, its right-hand side and, 466

therefore, also its left-hand side would depend on i ∈ {0, 6, 10}. 467

To overcome this issue, we only compute the density f c
C0

as suggested in Section 2.4.3 468

by solving the minimization problem stated in Equation (12), see Table 6. For this, we use 469

the densities f f and f t
C0

which are obtained from fitting parametric models to the descriptor 470

vectors extracted from image data for feed and tailings, respectively, where we assume that 471

the objective function of the minimization problem considered in Equation (12) is from the 472

same family of parametric distributions as the density f f fitted from image data. 473

Table 6. Bivariate probability density f c
C0

computed by solving the optimization problem given in
Equation (12). The subscript of the parameters indicates whether the parameter corresponds to the
first or second probability density of the mixture of univariate probability densities.

Glass
particles

Descriptors Family of distributions / Copula
families

Parameter values

dA Log-normal-Log-normal mixture µ1 = 2.55, σ1 = 0.13, µ2 = 3.58, σ2 = 0.22, w = 0.25
Spheres ψ Normal-Normal mixture µ1 = 0.89, σ1 = 0.03, µ2 = 0.62, σ2 = 0.14, w = 0.73

(dA, ψ) Gumbel θ = 1.38

dA Log-normal-Log-normal mixture µ1 = 2.19, σ1 = 0.05, µ2 = 2.74, σ2 = 0.12, w = 0.37
Fragments ψ Normal-Normal mixture µ1 = 0.62, σ1 = 0.12, µ2 = 0.86, σ2 = 0.04, w = 0.89

(dA, ψ) Frank θ = 1.00

Afterwards we re-compute f f for the experiment C0 with unesterified particles by 474

means of Equation (19) for i = 0. The probability density f f obtained in this way is then 475

used to determine f c
C6

and f c
C10

by solving the equation 476

λC0 f c
C0
(dA, ψ) + (1− λC0) f t

C0
(dA, ψ) = λCi f c

Ci
(dA, ψ) + (1− λCi ) f t

Ci
(dA, ψ), (20)

for all pairs (dA, ψ) ∈ [0, ∞)× [0, 1] and for each i ∈ {6, 10}. Thus, the probability densities 477

f c
C6

and f c
C10

are given by 478

f c
Ci
(dA, ψ) =

λC0 f c
C0
(dA, ψ) + (1− λC0) f t

C0
(dA, ψ)− (1− λCi ) f t

Ci
(dA, ψ)

λCi

, (21)

for all (dA, ψ) ∈ [0, ∞)× [0, 1] and i ∈ {6, 10}. 479

The algorithm stated above is motivated by the fact that for each of the two mor- 480

phological particle scenarios considered in this paper (i.e., for spheres and fragments, 481

respectively) the same feed material is used for the thee wettability scenarios C0, C6, and 482

C10. Furthermore, the reason for re-computing the density f f for unesterified particles by 483

means of Equation (19) is that in this case the largest number of glass particles has been 484

observed in image measurements for the tailings, see Table 5. 485

In addition, all fitted probability densities are truncated such that only particles with 486

area-equivalent diameter and aspect ratio above and below certain thresholds are taken 487

into consideration. In this way, we improve the goodness of fit of the parametric models 488

described above. In particular, we truncate the probability densities of the area-equivalent 489

diameter of glass spheres to the interval [2, 10]µm, and those of glass fragments to [2, 8]µm, 490

where the lower threshold results from the resolution limit of MLA measurements and only 491

very few outliers of particles of both particle systems are observed with an area-equivalent 492

diameter larger than the corresponding upper threshold. Analogously, we truncate the 493

probability densities of the aspect ratio for both particle systems to the interval [0.2, 1], since 494

no particles with aspect ratio smaller than 0.2 are observed in the MLA measurements. 495



15

3.2. Computed bivariate Tromp functions 496

Using the probability densities stated in Section 3.1, bivariate Tromp functions are 497

computed by means of Equation (11). In Figure 4, the Tromp functions are visualized 498

which have been obtained for spherical (upper row) and fractured glass particles (lower 499

row), respectively, and for unesterified (left column) as well as for esterified particles of 500

the wettability scenarios C6 (middle column) and C10 (right column). Bright yellow color 501

indicates that particles in the feed with corresponding area-equivalent diameter and aspect 502

ratio are more likely to be separated into the concentrate, while dark blue color indicates 503

that a particle with the corresponding descriptor vector is separated into the tailings. 504

Note that in order to obtain a more meaningful interpretation for the probability 505

that a particle is separated into the concentrate or the tailings, we computed the Tromp 506

functions only for pairs (dA, ψ) of descriptor vectors belonging to the set A ⊂ R2 given in 507

Equation (14), where we put q = 0.01, i.e., we computed the Tromp functions only for pairs 508

of descriptor vectors corresponding to particles which are likely to be observed in the feed. 509

The set of pairs (dA, ψ) corresponding to particles which are not observed with sufficiently 510

high frequency in the feed, i.e., (dA, ψ) 6∈ A, are indicated in white color in Figure 4. 511
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Figure 4. Bivariate Tromp functions for spherical (upper row) and fragmented (lower row) glass
particles, and for unesterifed particles (left column) as well as for particles with differently modified
levels of hydrophobicity by esterification corresponding to the wettability scenarios C6 (middle
column) and C10 (right column).

A quantitative analysis of the changes of Tromp functions shown in Figure 4, when 512

passing from left to right columns, is performed by computing the point-wise differences 513

between the values of the Tromp functions obtained for the experiments with esterified 514

particles and those obtained for unesterified particles. More precisely, for each particle sys- 515

tem (spheres, fragments), from the Tromp functions obtained for the wettability scenarios 516

C6 and C10, respectively, the Tromp function obtained for C0 is subtracted, see Figure 5. 517

Furthermore, the Tromp functions shown in Figure 4 can be used in order to analyze 518

the separation uncertainty of the flotation-based separation process considered in the 519

present paper. For this purpose, for separation processes producing two output fractions, 520

the Shannon entropy function H : A→ [0, 1] is considered [13,29], which is given by 521

H(dA, ψ) = −
(

T(dA, ψ) log2(T(dA, ψ)) + Tt(dA, ψ) log2(T
t(dA, ψ))

)
, (22)

for all pairs (dA, ψ) ∈ A, where log2 denotes the logarithm to the basis 2 (i.e., s = 2log2(s) for 522

all s > 0), and Tt(dA, ψ) = 1− T(dA, ψ) can be interpreted as the probability that a particle 523

with particle descriptor vector (dA, ψ) ∈ A is separated into the tailings, see Figure 6. 524
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Figure 5. Point-wise differences between Tromp functions for spherical (upper row) and fragmented
(lower row) particles, where the Tromp functions obtained for the wettability scenarios C6 (left
column) and C10 (right column) are subtracted from the Tromp function obtained for C0.

area-equivalent diameter dA [µm]

a
sp
ec
t
ra
ti
o
ψ

[
]

area-equivalent diameter dA [µm]

as
p
ec
t
ra
ti
o
ψ

[
]

area-equivalent diameter dA [µm]
as
p
ec
t
ra
ti
o
ψ

[
]

area-equivalent diameter dA [µm]

a
sp
ec
t
ra
ti
o
ψ

[
]

area-equivalent diameter dA [µm]

as
p
ec
t
ra
ti
o
ψ

[
]

area-equivalent diameter dA [µm]

as
p
ec
t
ra
ti
o
ψ

[
]

Figure 6. Bivariate entropy functions for spherical (upper row) and fragmented (lower row) glass
particles, and for unesterifed particles (left column) as well as for particles with differently modified
levels of hydrophobicity by esterification corresponding to the wettability scenarios C6 (middle
column) and C10 (right column).

The values H(dA, ψ) of the entropy function given in Equation (22) can be interpreted 525

as follows. For pairs (dA, ψ) of descriptors for which H(dA, ψ) is close to zero, there is a 526

low uncertainty in the separation process, i.e., particles with such descriptor vectors have a 527

separation probability close to zero or one, which means that such particles are separated 528

with high probability, either into the concentrate or the tailings. On the other hand, if 529

H(dA, ψ) is close to one, the separation probability is close to 0.5 and thus, it is uncertain 530

whether such a particle is separated into the concentrate or the tailings. 531

Moreover, the mean entropy given by H =
∫

A H(dA, ψ)d(dA, ψ) can be used to 532

compare the uncertainty of different separation experiments for a given feed composition 533

(e.g. spherical or fragmented glass particles with magnetite), see Table 7. In this way, it 534

is possible to analyze the influence of changes in particle wettability on the separation 535

uncertainty. 536
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Table 7. Mean entropy of the flotation-based separation process for various experimental setups,
which have been performed for two different particle systems (spheres and fragments) with differently
modified wettability scenarios (C0,C6 and C10).

Wettability scenario Spheres Fragments

C0 0.61 0.54
C6 0.36 0.63
C10 0.28 0.51

4. Discussion 537

As shown in the previous section, the differently shaped white areas in the upper 538

and lower rows of Figure 4 indicate significant differences in size and shape of the two 539

systems of glass particles. The spheres have larger area-equivalent diameters and, not 540

surprisingly, larger aspect ratios than the fragments. Furthermore, it has been shown that 541

for unesterified glass spheres (C0) the area-equivalent diameter does not influence the 542

separation behavior significantly and mainly the aspect ratio is the dominating particle 543

descriptor since all size fractions are recovered in the concentrate as long as the particles 544

have an aspect ratio of around 0.8− 1.0. If the wettability is now modified and the spheres 545

are strongly hydrophobic (C10), the significance of the individual particle descriptors of 546

size and shape have less impact on the separation behavior, since most of the particles 547

(except for particles with an area-equivalent diameter of about 6− 8 µm and an aspect ratio 548

of about 0.4− 0.9) are recovered in the concentrate and the wettability is the dominating 549

separation property. In the case of glass fragments a different outcome has been observed. 550

The results of the Tromp functions for fragments with wettability states of C0 and C6 show 551

that mostly very fine particles with varying aspect ratios are recovered in the concentrate. 552

An increase in hydrophobicity (C10) results in higher probabilities to recover particles with 553

slightly larger area-equivalent diameter, while the aspect ratio still shows no significant 554

influence. 555

Looking at the point-wise differences of the Tromp functions for esterified particles in 556

comparison to the Tromp functions for unesterified particles in Figure 5, the changes of 557

Tromp functions when passing to the wettability scenario C10 become even more apparent. 558

While the point-wise differences of Tromp functions for spherical particles show larger 559

positive and negative variations, the values of Tromp functions for glass fragments change 560

only slightly when passing from unesterified particles to esterified particles of wettability 561

scenario C6. On the other hand, the Tromp functions for fragments change much more 562

when passing to C10, in particular for particles with a larger area-equivalent diameter. Note 563

that when the particles become more hydrophobic, fewer glass particles are observed in 564

the tailings, see Table 5, i.e., more glass particles are separated into the concentrate. 565

For spherical particles, the separation uncertainty expressed by the entropy functions 566

in the upper rows of Figure 6 is close to zero for particles with large aspect ratio (ψ > 0.8), 567

independent of their area-equivalent diameter and for all wetting scenarios. For particles 568

with smaller aspect ratio, the separation uncertainty decreases with increasing hydropho- 569

bicity of the particles. The values of mean entropy given in the middle column of Table 7 570

for spheres confirm the trend of globally decreasing separation uncertainty with increasing 571

hydrophobicity of spherical particles. In contrast to this, the mean separation uncertainty 572

does not change significantly for fragmented glass particles when passing from unesterified 573

particles to the wettability scenarios C6 and C10, see Table 7. On the other hand, we observe 574

that the entropy values H(dA, ψ) for given pairs (dA, ψ) of fragment descriptors differ 575

locally for different wettability scenarios, see the lower row of Figure 6. For unesterified 576

particles with area-equivalent diameters larger than 4 µm the entropy values H(dA, ψ) are 577

small, while for the wettability scenarios C6 and C10 the entropy values H(dA, ψ) are larger 578

for particles with the same sizes, i.e., the separation uncertainty increases. Thus, it is not 579

sufficient to limit ourselves to the investigation of mean entropy when analyzing the sepa- 580

ration uncertainty. Furthermore, the different behavior of the separation uncertainty of the 581
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two particle systems (spheres, fragments) shows that the separation process is influenced 582

differently by the wettability for different particle morphologies. 583

It should be noted that the particle descriptors being used in this study may not 584

accurately represent the true 3D structure of the glass particles due to certain effects being 585

not observable in 2D image data obtained by MLA. For example, a reason for this can be 586

that the aspect ratio of some particles can vary greatly depending on the angle of the image 587

capture, resulting in a potential bias for aspect ratio distributions determined from 2D data. 588

However, despite this limitation, these descriptors still allow some level of quantitative 589

structural evaluation of the impact of particle morphology and wettability on separation 590

behavior. 591

Furthermore, the results obtained by the optimization procedure proposed in Sec- 592

tion 2.4.3 depend on the accuracy of the probability densities f f, f t
C0

, f t
C6

and f t
C10

computed 593

from image data of the feed and tailings. Since we compute Tromp functions for particles 594

which are mainly enriched into the concentrate, this suggests that the accuracy of the com- 595

puted Tromp functions might be further improved by performing image measurements of 596

feed and concentrate instead of feed and tailings. In this way, we could obtain a better fit 597

of the required probability densities computed directly from image data and, thus, more 598

accurate results for corresponding Tromp functions, while maintaining the advantages of 599

the optimization procedure of Section 2.4.3 for reducing the measurement effort. 600

5. Conclusions 601

The analysis of bivariate Tromp functions performed in the present paper provides 602

an innovative approach for the multidimensional evaluation of the combined influence 603

of factors like particle wettability, morphology and size on the flotation-based separation 604

behavior. We proposed a parametric modeling approach in order to determine the Tromp 605

functions from image data, which have been gained by scanning electron microscopy 606

measurements for the feed and separated fractions. The underlying bivariate probability 607

densities of particle descriptor vectors have been fitted to data by utilizing Archimedean 608

copulas. We extended this modeling approach by an optimization routine in order to 609

analyze the behavior of separation processes also in the case when image measurements are 610

not available for all separated fractions. Furthermore, the Tromp functions have been used 611

in order to analyze the separation uncertainty of the flotation-based separation process, 612

where the Shannon entropy function is considered. 613
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