

Glaucocline as a potential paleo-seawater $\delta^{41}\text{K}$ proxy archive – Assessing the impacts of sedimentary facies, composition, microstructure and post-depositional alteration

Andre Baldermann^{1*}, Julius Baumhakel², Ralf Ditscherlein³, Juraj Farkaš⁴, Orkun Furat^{5,6},
asmin M. Hiller⁴, Matthias Neumann², Stefan C. Löhr⁴, Urs A. Peuker³, Volker Schmidt⁵ and
Xin-Yuan Zheng⁷

¹Institute of Applied Geosciences, Graz University of Technology & NAWI Graz Geocenter, Austria;
baldermann@tugraz.at

10 ²Institute of Statistics, Graz University of Technology, Austria; baumhakel@tugraz.at;
11 neumann@tugraz.at

12 ³Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität
13 Bergakademie Freiberg, Germany; ralf.ditscherlein@mvtat.tu-freiberg.de; urs.peuker@mvtat.tu-
14 freiberg.de

15 ⁴Metal Isotope Group, Discipline of Earth Sciences, School of Physics, Chemistry and Earth Sciences,
16 Adelaide University, Australia; juraj.farkas@adelaide.edu.au; stefan.loehr@adelaide.edu.au;
17 jasmin.hiller@mymail.unisa.edu.au

¹⁸ ⁵Institute of Stochastics, Ulm University, Germany; volker.schmidt@uni-ulm.de

19 ⁶SDU Applied AI and Data Science Unit, University of Southern Denmark, Denmark;
20 ofu@mmdi.sdu.dk

21 ⁷Department of Earth and Environmental Sciences, University of Minnesota–Twin Cities, USA;
22 zhengxy@umn.edu

23

24 *Corresponding author: Andre Baldermann

26 Keywords: Glauconite; Stable K isotopes; Reverse weathering; Marine proxy signatures; Paleo-
27 seawater composition; Diagenesis

28 **Abstract**

29 The stable potassium isotopic composition ($\delta^{41}\text{K}$) of seawater can provide important hints on
30 present and past oceanic K cycling, budgets and fluxes, but suitable marine archives recording
31 the pristine seawater $\delta^{41}\text{K}$ signature are scarce or prone to post-depositional alteration, such as
32 carbonates and evaporites. Glauconite is a promising alternative archive considering that this
33 authigenic green clay mineral is abundant in the rock record, can now be accurately dated using
34 both bulk fractions and single-grain approaches and forms rapidly during early diagenesis with
35 K^+ sourced primarily from seawater or marine pore fluids. We test the robustness of glauconite
36 as an archive for the $\delta^{41}\text{K}$ composition of past seawater against the effects of sedimentary facies,
37 presence of detrital and diagenetic clay mineral inclusions, glauconite maturity, composition
38 and micro-structural properties and degree of weathering of different glauconite fractions. Our
39 assessment integrates X-ray computed tomography coupled with mathematical image analysis,
40 electron microprobe and $\delta^{41}\text{K}$ isotope analyses. The studied glauconites were collected from
41 the Langenstein section of Cretaceous age (~121.5 to ~96.1 Ma) in Germany, complemented
42 by coeval GL-O glauconite pellets (~100 to ~95 Ma) from Normandy in France. Although the
43 glauconites (sphericity: 0.74 ± 0.05) exhibit considerably different 1) maturity degrees (slightly
44 evolved to highly evolved; 4.1 to 9.2 wt.% K_2O), 2) total porosities (2 ± 1 to 10 ± 8 vol.%), 3)
45 mean pore volumes (16 ± 11 to $35 \pm 51 \mu\text{m}^3$), 4) oxidized surface thickness (4 to 10 μm) and
46 5) clay mineral impurities (up to 12.5 wt.%), the $\delta^{41}\text{K}$ composition of all glauconite samples
47 from Langenstein is remarkably uniform at $-0.67\text{\textperthousand} \pm 0.04\text{\textperthousand}$ ($n = 10$) and also overlaps with
48 the GL-O reference material ($-0.68\text{\textperthousand} \pm 0.03\text{\textperthousand}$, $n = 7$). This $\delta^{41}\text{K}$ signature is isotopically lighter
49 than detrital illite and pore-filling burial illite-smectite ($-0.50\text{\textperthousand} \pm 0.04\text{\textperthousand}$, $n = 3$), implying
50 preservation of a primary seawater-derived signal. Using the recently constrained K isotope
51 fractionation factor of 0.95‰ (Löhr et al., 2026a) our results suggest that $\delta^{41}\text{K}$ of Cretaceous
52 seawater was ~0.2 to 0.3‰ higher than that of modern seawater, implying more intense reverse

53 weathering under Cretaceous greenhouse conditions. Overall, we conclude that well-preserved
54 glauconite grains are a promising new archive for reconstructing the evolution of seawater $\delta^{41}\text{K}$.

55

56 **1. Introduction**

57 Understanding Earth's systems and ocean chemistry evolution through geological time largely
58 relies on the interpretation of proxy signals (trace elements, isotopes, etc.) recorded in marine
59 sedimentary archives (e.g., Richter et al., 1992; Paytan et al., 1998; Montagna et al., 2008;
60 Wanamaker Jr. et al., 2011; Ellegaard et al., 2020; Steffen et al., 2020; Martin et al., 2022;
61 Lyons et al., 2024). However, many proxies are prone to diagenetic alteration, such as $\delta^{18}\text{O}$,
62 $\delta^{13}\text{C}$, $\delta^{34}\text{S}$ and clumped isotope (Δ_{47}) records in calcareous bio-minerals or marine limestones
63 (e.g., Swart, 2015; Winkelstein and Lohmann, 2016; Fichtner et al., 2017), fluid inclusions in
64 evaporites (e.g., Goldstein, 2001; Mernagh, 2015) and trace element signatures (Sr, Ba, Mn, Fe,
65 etc.) obtained from bulk marine sediment analysis or sequential leachates (e.g., Brand and
66 Veizer, 1980; Banner, 1995; Abanda and Hannigan, 2006; Rafiei et al., 2023). These key
67 uncertainties in proxy records and their preservation challenge the reconstruction of past ocean
68 chemistry and quantification of marine element budgets through time (e.g., Haley et al., 2017;
69 Abbott et al., 2019; Abbott et al., 2022; Löhr et al., 2026b; and references therein).

70 Variations in the rates of forward silicate weathering (capturing atmospheric CO_2) and reverse
71 weathering (clay mineral authigenesis, which liberates CO_2) serve as important controls on
72 Earth's carbon cycle and thus climate evolution (e.g., Crowley and Berner, 2001; Berner and
73 Berner, 2012; Arvidson et al., 2013; Isson and Planavsky, 2018; Krissansen-Totton and Catling,
74 2020; Isson and Rauzi, 2024). Silicate weathering and clay mineral neo-formation processes
75 also influence the chemical composition of seawater, such as pH, alkalinity and dissolved alkali
76 and alkaline earth metal concentrations (e.g., Farkaš et al., 2024). The (bio)geochemical cycle
77 of K (concentration: 390 ppm; residence time: ~ 11 Ma) is closely related to silicate mineral
78 reactions (rather than carbonates) compared to all other major seawater cations, and the

79 precipitation of marine authigenic clay minerals can produce large K isotope fractionation (e.g.,
80 Li et al., 2019; Teng et al., 2020; Wang et al., 2020; Zheng et al., 2022a). Thus, the temporal
81 variations of the stable K isotope composition ($^{41}\text{K}/^{39}\text{K}$ or $\delta^{41}\text{K}$) of seawater can most likely
82 provide important information on changes of ocean chemistry, if a suitable marine archive for
83 reconstructing paleo-seawater $\delta^{41}\text{K}$ is found (e.g., Santiago Ramos et al., 2018; Li et al., 2019;
84 Zheng et al., 2022a).

85 However, marine biogenic carbonates (e.g., Li et al., 2021a) and evaporites (e.g., Warren, 2010)
86 have proven to be problematic archives for past seawater $\delta^{41}\text{K}$ values. This is mainly due to the
87 incapability of the large K^+ ion to substitute into the carbonate crystal lattice, in addition to
88 generally unconstrained vital effects in K-poor bio-carbonates, as well as restricted stratigraphic
89 abundance of K-rich salts (Löhr et al., 2026a). In this respect, glauconite, $\text{K}(\text{Fe}^{3+/2+},\text{Al},\text{Mg})_{\Sigma \sim 2}$
90 $[\text{Al}_x\text{Si}_{4-x}]\text{O}_{10}(\text{OH})_2$, can potentially act as a recorder of the past seawater $\delta^{41}\text{K}$ composition,
91 because this authigenic mineral phase is K-rich, widespread and easy to recognize in marine
92 sedimentary archives due to its large grain size, green color and favorable magnetic properties
93 that allow a quantitative extraction from the bulk sediment. In addition, glauconite pellets form
94 relatively rapidly ($\sim 10^3$ - 10^6 Ma) at the sediment-seawater interface during reverse weathering
95 processes and can be directly dated via $^{40}\text{Ar}/^{39}\text{Ar}$, K-Ar, Rb/Sr and Ca/K geochronometers
96 (Odin and Matter, 1981; Amorosi, 2012; Banerjee et al., 2016; Rafiei et al., 2023; Baldermann
97 et al., 2022; Scheiblhofer et al., 2022; Rubio and López-Pérez, 2024; Baldermann et al., 2025;
98 Chakraborty et al., 2025; Löhr et al., 2025).

99 However, before this potentially new and yet untapped seawater $\delta^{41}\text{K}$ proxy archive can be
100 applied across geological time (e.g., Banerjee et al., 2016; Rubio and López-Pérez, 2024;
101 Baldermann et al., 2025), its robustness has to be tested against the effects of sedimentary
102 facies, maturity degree, mineralogy, chemical composition, micro-structural characteristics and
103 post-depositional alteration. Here, we use Cretaceous-aged glauconite samples (bulk and sub-
104 fractions) from the well-characterized and precisely dated Langenstein section in Germany and

105 coeval glauconite pellets (the international GL-O reference material) from Normandy in France
106 (e.g., Wilmsen et al., 2005; Baldermann et al., 2017; Baldermann et al., 2022; Scheiblhofer et
107 al., 2022; Löhr et al., 2025) to evaluate the robustness of ancient glauconites as an archive for
108 reconstructing past seawater $\delta^{41}\text{K}$ composition. Based on our glauconite $\delta^{41}\text{K}$ isotope datasets
109 we reconstruct the seawater $\delta^{41}\text{K}$ composition of the late Cretaceous ocean (Early to Middle
110 Cenomanian seawater) and distinguish the marine authigenic green clay $\delta^{41}\text{K}$ signature from
111 the underlying ('background') K isotope signals from terrestrial illite-bearing deposits and/or
112 later diagenetic burial illite-smectite overprints recorded at Langenstein.

113

114 **2. Materials and methods**

115 *2.1 Glauconite sampling, bulk grain separation and single grain collection*

116 Glauconite-bearing sandstone and limestone units (used here to evaluate the glauconite-based
117 marine $\delta^{41}\text{K}$ proxy) were sampled for this study from the well-characterized Langenstein
118 section (e.g., Wilmsen, 2003; Wilmsen et al., 2005; Baldermann et al., 2017; Baldermann et al.,
119 2022; Scheiblhofer et al., 2022), located in the Subhercynian Cretaceous Basin in Northern
120 Germany (Fig. 1a). In addition, glauconite-free sandstone and conglomerate beds (used here as
121 reference materials for 'background' sedimentation to identify detrital and late diagenetic clay
122 mineral $\delta^{41}\text{K}$ compositions) were sampled from this locality. Thin sections were prepared from
123 all lithotypes (Fig. 1b) using standard procedures.

124 The Langenstein profile starts with cross-bedded 'Neocomian' sandstones of Early Cretaceous
125 age (sample P1; depositional age: ~ 121.5 Ma). Published K-Ar ages of different grain size
126 fractions acquired from these rocks coupled with illite polytype analysis yielded 247.2 ± 3.4
127 Ma and 68.0 ± 1.6 Ma for detrital illite and diagenetic illite-smectite, respectively (Baldermann
128 et al., 2017). The 'Neocomian' sandstones are unconformably overlain by a $\sim 10\text{-}25$ cm thin
129 glauconite-free conglomerate of orange-brown (sample P2; ~ 100.3 Ma, oxidized) to greenish
130 color (sample P3; ~ 100.3 Ma), corresponding to the ultimus/Aucellina Transgression in the

131 Early Cenomanian (Ernst et al., 1983). The above ~20 cm thick sandstone layer is rich in
132 glauconite (sample P4_1; ~100.2 Ma; up to 70 wt.%) and was deposited during the Early
133 Cenomanian (lowermost M. mantelli Zone; Scheiblhofer et al., 2022). At the top, this layer or
134 horizon locally weathers into a ~2-5 cm thin, finely crumbled to brittle material, which is rich
135 in glauconite (henceforth called ‘glauconitic grus’; sample P4_2; ~100.2 Ma; 50-70 wt.%
136 glauconite). Up-section, ~3.0 m thick glauconite-bearing limestones (‘Pläner’ Limestones)
137 formed within the lower (sample P5; ~97.5 Ma; 20-30 wt.%) and upper part (sample P6; ~96.8
138 Ma; 15-20 wt.%) of the M. dixoni Zone of the Early Cenomanian until the A. rhomagense
139 Zone (sample P7; ~96.1 Ma; < 5 wt.%) of the Middle Cenomanian (Wright and Kennedy, 2017;
140 Scheiblhofer et al., 2022). The pelagic limestones or so-called Poor rhomagense Limestones,
141 which crop out at the top of the Langenstein section, are glauconite-free and were therefore not
142 considered further in this study.

143 The glauconite grains were separated as follows: (i) the weakly consolidated glauconite-bearing
144 sandstone (sample P4_1) was disintegrated by mild grinding using mortar and pestle and (ii)
145 the glauconitic limestones (samples P5 to P7) were treated with a 1 M HCl solution to remove
146 the carbonate matrix (Bayon et al., 2023). After washing with MilliQ water and drying at 40
147 °C, the bulk glauconite fraction was separated from each sample using a neodymium magnet in
148 preparation for chemical and $\delta^{41}\text{K}$ isotope analysis. After grinding, the < 1 μm size fraction of
149 the glauconite grains from sample P5 was collected using standard sedimentation techniques
150 (sample P5a; ~97.5 Ma) to test the effect of clay mineral impurities, such as illite and illite-
151 smectite, on the $\delta^{41}\text{K}$ isotopic composition of the glauconite grains (Scheiblhofer et al., 2022).
152 Furthermore, four glauconite sub-fractions (> 100 grains) were separated from sample P6 by
153 hand picking under the optical microscope to verify the effects of glauconite composition,
154 microstructure and surface oxidation/weathering on the preservation of the pristine $\delta^{41}\text{K}$
155 isotopic composition: (i) light green pellets (sample P6a), (ii) medium/dark green pellets
156 (sample P6b), (iii) foraminifera test infills (sample P6c) and (iv) oxidized grains (sample P6d).

157 These (sub-)samples were subjected to chemical/elemental and isotopic $\delta^{41}\text{K}$ analysis as well
158 as μ -CT measurements. Optical micrographs of all samples are presented in Fig. 1c.
159 In addition, the international reference glauconite material GL-O was used for comparison,
160 considering its presumably coeval depositional or stratigraphic age with the glauconites from
161 Langenstein (see below and Löhr et al., 2025).
162 GL-O or GLauconite-Odin reference material was prepared from glauconite-rich calcareous
163 siltstones and sandstones in the basal Cenomanian (stratigraphic age: \sim 100.2-99.5 Ma) of
164 Normandy in France (Odin 1982). Seven green grain sub-fractions were extracted from bulk
165 GL-O material based on their color and textures (light green; medium and dark green each with
166 and without cracks; very dark green; weathered) and subjected to a detailed petrographic and
167 chemical analysis and in-situ Rb-Sr dating (cf. Figs 1-5 and Table 2 in Löhr et al., 2025). Here,
168 we present the $\delta^{41}\text{K}$ isotope data from these different GL-O sub-fractions as defined above. Note
169 that previous bulk and single grain K-Ar dating yielded GL-O ages of 95.03 ± 1.11 Ma and
170 101.0 ± 0.3 Ma (Selby, 2009; Hemming et al., 2023), which are thus \sim 5.5 Ma younger or close
171 to the expected stratigraphic age, respectively. In-situ Rb-Sr dating yielded a \sim 10 Ma spread
172 in the different GL-O sub-fractions with a mean age of \sim 94.8 \pm 1.0 Ma (Löhr et al., 2025), thus
173 close to glauconite samples taken from the upper part of the Langenstein section.

174

175 *2.2 Electron microprobe analyses*

176 The chemical composition of the bulk glauconite fractions (samples P4 to P7) and green grain
177 sub-fractions (samples P6a to P6d) was analyzed by electron microprobe (EMP) analyses using
178 a JEOL JXA-8530F Plus Hyper Probe at the University of Graz (Austria). Samples P4_2 and
179 P5a were not analyzed, because of the small particle size of these powders. Approximately 20
180 grains were handpicked for each group under an optical microscope and then mounted to
181 produce a diamond polished EpoFix resin mount for EMP analysis. The following analytical
182 conditions were used: 15 keV accelerating voltage, 15 nA beam current and defocused beam,

183 ~3 μm in size. The chemical data were standardized against microcline (Al-K α , Si-K α and K-
184 K α), augite (Mg-K α and Ca-K α), ilmenite (Fe-K α), tugtupite (Na-K α) and LaPO₄ (P-K α)
185 crystals. Counting times were set to be 10 s on peak and 5 s on background position on each
186 side of the element-specific peak. Only compositions with an analytical error of less than 5 %
187 were considered. The chemical compositions were corrected for the average Fe(II)/Fe(III) ratios
188 of the glauconites reported by Baldermann et al. (2017) based on electron energy-loss
189 spectroscopy (EELS) analyses. Structural formulae (in atoms per formula unit, a.p.f.u.) were
190 calculated based on 22 negative charges (Bailey, 1980), assuming (i) tetrahedral Si + Al equals
191 4, (ii) Fe, Mg and Al_{rest} are octahedrally bound, (iii) K, Na and Ca occupy the interlayer sites
192 and (iv) P₂O₅ belongs to apatite impurities.

193

194 *2.3 X-ray computed tomography*

195 X-ray computed tomography (CT) is a non-destructive imaging technique that enables the 3D
196 visualization of internal structures of particles (Maire and Withers, 2014). A polychromatic X-
197 ray spectrum, shaped by the electron acceleration voltage of 80 keV and filtered using a Zeiss
198 standard low energy LE4, was produced. Representative single glauconite pellets from the P6
199 sub-series were fixed via an adhesive tape for SEM imaging and rotated (360°, 1601 projection
200 images), while projection images were recorded at 15 s exposure time and then reconstructed
201 into a 3D volume. Stacking three samples at the same time allowed all glauconites to be scanned
202 using the same parameters with minimal variation. The attenuation of X-rays within the
203 glauconite pellets depends on their composition and density, as materials with higher atomic
204 number or density absorb more strongly and thus determine the image contrast. It also varies
205 with sample thickness and the properties of the X-ray spectrum, although both parameters are
206 considered constant here due to uniform sample geometry and fixed measurement parameters.
207 The Zeiss Xradia 510 VERSA used in this study is able to reach voxel sizes of ~0.8 μm with
208 detector pixel binning = 2, which is the highest achievable resolution at this instrument (i.e., the

209 smallest voxel size is 800 nm). The 3D volume was reconstructed with the Zeiss proprietary
210 reconstruction software using a standard beam hardening correction of 0.05 and a Gaussian
211 smoothing with parameter sigma = 0.5. To ensure comparability of gray value histograms
212 between samples, a consistent intensity scaling was applied by fixing the upper and lower limits
213 of the histogram. After image reconstruction, the 3D volume was exported as a 16 bit TIFF
214 stack for image post-processing.

215

216 *2.4 Mathematical image analysis and microstructure characterization*

217 The morphology and microstructure of the glauconite grains were characterized based on the
218 acquired 3D image data. Prior to computing meaningful mathematical descriptors, semantic
219 image segmentation was performed, which classified each voxel either as background,
220 glauconite, rust at the grain surface or pores within the glauconite matrix. After applying a
221 moving average filter to the histogram of greyscale values, the so-called intermodal
222 thresholding was used (Prewitt and Mendelsohn, 1966) to separate the background from the
223 glauconite grains. The resulting segmentation was post-processed in three steps: i)
224 morphological closing with a ball of radius 3 voxel units (VU) (Soille, 1999) was performed on
225 the largest component of the foreground, ii) all voxels that do not belong to the largest
226 component of the background were attached to the foreground and iii) unrealistic surface
227 roughness of the foreground was removed by an erosion with a ball of radius 3 VU, after which
228 all isolated components of the foreground were removed and another dilation with the same
229 structuring element was applied. For computing connected components in binary images, the
230 method bwconncomp implemented in Matlab R2025b was used (MathWorks, 2025).

231 The pore volume within the glauconite grains was segmented by a Gaussian mixture model
232 (McLachlan and Peel, 2000), where the distribution of greyscale values is modeled by a mixture
233 of two Gaussian distributions each of which represent a class of greyscale values by its mean
234 value and standard deviation. Then, a voxel under consideration was classified by conditioning

235 the mixture distribution on the voxel's greyscale value, followed by determining the class to
236 which it belongs. Finally, morphological closing with a ball of radius 1 VU was applied and all
237 pores that either touch the background or do not protrude into the foreground by more than 2
238 VU were removed. The oxidized layer at the glauconite surface, which has been determined for
239 one particle per P6 sub-series, was segmented by machine learning. For this purpose, random
240 forests (Breiman 2001) were trained by the software ilastik (Sommer et al. 2011) based on hand-
241 labelled image data. The rust layer determined by the random forest was post-processed by
242 morphological opening and closing of non-rust voxels as well as a subsequent opening of rust
243 voxels. In this step, all morphological operations were performed with a ball of radius 3 VU as
244 structuring element. Rust components smaller than 10^4 voxels were removed and the previously
245 segmented pore volume was separated from the rust layer.

246 Based on semantic segmentation, global descriptors of the glauconite samples, such as the pore
247 volume, thickness of the rust layer and grain sphericity, were computed. Further, individual
248 pores were segmented to determine the empirical distributions of their size. For this purpose,
249 the segmented pore space was eroded to isolate pore regions that are only connected by a small
250 bottleneck. The remaining connected components are considered as individual pores. Since the
251 pores exhibited different morphologies across the investigated glauconite grains, different radii
252 of 1-2 VU were chosen for the spherical erosion. Volumes and surfaces were computed using
253 the Matlab function regionprops3, which uses the algorithms presented in Legland et al. (2007).
254 Due to spatial porosity gradients towards the boundary of the glauconite grains, the 'inner'
255 porosity, which refers to the part of the particle that has a distance of more than 30 μm to the
256 glauconite particle boundary, was also computed. All data are reported as mean values \pm 1SD.
257

258 *2.5 $\delta^{41}\text{K}$ isotope analysis via a solution-based CC MC-ICP-MS*

259 Sample preparation was performed in the trace-metal free clean lab facilities in the Department
260 of Earth and Environmental Sciences, University of Minnesota – Twin Cities using high purity

261 chemical reagents, Milli-Q water (18.2 MΩ·cm) and acid-cleaned Savillex Teflon vials. The
262 glauconite grains extracted from Langenstein and GL-O, both bulk and sub-fractions (5-50 mg),
263 were dissolved in mixed concentrated HNO₃ and HF (1:5, v/v) on a Teflon-coated graphite
264 hotplate at 150 °C, followed by concentrated HCl. Fully digested samples were evaporated to
265 dryness and re-dissolved in 0.4 M HCl for purification. Potassium purification was carried out
266 through ion exchange chromatographic separation (Zheng et al., 2022b). The digested samples
267 were passed through a Bio-Rad AG 50W-X8 cation exchange resin (H⁺ form, 200-400 mesh)
268 packed in Bio-Rad Poly-Prep columns with a 2 mL resin bed to remove matrix elements. Full
269 recovery of K from the columns ($\geq 99\%$) was achieved using 0.4 M HCl as an eluent and
270 sufficient K purity was ensured by applying the same column separation and purification
271 protocol to each sample twice.

272 High-precision stable K isotope ratios, $^{41}\text{K}/^{39}\text{K}$, were measured on a collision-cell (CC) MC-
273 ICP-MS or multi-collector inductively coupled mass spectrometer (Nu Instruments “Sapphire”
274 instrument). Samples (200 to 300 $\mu\text{g}\cdot\text{L}^{-1}$ K in a 2% HNO₃ matrix) were introduced into the
275 instrument using an Apex Omega HF desolvator and a Teflon nebulizer (uptake rate: ~ 100
276 $\mu\text{L}\cdot\text{min}^{-1}$). Blank 2% HNO₃ solutions were analyzed prior to each $\delta^{41}\text{K}$ isotope measurement.
277 The obtained ion intensities for ^{41}K and ^{39}K were subtracted from the subsequent measurement
278 (i.e., on-peak zero correction). All samples were measured by the sample-standard bracketing
279 method using NIST SRM 3141a as the bracketing standard. Potassium concentrations of the
280 samples and bracketing standard were matched within 5% and any analytical bias related to
281 subtle concentration mismatch on $^{41}\text{K}/^{39}\text{K}$ ratios was corrected using published procedures
282 (Zheng et al., 2022b). Repeated measurements of an in-house high-purity K standard (UMN-
283 K), seawater and the USGS standard BCR-2 were routinely carried out between glauconite
284 sample analyses. The results are expressed by the conventional δ -notation relative to the NIST
285 SRM 3141a standard, according to equation 1:

286
$$\delta^{41}\text{K} = \left[\frac{(^{41}\text{K}/^{39}\text{K})_{\text{sample}}}{(^{41}\text{K}/^{39}\text{K})_{\text{NIST SRM 3141a}}} - 1 \right] \times 1000 \quad (1)$$

287 The obtained results for the standard materials UMN-K ($0.43\text{\textperthousand} \pm 0.04\text{\textperthousand}$), seawater ($0.13\text{\textperthousand} \pm$
 288 $0.04\text{\textperthousand}$) and BCR-2 ($-0.44\text{\textperthousand} \pm 0.05\text{\textperthousand}$) are consistent with published literature. The estimated
 289 long-term precision was better than $0.05\text{\textperthousand}$ (2SD) for $\delta^{41}\text{K}$ results.

290

291 **3. Results and interpretation**

292 *3.1 Chemical composition of glauconite*

293 The average chemical compositions of the bulk glauconite fractions (samples P4 to P7) and of
 294 the separated green grain sub-fractions (P6 sub-series) from the Langenstein section are listed
 295 in Table 1. The compositional variability of the glauconite pellets from samples P4 to P7
 296 (reported as the average values) ranges from 51.25–52.68 wt% SiO_2 , 6.95–8.42 wt% Al_2O_3 ,
 297 21.13–23.16 wt% Fe_2O_3 , 1.90–2.08 wt% FeO , 4.07–4.30 wt% MgO , 8.73–9.19 wt% K_2O ,
 298 0.02–0.03 wt% Na_2O , 0.13–0.51 wt% CaO and 0.10–0.34 wt% P_2O_5 , which is indicative of
 299 evolved (6–8 wt.% K_2O) to highly evolved (8–10 wt.% K_2O), Fe-rich (>19 wt.% $\sum \text{Fe}_2\text{O}_3 + \text{FeO}$)
 300 glauconites (Fig. 2a), which host minor apatite inclusions (Amorosi, 2012; Rafiei et al., 2023).
 301 No general trend is observed in the chemistry of the glauconites associated with sandstone and
 302 limestone lithologies (Table 1), except for a slightly higher Al_2O_3 content of the glauconites in
 303 the siliciclastic facies. Thus, the maturity and chemical composition of the glauconite grains
 304 vary only slightly from $(\text{K}_{0.81-0.87}\text{Ca}_{0-0.01})(\text{Fe}^{3+}_{1.12-1.24}\text{Fe}^{2+}_{0.11-0.12}\text{Al}_{0.30-0.36}\text{Mg}_{0.43-0.45})_{\sum 2.02-2.03}[\text{Al}_{0.33-0.36}\text{Si}_{3.64-0.67}\text{O}_{10}]_{(\text{OH})_2}$ ($n = 144$) and plot in the documented range of Mesozoic
 305 glauconites (Banerjee et al., 2016) and previously published compositions for Langenstein
 306 glauconites (Scheiblhofer et al., 2022).

308 In contrast, the separated green grains from the P6 sub-series are compositionally much more
 309 variable (reported as the average values), with 52.71–57.91 wt% SiO_2 , 7.16–11.46 wt% Al_2O_3 ,
 310 17.17–20.58 wt% Fe_2O_3 , 2.19–3.63 wt% FeO , 4.02–4.35 wt% MgO , 4.12–7.42 wt% K_2O ,

311 0.17–0.33 wt% Na₂O, 0.25–0.35 wt% CaO and 0.13–0.30 wt% P₂O₅, corresponding to a
312 slightly evolved (4–6 wt.% K₂O) to evolved (6–8 wt.% K₂O) state of glauconite maturity (Fig.
313 2b). The green grains forming as foraminifera test infillings exhibited the lowest degree of
314 maturity and are thus better described as glauconite-smectite (e.g., Amorosi, 2012; Baldermann
315 et al., 2017). The light green grains are characterized by overall higher Al₂O₃, SiO₂, Na₂O and
316 CaO contents and lower \sum Fe₂O₃+FeO and K₂O contents compared to the medium/dark green
317 grains, which is typical for incomplete glauconitization in fecal pellets (e.g., Baldermann et al.,
318 2012; Scheiblhofer et al., 2022). The oxidized grains have moderate K₂O, Al₂O₃, SiO₂ and
319 \sum Fe₂O₃+FeO contents (Table 1). The average composition of the green grains from the P6 sub-
320 series varies significantly from $(K_{0.35-0.67}Ca_{0.02-0.03}Na_{0.02-0.04})(Fe^{3+}_{0.85-1.09}Fe^{2+}_{0.12-0.21}Al_{0.31-}$
321 $0.72Mg_{0.40-0.45})_{\sum 2.06-2.09}[Al_{0.17-0.28}Si_{3.72-0.83}O_{10}](OH)_2$ (n = 47).

322 The average structural formulae of all glauconite (sub-)samples plot in the dioctahedral domain
323 in the standard charge distribution diagram (Fig. 2c). Except for sample P6c (foraminifera test
324 infillings), which plots as glauconite-smectite, all green grains fall in the compositional field of
325 glauconite (Weaver and Pollard, 1973). The oxidized grains are slightly shifted toward the
326 smectite and glauconite-smectite field (Fig. 2c), which is typical for partly altered glauconite
327 (e.g., Pestitschek et al., 2012). The green grains (reported as the average values) have moderate
328 tetrahedral charges (-0.17 to -0.36 a.p.f.u.), moderate to high octahedral charges (-0.25 to -0.49
329 a.p.f.u.) and high interlayer charges (0.42 to 0.83 a.p.f.u.), with K⁺ as the main interlayer cation
330 (Fig. 2c). They overlap with the composition of the GL-O reference material (cf. Fig. 4 in Löhr
331 et al., 2025). The plot of the chemical data in the nSi⁴⁺/4 vs ^{VI}Fe diagram reveals an evolution
332 from Fe³⁺-smectite and glauconite-smectite to glauconite end-member composition (Fig. 2d).

333

334 3.2 Glauconite grain morphology and microstructure

335 Mean values (± 1 SD) of morphological and microstructural descriptors of the glauconite grains
336 from the P6 sub-series are reported in Table 2. Statistical analysis of CT-derived 3D image data

337 shows that the glauconite grains have a rounded particle shape (sphericity: 0.74 ± 0.01 ; Fig. 3a)
338 and an oxidative layer at the grain surface, 1.3 to 4.5 μm thick, with the greatest thickness
339 observed on sample P6d (Fig. 3b). Highest total and inner porosities were recognized in the
340 light green pellets (P6a: 10-11 vol.%) and in the foraminifer test infills (P6c, Hedbergella: 8-9
341 vol.%), whereas the medium to dark green pellets and the inner part of the oxidized pellets
342 yielded the lowest total and inner porosities (P6b and P6d_i, which are still larger than 2 vol.%).
343 The bulk oxidized pellets had an intermediate porosity (P6d: 4 vol.%) due to the dense inner
344 pore structure and the presence of a highly porous transitional zone toward the oxidized rim
345 (marked as ‘core’ and ‘rim’ in Fig. 3b). Accordingly, largest mean and inner pore volumes were
346 observed in samples P6a ($24\text{-}27 \mu\text{m}^3$), P6c ($35\text{-}52 \mu\text{m}^3$, which also yielded the highest
347 variability) and P6d_i ($28 \mu\text{m}^3$) and the smallest ones in samples P6b ($9\text{-}16 \mu\text{m}^3$) and P6d (8
348 μm^3). This suggests a densification of the pore structure as ‘boxwork-like networks’ of Fe-
349 smectite ($\sim 10\text{-}20$ vol.%) evolve to ‘rosette-like structures’ of glauconite ($\sim 5\text{-}10$ vol.%),
350 consistent with Baldermann et al. (2013), whereas reverse glauconitization creates more open
351 pore networks at the oxidized surface.

352

353 *3.3 Potassium isotope ($\delta^{41}\text{K}$) variations*

354 The measured $\delta^{41}\text{K}$ values of the samples from the Langenstein section are listed in Table 3,
355 together with the $\delta^{41}\text{K}$ values of the GL-O sub-fractions. The glauconite-free sedimentary strata
356 from Langenstein (Neocomian sandstones and basal conglomerate) containing illite and illite-
357 smectite have a $\delta^{41}\text{K}$ composition between $-0.46 \pm 0.05\text{\textperthousand}$ and $-0.51 \pm 0.04\text{\textperthousand}$ (Fig. 4a),
358 consistent with a Bulk Silicate Earth (BSE: $-0.43 \pm 0.17\text{\textperthousand}$) or Upper Continental Crust (UCC:
359 $-0.44 \pm 0.05\text{\textperthousand}$) signature (e.g., Huang et al., 2020; Wang et al., 2021). Up-section, the $\delta^{41}\text{K}$
360 values of the glauconite grains extracted from the glauconite-bearing interval (samples P4 to
361 P7) are $\sim 0.18\text{\textperthousand}$ lower, averaging $-0.66 \pm 0.04\text{\textperthousand}$. No isotope variation is observed between
362 glauconites hosted in sandstone vs limestone lithologies (Fig. 4a). Given that marine glauconite

363 typically forms relatively rapidly (>400 kyr) and in close proximity to the sediment-seawater
364 interface in shelfal sequences, a seawater-derived K⁺ source for glauconite including the studied
365 glauconite-bearing lithologies is thus very likely (e.g., Wilmsen and Bansal, 2021; Tribouillard
366 et al., 2023; Löhr et al., 2026a). Interestingly, sub-sample P5a (glauconite with a particle size
367 smaller than 1 µm), which contains the highest amount of clay mineral impurities based on
368 previously reported quantitative XRD analysis (Scheiblhofer et al., 2022), yielded identical
369 δ⁴¹K values (-0.67 ± 0.03‰; Fig. 4a). The partially altered samples P4_2 (glauconite grus) and
370 P6d (oxidized glauconite pellets) have slightly lower δ⁴¹K values of -0.71 ± 0.05‰ (Fig. 4a,b),
371 which, however, still overlap with the bulk glauconite grains (-0.66 ± 0.04‰) within analytical
372 uncertainty. Similarly, all green grains from the P6 sub-series fall in the same range as the bulk
373 glauconite fractions, averaging -0.66 ± 0.03‰ (Fig. 4b). The approximately time-equivalent
374 GL-O sub-fractions have a δ⁴¹K composition between -0.80 ± 0.02‰ and -0.63 ± 0.03‰, with
375 a mean of -0.68 ± 0.03‰, which thus also overlaps with the δ⁴¹K values measured in the
376 Langenstein glauconites (Fig. 4a). No systematic δ⁴¹K isotope trends are observed within
377 individual GL-O grains.

378

379 **4. Discussion**

380 *4.1 Lithotypes containing K-bearing clays at Langenstein*

381 Four lithotypes containing detrital, early diagenetic (i.e., authigenic in the sense of reverse
382 weathering) and burial diagenetic K-bearing minerals were identified across the Langenstein
383 profile in Northern Germany (Fig. 1a,b).

384 Lithotype 1 is represented by cross-bedded Neocomian sandstones of yellowish-grayish-brown
385 color, which comprise quartz, illite, chlorite, kaolinite, orthoclase and albite as well as minor
386 calcite spar, Fe-(hydr)oxide cement and illite-smectite (cf. sample P1 in Fig. 1b). Due to the
387 absence of marine faunal elements, these rocks were interpreted as fluvial deposits (Wilmsen,
388 2007). Previous studies found that illite (5-8 wt.%) is R3-ordered with a 2M₁ polytype structure

389 and that diagenetic illite(60)-smectite(40) (1-2 wt.%) has a $1M_d$ polytype structure (R1-ordered)
390 (Baldermann et al., 2017). This indicates that $2M_1$ illite is detrital in origin and simply reflects
391 background sedimentation (Grathoff and Moore, 1996), as confirmed by its ‘old’ age ($247.2 \pm$
392 3.4 Ma), relative to the depositional age of the Neocomian sandstones (~ 121.5 Ma). In contrast,
393 $1M_d$ illite-smectite occurs as a pore fill or replaces feldspar grains, which is typical of a burial
394 diagenetic origin (Huang et al., 1986; Grathoff and Moore, 1996), consistent with its ‘younger’
395 age (68.0 ± 1.6 Ma), compared to the Neocomian sandstones.

396 Lithotype 2 is characterized by an orange-brown to greenish conglomerate (cf. samples P2 and
397 P3 in Fig. 1b), which contains quartz, sandstone pebbles, dolomitic limestone, Fe(hydr)oxide
398 crusts and illite as well as illite-smectite, phosphorite granules and Fe-(hydr)oxide cement. This
399 bed has been interpreted as a basal marine transgression conglomerate, which formed during
400 the ultimus/Aucellina Transgression in the Early Cenomanian (Ernst et al., 1983). Given that
401 illite (6-7 wt.%) and illite-smectite (3 wt.%) share similar textural features compared to the clay
402 mineral assemblage in lithotype 1 (Baldermann et al., 2017), an identical source/origin of the
403 two clay types can be inferred, i.e., detrital vs burial diagenetic.

404 Lithotype 3 is a sandstone bed containing up to 70 wt.% glauconite (cf. sample P4 in Fig. 1b),
405 in addition to silicate detritus (quartz, siliceous lithoclasts, illite and feldspar, ~ 20 wt.% in total)
406 and minor calcite spar, micrite and Fe-(oxy)hydroxide cement. The presence of shell debris, the
407 high detritus content and the presence of bio-apatite grains suggest deposition in a proximal
408 shelf setting at the onset of the Early Cenomanian transgression (Wilmsen, 2007). The green
409 grains are intact, not corroded or oxidized and contain slightly elevated Al_2O_3 contents (Fig.
410 2c,d), which is all typical for authigenic glauconites that formed via replacement of silicate
411 detritus-rich fecal pellets during early diagenesis, without significant subsequent reworking
412 (e.g., Banerjee et al., 2016; Chakraborty et al., 2025). Further, published XRD data reveal that
413 the glauconites have $\sim 95\%$ glauconite layers and $\sim 5\%$ smectite layers (R3-ordered) with a

414 dominant 1M polytype structure (Baldermann et al., 2017), which is indicative of *in-situ*
415 glauconitization close to the sediment-seawater interface.

416 Lithotype 4 expresses as micritic limestones with decreasing glauconite (26 to ~12 wt.%) and
417 silicate detritus (16 to 13 wt.%) content up-section (cf. samples P5-7 in Fig. 1b), with the latter
418 comprising quartz, feldspar, apatite, kaolinite, illite and illite-smectite (Baldermann et al., 2017;
419 Scheiblhofer et al., 2022). These glauconite-bearing limestones formed in a mid-to-outer shelf
420 setting, as inferred from index ammonites as well as documented and calcisphere assemblages
421 (Wilmsen, 2007). The green pellets are (sub)rounded, while green clays infilling foraminifera
422 tests preserve the original shape of the bio-substrates in which they have formed. All glauconite
423 grains are neither broken nor oxidized and contain slightly elevated $\Sigma\text{Fe}_2\text{O}_3+\text{FeO}$ over Al_2O_3
424 contents (Fig. 2a,c,d), implying a formation und suboxic conditions, which is typical for marine
425 glauconites forming in silicate detritus-poor distal shelf settings (e.g., Odin and Matter, 1981;
426 Rubio and López-Pérez, 2024). These glauconites have more than 95% glauconite layers (R3-
427 ordered) and a dominant 1M polytype structure, which is typical for an *in-situ* glauconitization
428 process (Baldermann et al., 2017).

429 Taken together, the Langenstein profile comprises sandstone and conglomerate beds at the base,
430 which contain different proportions of detrital illite, burial diagenetic illite-smectite and K-
431 feldspar. Up-section, the amount of these K-bearing minerals decreases gradually in the bulk
432 sediments in favor of authigenic glauconites hosted in proximal sandstone and distal limestone
433 facies. However, the glauconite-bearing strata still contain minor amounts of the other K-rich
434 phases that are inherited from the proximal siliciclastic facies (< 2 wt.% each). Below, we
435 discuss the effects of the presence of detrital and diagenetic clay mineral impurities in
436 glauconite, the degree of glauconite maturity, the microstructure of glauconite and the
437 weathering intensity of glauconite on its $\delta^{41}\text{K}$ signature in order to test whether glauconite can
438 serve as a reliable recorder of paleo-seawater K isotope composition.

439 4.2 Clay mineral impurities in Langenstein glauconites

440 Well crystallized 2M₁ illite and poorly crystallized 1M_d illite-smectite account for 1-2 wt.% and
441 3-11 wt.% in the separated bulk glauconite fractions, with the highest clay mineral impurity
442 content found in samples P5 and P5a (12.5 wt.%) and the lowest one in sample P4 (5 wt.%;
443 Scheiblhofer et al., 2022). Although the K₂O contents of these detrital and diagenetic clays were
444 determined to be as high as 8.3 ± 0.4 wt.% and 4.5 ± 0.5 wt.%, respectively (Baldermann et al.,
445 2017), no effect on the $\delta^{41}\text{K}$ composition of the bulk glauconite grains from samples P4 to P7
446 was evident within analytical precision of the $\delta^{41}\text{K}$ isotope measurements (cf. Fig. 5, Fig. 4a
447 and Table 3). This is probably because K-bearing phases other than glauconite are relatively
448 scarce in the bulk green grains and the K₂O content of glauconite is very high (8.7-9.2 wt.%;
449 Table 1), so that a shift toward isotopically heavier $\delta^{41}\text{K}$ signatures of the green grains caused
450 by the presence of small/moderate amounts of K-bearing impurities is negligible (Fig. 5).
451 If we consider the average Langenstein glauconite $\delta^{41}\text{K}$ signature of -0.66 ± 0.04‰ (samples
452 P4 to P7) and account for the $\delta^{41}\text{K}$ composition of the detrital silicate input of sample P1 of -
453 0.46 ± 0.05‰ (Table 3), which has the highest illite (6 wt.%) and K-feldspar (2 wt.%) contents
454 and the lowest illite-smectite (2 wt.%) content, the ‘pure’ glauconite grains would have a $\delta^{41}\text{K}$
455 composition of -0.68 ± 0.05‰. This is almost identical to the measured $\delta^{41}\text{K}$ values of the bulk
456 Langenstein grains and/or coeval GL-O glauconite pellets (Table 3). Similarly, excluding the
457 contribution of the K-bearing phases from sample P5 (glauconite_{AVG_P5} $\delta^{41}\text{K}$ = -0.68 ± 0.04‰),
458 which contains a high illite-smectite (11 wt.%) content and low illite (1.5 wt.%) and K-feldspar
459 (1 wt.%) contents (silicate_{AVG_P1-3} $\delta^{41}\text{K}$ = -0.50 ± 0.04‰), would result in a ‘pure’ glauconite
460 $\delta^{41}\text{K}$ composition of -0.71 ± 0.07‰, thus still overlapping with the measured $\delta^{41}\text{K}$ values of the
461 bulk grains within analytical precision (Table 3). The same holds true for sub-sample P5a (< 1
462 µm), suggesting that the particle size does not impact the bulk glauconite $\delta^{41}\text{K}$ isotope
463 composition (Table 3).

464 We note that we could not measure the $\delta^{41}\text{K}$ composition of pure illite and pure illite-smectite
465 in our samples, because the two phases are likely intergrown. However, plotting the fractions
466 of illite and K-feldspar (10 and 7.5 wt.%) against the $\delta^{41}\text{K}$ composition of samples P1 (-0.46‰)
467 vs P2 and P3 (-0.51‰) results in an illite-smectite $\delta^{41}\text{K}$ signature of -0.64%, which is close to
468 the bulk glauconite $\delta^{41}\text{K}$ composition (Table 3). This could indicate that both glauconite and
469 illite-smectite phases precipitated from a compositionally similar paleo-seawater or marine pore
470 fluid source, which inherited the K isotope composition of Cretaceous seawater, being (slightly)
471 modified by detrital silicate (e.g., feldspar) dissolution reactions that took place in the ancient
472 sediment pile (Li et al., 2022). This view is supported by the well-documented uptake of light
473 ^{39}K isotopes during clay mineral formation and sediment diagenesis (Li et al., 2019), findings
474 of diagenetic illite-smectite replacing K-feldspar grains (Fig. 1b) and kinetic modeling of the
475 thermal history at Langenstein, which yielded a shallow burial depth of 1000-1500 m and a low
476 burial temperature of 50-65 °C to form the diagenetic illite-smectite (Baldermann et al., 2017).
477 We therefore conclude that small proportions of detrital ‘K-rich’ phase impurities and moderate
478 amounts of ‘K-poor’ mixed layered clay mineral impurities in glauconite grains do not disturb
479 significantly the seawater-derived pristine glauconite $\delta^{41}\text{K}$ signature (Fig. 5), consistent with
480 observations reported for modern glauconites and glauconite-smectite (Löhr et al., 2026a).

481

482 *4.3 Maturity degree of Langenstein glauconites*

483 Our EMP data reveal that the glauconite pellets (samples P4 to P7) are compositionally evolved
484 to highly evolved (cf. Fig. 2a and Table 1), judged from their K_2O contents (Amorosi, 2012),
485 and plot well within the compositional range of other Mesozoic glauconites (Banerjee et al.,
486 2016). In contrast, the separated green grains from the P6 sub-series are slightly evolved to
487 evolved (cf. Fig. 2b and Table 1), corresponding to a glauconite-smectite composition rather
488 than the glauconite member (Fig. 2c,d). Nevertheless, the $\delta^{41}\text{K}$ compositions of all glauconitic
489 samples from Langenstein fall within a very close range (Fig. 4a,b), averaging $-0.67 \pm 0.04\text{‰}$.

490 No correlation is observed between the K₂O contents of the glauconite grains from Langenstein
491 and also GL-O pellets and their $\delta^{41}\text{K}$ signatures (Fig. 6). This suggests that glauconite layers
492 can record of the pristine seawater $\delta^{41}\text{K}$ signature if the K₂O content in glauconite-smectite
493 exceeds a certain threshold value, which is 4 wt.% or even lower according to our datasets (cf.
494 Table 1 and 3). However, extremely low K₂O contents in mixed-layered glauconite-smectite
495 would result in higher proportions of smectite layers and such K-bearing smectite layers are
496 still prone to ion exchange reactions (e.g., Mosser-Ruck et al., 2001), with implications for
497 possible resetting and/or overprint of K isotopes (Li et al., 2021b). In line with previous studies,
498 hydrothermal experiments conducted at 250°C for 10 h have shown that Ar degassing and
499 resetting of the Rb-Sr system are significantly reduced once K₂O contents of glauconitized fecal
500 pellets exceed ~4.3 wt.% (Bonhomme and Odin, 1979; Clauer, 1981).

501 Using the published relation between the interlayer K⁺ content (in a.p.f.u.) and the proportion
502 of glauconite layers in interstratified glauconite-smectite, as it progressively evolves toward the
503 glauconite member (Baldermann et al., 2013), indicates that the majority of the green grains
504 from Langenstein (and also GL-O) already contain ~90% to 100% glauconite layers, thus
505 corresponding to a very high degree of maturity (Fig. 2a,b). Exceptions are the sub-samples P6c
506 (67%) and P6d (88%), which reflect incomplete glauconitization of foraminifers and partial
507 oxidative alteration of some glauconite pellets (Fig. 2b), respectively, though their degree of
508 glauconitization is still moderate to high. This could imply that once a certain degree of
509 glauconitization is reached, K⁺ ions are ‘locked’ within the nonexchangeable interlayer sites.
510 As a result, the glauconite $\delta^{41}\text{K}$ signature may become resistant to subsequent ion exchange or
511 isotopic resetting during interaction with burial fluids or other post-depositional alterations.

512

513 *4.4 Microstructure of Langenstein glauconites*

514 Our statistical analysis of 3D image data produced meaningful morphological and structural
515 descriptors, such as total porosity, sphericity, pore volume and thickness of oxidative crusts, for

516 chemically pre-screened (Fig. 2b) and carefully selected individual glauconite grains (cf. Fig.
517 1c and 3, Table 2). Changes of any of these parameters during glauconite maturation or post-
518 depositional alteration have the potential to alter the pristine K isotope composition of marine
519 authigenic glauconite, for example, via incomplete glauconitization. The latter could lead to
520 delayed isotopic closure (Löhr et al., 2025), (de)sorption or ion exchange reactions occurring
521 at the glauconite surface (Li et al., 2021b), progressive alteration of glauconite into secondary
522 (clay) minerals (Pestitschek et al., 2012) or resetting of K isotopes during interaction with burial
523 fluids (Loyola et al., 2025). In this respect, changes in porosity and pore volume as well as the
524 presence of alteration layers during post-depositional evolution of glauconites need to be better
525 constrained to evaluate their potential effects on the K isotope composition of glauconite.
526 Our statistical analysis of 3D image data obtained from individual glauconite grains from the
527 P6 sub-series yielded total porosities between 2 ± 1 and 10 ± 8 vol.%, inner porosities between
528 1 ± 0.3 and 11 ± 10 vol.%, mean pore volumes between 16 ± 11 and $35 \pm 5 \mu\text{m}^3$ and oxidized
529 crust thicknesses ranging from 4 to more than $10 \mu\text{m}$ (Table 2). Despite this large variability in
530 morphological and microstructural properties, the K isotope composition of these individual
531 glauconite grains remained almost constant within analytical uncertainty, ranging from $-0.66\text{\textperthousand}$
532 to $-0.71\text{\textperthousand}$, with an average of $0.68\text{\textperthousand} \pm 0.03\text{\textperthousand}$ (Fig. 7a-c). This signature is indistinguishable
533 from that of the bulk glauconite fraction ($-0.66\text{\textperthousand} \pm 0.02\text{\textperthousand}$) (Fig. 4), supporting the view that
534 interstratified glauconite-smectite with K_2O contents of ~ 4 wt.% (or even lower) can preserve
535 the pristine seawater $\delta^{41}\text{K}$ signature. Follow up studies are required to evaluate if the pristine
536 glauconite $\delta^{41}\text{K}$ signature is preserved when they get exposed to compositionally different and
537 hotter burial fluids. However, based on our results we conjecture that microstructural variation
538 in individual glauconite grains that have been exposed to a moderate degree of burial diagenesis
539 (~ 1000 - 1500 m depth and 50 - 65 °C) do not have a significant impact on the pristine K isotope
540 composition of glauconite.

541 4.5 Chemical weathering of Langenstein glauconites

542 Oxidative weathering of glauconite-bearing deposits is often expressed by modifications in
543 color, mineralogy and chemistry of the initially dark green grains. For example, glauconites
544 that were subjected to intense chemical weathering in an arid climate in Egypt for up to 42 years
545 developed a brownish-green color and showed decreased concentrations of Fe_2O_3 and K_2O but
546 increased Al_2O_3 and SO_4 concentrations as well as mineralogical change toward mixed-layered
547 illite-smectite with up to 50% expandable smectite layers and pure smectite (Pestitschek et al.,
548 2012). Similar alteration trends are observed at Langenstein: sample P4_2 transformed into a
549 loose glauconitic grus of greyish-greenish-brown color. It was not possible to determine the
550 chemical composition of this glauconitic weathering product by EMP analysis, because of the
551 small particle size. However, the broadening of the $00l$ -reflections, the decreasing intensity of
552 the polytype diagnostic peaks at 3.65 Å and 3.09 Å and the presence of a 15 Å peak all point to
553 oxidative alteration of the glauconite grains (Fig. 8) and their progressive weathering into Fe-
554 rich illite-smectite and Al-rich smectite (Kisiel et al., 2018). Similar XRD patterns were
555 obtained for the partially altered glauconite pellets from sample P6d (Fig. 8), which exhibited
556 Fe-(hydr)oxide crusts (Fig. 1c, 3b) and reduced concentrations of $\sum\text{Fe}_2\text{O}_3+\text{FeO}$ (-10.0%), MgO
557 (-3.0%) and K_2O (-27.2%) but higher Al_2O_3 (+15.5%) and SiO_2 (+4.5%) contents (Table 1),
558 compared to sample P6. These chemical changes shift its composition toward the smectite and
559 glauconite-smectite fields (Fig. 2c). Nevertheless, the $\delta^{41}\text{K}$ signature of the altered samples was
560 indistinguishable from all unaltered glauconite samples within analytical uncertainty (Table 3).
561 This observation suggests that a mild degree of oxidation does not affect the $\delta^{41}\text{K}$ signature of
562 glauconite. Still, partial dissolution of the octahedral layer and intense leaching of interlayer
563 cations is thought to liberate Al^{3+} , Mg^{2+} , $\text{Fe}^{3+/2+}$ and K^+ ions from the glauconite crystal lattice,
564 which may modify the $\delta^{41}\text{K}$ signature of glauconite during ‘reverse glauconitization’ in the long
565 term (e.g., Courbe et al., 1981; Hassan and Baioumy, 2006; Sánchez-Navas et al., 2008).

566 4.6 Implications for glauconite as an archive for paleo-seawater $\delta^{41}K$

567 Chemical weathering of silicate rocks delivers K⁺ to the oceans, regulating global K fluxes and
568 isotopic budgets in various K reservoirs on Earth's surface (e.g., Li et al., 2021b). Thus, the
569 total oceanic K budget and its isotope composition ($\delta^{41}K$) is primarily controlled by the K fluxes
570 from continental runoff and groundwater discharge, hydrothermal inputs generated at mid-
571 oceanic ridge sites and K sequestration by low-temperature hydrothermal alteration of seafloor
572 and formation of marine authigenic (clay) minerals (e.g., Santiago Ramos et al., 2018; Li et al.,
573 2019). It is well established that the Bulk Silicate Earth has an isotopically lighter K isotopic
574 composition (BSE: $-0.43 \pm 0.17\text{\textperthousand}$; UCC: $-0.44 \pm 0.05\text{\textperthousand}$; Huang et al., 2020; Wang et al., 2021)
575 than modern seawater ($\delta^{41}K_{\text{seawater}} = \sim +0.134\text{\textperthousand}$; Hille et al., 2019). Major K sources in the
576 modern ocean, including rivers and mid-ocean ridge hydrothermal inputs, have global average
577 $\delta^{41}K$ values of $\sim -0.3\text{\textperthousand}$ (Li et al., 2029; Wang et al., 2021; Zheng et al., 2022; Santiago Ramos
578 et al., 2022), which are only slightly higher than that of the BSE, and thus cannot account for
579 the heavy K isotope signature of seawater. Although low-temperature hydrothermal alteration
580 preferentially sequesters light K isotopes from seawater into altered material, the associated
581 K isotope fractionation is not sufficient to explain the full $\delta^{41}K$ difference of $\sim 0.6\text{\textperthousand}$ between
582 seawater and BSE (Hu et al., 2020; Liu et al., 2021). Increasingly, K fixation during marine
583 clay mineral authigenesis has been postulated as an essential process in controlling the global
584 oceanic K isotope mass balance (e.g., Li et al., 2021b; Zheng et al., 2022).

585 Glauconite is a particularly important candidate mineral in this respect due to its high abundance
586 in marine sediments and its high K contents (Baldermann et al., 2025). Direct measurements of
587 authigenic glauconite grains from core-top marine sediments have confirmed that glauconite
588 formation strongly incorporates light K isotopes from seawater, yielding $\delta^{41}K$ values that are
589 $\sim 0.95\text{\textperthousand}$ lower than modern seawater (Löhr et al., 2026a). The $\delta^{41}K$ dataset obtained from the
590 Cretaceous glauconites from two paleo-locations (Germany and France) indicates that ancient
591 and well-preserved glauconite grains can indeed record and preserve the pristine paleo-seawater

592 $\delta^{41}\text{K}$ signal and is not significantly impacted by potential modifying influences, such as varying
593 facies, K-bearing mineral impurities, diverse maturity and microstructural properties and the
594 degree of oxidative weathering. However, any robust reconstruction of paleo-seawater $\delta^{41}\text{K}$
595 composition based on the K isotope analysis of ancient glauconite grains relies on the seawater-
596 glauconite ($\Delta^{41}\text{K}_{\text{seawater-glaucn}}^{}$) fractionation factor (Löhr et al, 2026a) and its validation by
597 future studies.

598 Encouragingly, the recent progress made in the separation and quantification of Fe(III)-smectite
599 and glauconite in modern marine sediments from two contrasting sites (equatorial Atlantic vs
600 NE Pacific) have yielded nearly identical glauconitic/green clay $\delta^{41}\text{K}$ values of $-0.8\text{\textperthousand} \pm 0.1\text{\textperthousand}$,
601 which can be thus translated to a globally representative $\Delta^{41}\text{K}_{\text{seawater-glaucn}}^{}$ of $\sim 0.95\text{\textperthousand}$ (Löhr et
602 al., 2026a). Applying this $\Delta^{41}\text{K}_{\text{seawater-glaucn}}^{}$ fractionation factor to the Langenstein glauconites
603 and GL-O grains gives an isotopically heavier (ca. $0.24\text{\textperthousand}$ to $0.31\text{\textperthousand}$) $\delta^{41}\text{K}$ composition of the
604 Cenomanian seawater compared to present-day seawater. The Cretaceous greenhouse world
605 was characterized by enhanced continental weathering and faster seafloor spreading relative to
606 today (e.g., Jones and Jenkyns, 2001; Seton et al., 2009; Jenkyns, 2010; Müller et al., 2022) but
607 higher weathering and hydrothermal input fluxes should lower the global seawater $\delta^{41}\text{K}$ value
608 and drive it toward the BSE value. Therefore, the isotopically heavier or higher $\delta^{41}\text{K}$ value of
609 mid-Cenomanian seawater, as inferred from the Langenstein glauconites and coeval GL-O
610 pellets, likely imply enhanced marine clay authigenesis or marine reverse weathering under
611 prolonged Cretaceous greenhouse conditions (Baldermann et al., 2022). This process thus has
612 had potentially important implications for the marine C cycle, ocean chemistry and the oceanic
613 alkalinity budget and thus Earth's climate stability during this time (e.g., Isson and Planavsky,
614 2018. Farkaš et al., 2024 and references therein).

615 **5. Conclusions**

616 Bulk grains and various sub-fractions of glauconite were separated from marine shelfal deposits
617 of Cretaceous age in Germany (Langenstein section) and France (GL-O from Normandy) based
618 on color, morphology/texture, state of oxidation/weathering and type of replacement in order
619 to evaluate the robustness of glauconite as a seawater $\delta^{41}\text{K}$ archive. The effects of sedimentary
620 facies, detrital and diagenetic clay inclusions, glauconite maturity, composition, microstructure
621 and post-depositional alteration on the glauconite $\delta^{41}\text{K}$ signatures were assessed. We used X-
622 ray computed tomography with statistical image analysis, electron microprobe measurements
623 and $\delta^{41}\text{K}$ isotope analyses for the characterization of the separated glauconites, which yielded a
624 large variation in K_2O content (4.1–9.2 wt.%), total porosity (2–10 vol.%), pore volume (16–
625 35 μm^3), oxidized grain thickness (4–10 μm) and clay mineral impurities (up to 12.5 wt.%)
626 within both bulk and individual glauconite grains. Despite these large differences all glauconite
627 samples from Langenstein and GL-O displayed uniform $\delta^{41}\text{K}$ values of $-0.67\text{\textperthousand} \pm 0.04\text{\textperthousand}$ and
628 $-0.68\text{\textperthousand} \pm 0.03\text{\textperthousand}$, respectively, indicating preservation of a primary seawater- or marine pore
629 water-derived K isotope signal. Applying a K isotope fractionation factor of 0.95‰ between
630 modern seawater and recent glauconite-smectite, our results suggest that the Cretaceous $\text{K}_{\text{seawater}}$
631 isotope composition was ~0.2–0.3‰ higher than today. This finding suggests that authigenic
632 green clay formation or reverse silicate weathering was enhanced under Cretaceous greenhouse
633 conditions, with potential implications for ocean chemistry, the marine C cycle and thus Earth's
634 climate at this time. We conclude that well-preserved glauconite is a promising new archive for
635 reconstructing past seawater $\delta^{41}\text{K}$.

636

637 **Data availability**

638 All data are available within the article.

639 **CRediT authorship contribution statement**

640 **Andre Baldermann:** Conceptualization, Funding acquisition, Formal analysis, Investigation,
641 Methodology, Visualization, Writing – original draft, Writing – review & editing. **Julius**
642 **Baumhakel:** Methodology, Visualization, Writing – review & editing. **Ralf Ditscherlein:**
643 Methodology, Visualization, Writing – review & editing. **Juraj Farkaš:** Writing – review &
644 editing. **Orkun Furat:** Methodology, Visualization, Writing – review & editing. **Jasmin M.**
645 **Hiller:** Writing – review & editing. **Matthias Neumann:** Methodology, Visualization, Writing
646 – review & editing. **Stefan C. Löhr:** Writing – review & editing. **Urs A. Peuker:** Writing –
647 review & editing. **Volker Schmidt:** Methodology, Writing – review & editing. **Xin-Yuan**
648 **Zheng:** Formal analysis, Methodology, Visualization, Writing – review & editing.

649

650 **Declaration of competing interest**

651 The authors declare that they have no known competing financial interests or personal
652 relationships that could have appeared to influence the work reported in this paper.

653

654 **Acknowledgements**

655 This work was financially supported by the NAWI Graz, the ARC Discovery Project
656 (DP210100462; grant to JF, AB and SCL) titled ‘Glauconite: Archive Recording the Timing
657 and Triggers of Cambrian Radiation’, the Horizon Europe EXCITE² project (E2-C1_111; grant
658 to AB) and a NSF CAREER award (#2238685; grant to XZ). This article is based upon work
659 from COST Action mSPACE, CA24122, supported by COST (European Cooperation in
660 Science and Technology). Open access funding was from the Graz University of Technology.

661

662 **References**

663 Abanda, P.A., Hannigan, R.E., 2006. Effect of diagenesis on trace element partitioning in
664 shales. *Chem. Geol.* 230, 42–59.

665 Abbott, A.N., Löhr, S.C., Payne, A., Kumar, H., Du, J., 2022. Widespread lithogenic control of
666 marine authigenic neodymium isotope records? Implications for paleoceanographic
667 reconstructions. *Geochim. Cosmochim. Acta*. 319, 318–336.

668 Abbott, A.N., Löhr, S.C., Trethewy, M., 2019. Are clay minerals the primary control on the
669 oceanic rare earth element budget? *Front. Mar. Sci.* 6, 1–19.

670 Amorosi, A., 2012. The occurrence of glaucony in the stratigraphic record: distribution patterns
671 and sequence stratigraphic significance. *International Association of Sedimentologists
672 Special Publications*, 45, 37–54.

673 Arvidson, R.S., Mackenzie, F.T., Guidry, M.W., 2013. Geologic history of seawater: A MAGic
674 approach to carbon chemistry and ocean ventilation. *Chem. Geol.* 362, 287–304.

675 Baldermann, A., Banerjee, S., Czuppon, G., Dietzel, M., Farkaš, J., Löhr, S., Moser, U.,
676 Scheiblhofer, E., Wright, N.M., Zack, T., 2022. Impact of green clay authigenesis on
677 element sequestration in marine settings. *Nat. Commun.* 13, 1527.

678 Baldermann, A., Banerjee, S., Löhr, S.C., Rudmin, M., Warr, L.N., Chakraborty, A., 2025.
679 Exploring reverse silicate weathering across geological time: a review. *Clay Miner.* 60, 1–
680 27.

681 Baldermann, A., Dietzel, M., Mavromatis, V., Mittermayr, F., Warr, L.N., Wemmer, K., 2017.
682 The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and
683 illite-smectite: A case study of Upper Cretaceous shallow-water carbonates. *Chem. Geol.*
684 453, 21–34.

685 Baldermann, A., Grathoff, G.H., Nickel, C., 2012. Micromilieu-controlled glauconitization in
686 fecal pellets at Oker (Central Germany). *Clay Miner.* 47, 513–538.

687 Baldermann, A., Stamm, F.M., Farkaš, J., Löhr, S., Ratz, B., Letofsky-Papst, I., Dietzel, M.,
688 2024. Precipitation of short-range order hydroxy aluminosilicate (HAS) and hydrous ferric
689 silicate (HFS) at ambient temperature: Insights into mineral formation pathways, crystal
690 chemistry and solubility-stability relationships. *Chem. Geol.* 646, 121911.

691 Baldermann, A., Warr, L.N., Grathoff, G.H., Dietzel, M., 2013. The rate and mechanism of
692 deep-sea glauconite formation at the Ivory Coast – Ghana marginal ridge, *Clays Clay
693 Miner.* 61, 258–276.

694 Banerjee, S., Bansal, U., Thorat, A.V., 2016. A review on palaeogeographic implications and
695 temporal variation in glaucony composition. *J. Palaeogeogr.* 5, 43–71.

696 Banner, J.L., 1995. Application of the trace element and isotope geochemistry of strontium to
697 studies of carbonate diagenesis. *Sedimentology* 42, 805–824.

698 Bayon, G., Giresse, P., Chen, H., Rouget, M.-L., Gueguen, B., Moizinho, G.R., Barrat, J.-A.,
699 Beaufort, D., 2023. The Behavior of Rare Earth Elements during Green Clay Authigenesis
700 on the Congo Continental Shelf. *Minerals* 13, 1081.

701 Berner, E.K., Berner, R.A., 2012. *Global Environment: Water, Air, and Geochemical Cycles*.
702 Princeton University Press, Princeton, 1–443.

703 Bonhomme, M.G., Odin, G.S., 1979. Isotopic consequences of preheating in potassium-argon
704 dating of various glauconies. 6th European Colloquium Geochronology, Lillehammer,
705 Norway, 1–9.

706 Brand, U., Veizer, J., 1980. Chemical diagenesis of a multicomponent carbonate system; 1,
707 Trace elements. *J. Sediment. Res.* 50, 1219–1236.

708 Breiman, L., 2001. Random forests. *Mach. Learn.* 45, 5–32.

709 Chakraborty, A., Srivastava, A., Singh, B., Punekar, J., Dasgupta, S., Chakrabarty, S., Banerjee,
710 S., 2025. Oxygen-depleted and ferruginous seawater composition imprinted in Early
711 Cretaceous Fe-rich Al-glauconites in marginal marine deposits. *Sci. Rep.* 15, 37208.

712 Clauer, N., 1981. Rb-Sr and K-Ar dating of Precambrian clays and glauconites. *Precam. Res.*
713 15, 331–352.

714 Courbe, C., Velde. B., Meunier. A., 1981. Weathering of glauconites: reversal of the
715 glauconitization process in a soil profile in western France. *Clay Miner.* 16, 231–243.

716 Crowley, T.J., Berner, R.A., 2001. CO₂ and Climate Change. *Science* 292, 870–872.

717 Ellegaard, M., Clokie, M.R.J., Czypionka, T., Frisch, D., Godhe, A., Kremp, A., Letarov, A.,
718 McGinity, T.J., Ribeiro, S., Anderson, N.J., 2020. Dead or alive: sediment DNA archives
719 as tools for tracking aquatic evolution and adaptation. *Commun. Biol.* 3, 169.

720 Farkaš, J., Wallmann, K., Mosley, L., Staudigel, P., Zheng, X.-Y., Leyden, E., Shao, Y., Fryda,
721 J., Holmden, C., Eisenhauer, A., 2024. Alkalinity and elemental cycles in present and past
722 ocean: Insight from geochemical modeling and alkali and alkaline earth metal isotopes.
723 *Treatise on Geochemistry* (Third Edition), pp. 33-87.

724 Fichtner, V., Strauss, H., Immenhauser, A., Buhl, D., Neuser, R.D., Niedermayr, A., 2017.
725 Diagenesis of carbonate associated sulfate. *Chem. Geol.* 463, 61–75.

726 Geilert, S., Frick, D.A., Abbott, A.N., Löhr, S.C., 2024. Marine clay maturation induces
727 systematic silicon isotope decrease in authigenic clays and pore fluids. *Commun. Earth
728 Environ.* 5, 573.

729 Goldstein, R.H., 2001. Fluid inclusions in sedimentary and diagenetic systems. *Lithos* 55, 159–
730 193.

731 Grathoff, G.H., Moore, D.M., 1996. Illite Polytotype Quantification Using Wildfire© Calculated
732 X-Ray Diffraction Patterns. *Clays Clay Miner.* 44, 835–842.

733 Haley, B.A., Du, J., Abbott, A.N., McManus, J., 2017. The Impact of Benthic Processes on
734 Rare Earth Element and Neodymium Isotope Distributions in the Oceans. *Front. Mar. Sci.*
735 4, 1–12.

736 Han, S., Löhr, S.C., Abbott, A.N., Baldermann, A., Shields, G.A., Cui, H., Kaufman, A.J.,
737 Chen, B., Yu, B., 2024. Authigenic clay mineral constraints on spatiotemporal evolution
738 of restricted, evaporitic conditions during deposition of the Ediacaran Doushantuo
739 Formation. *Earth Planet. Sci. Lett.* 626, 118524.

740 Hassan, M.S., Baioumy, H.M., 2006. Structural and Chemical Alteration of Glauconite under
741 Progressive Acid Treatment. *Clays Clay Miner.* 54, 491–499.

742 Hemming, S.R., Liu, T., Northrup, P., Nicholas, S., Rasbury, E.T., Chen, H., Warden, A., Chen,
743 A., Li, R., Tappero, R., Cox, S.E., Everard, J., Wang, S., Deluca, M., Bostick, B., Halliday,
744 A.N., 2023. Synchrotron microanalytical characterization and K/Ar dating of the GL-O-1
745 glauconite reference material at the single pellet scale and reassessment of the age of
746 visually mature pellets. *Minerals* 13, 773.

747 Hille, M., Hu, Y., Huang, T.Y., Teng, F.Z., 2019. Homogeneous and heavy potassium isotopic
748 composition of global oceans. *Science Bulletin* 64, 1740–1742.

749 Huang, W.L., Bishop, A.M., Brown, R.W., 1986. The effect of fluid/rock ratio on feldspar
750 dissolution and illite formation under reservoir conditions. *Clay Miner.* 21, 585–601.

751 Huang, T.-Y., Teng, F.-Z., Rudnick, R.L., Chen, X.-Y., Hu, Y., Liu, Y.-S., Wu, F.-Y., 2020.
752 Heterogeneous potassium isotopic composition of the upper continental crust. *Geochim.
753 Cosmochim. Acta* 278, 122–136.

754 Isson, T.T., Planavsky, N.J., 2018. Reverse weathering as a long-term stabilizer of marine pH
755 and planetary climate. *Nature* 560, 471–475.

756 Isson, T., Rauzi, S., 2024. Oxygen isotope ensemble reveals Earth's seawater, temperature, and
757 carbon cycle history. *Science* 383, 666–670.

758 Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. *Geochem. Geophys. Geosyst.* 11,
759 Q03004.

760 Jones, C.E., Jenkyns, H.C., 2001. Seawater Strontium Isotopes, Oceanic Anoxic Events, and
761 Seafloor Hydrothermal Activity in the Jurassic and Cretaceous. *Am. J. Sci.* 301, 112–149.

762 Kisiel, M., Skiba, M., Skoneczna, M., Maj-Szeliga, K., Błachowski, A., 2018. Weathering of
763 glauconite in an alkaline environment – A case study from Krakow area, Poland. *Catena*
764 171, 541–551.

765 Krissansen-Totton, J., Catling, D.C., 2020. A coupled carbon-silicon cycle model over Earth
766 history: Reverse weathering as a possible explanation of a warm mid-Proterozoic climate.
767 *Earth Planet. Sci. Lett.* 537, 116181.

768 Legland, D., Kiêu, K., Devaux, M.-F., 2007. Computation of Minkowski measures on 2D and
769 3D binary images. *Image Anal. Stereol.* 26, 83–92.

770 Li, S., Li, W., Beard, B.L., Raymo, M.E., Wang, X., Chen, Y., Chen, J., 2019. K isotopes as a
771 tracer for continental weathering and geological K cycling. *Proc. Natl. Acad. Sci. USA*
772 116, 8740–8745.

773 Li, W., Liu, X.-M., Wang, K., Fodrie, F.J., Yoshimura, T., Hu, Y.-F., 2021a. Potassium phases
774 and isotopic composition in modern marine biogenic carbonates. *Geochim. Cosmochim.*
775 *Acta* 304, 364–380.

776 Li, W., Lui, X.-M., Hu, Y., Teng, F.-Z., Hu, Y., 2021b. Potassium isotopic fractionation during
777 clay adsorption. *Geochim. Cosmochim. Acta* 304, 160–177.

778 Li, W., Liu, X.-M., Wang, K., McManus, J., Haley, B.A., Takahashi, Y., Shakouri, M., Hu, Y.,
779 2022. Potassium isotope signatures in modern marine sediments: Insights into early
780 diagenesis. *Earth Planet. Sci. Lett.* 599, 117849.

781 Löhr, S.C., Khazaie, E., Farkaš, J., Baldermann, A., Gilbert, S., Maas, R., Subarkah, D., Blades,
782 M.L., Collins, A.S., 2025. Origin and Significance of Age Variability in the Glauconite
783 Reference Material GL-O: Implications for In Situ Rb-Sr Geochronology. *Geostand.*
784 *Geoanal. Res.* 49, 197–216.

785 Löhr, S.C., Zheng, X.-Y., Farkaš, J., Lv, Y., Abbott, A.N., Baldermann, A., Weissgerber, J.,
786 2026a. Marine clay authigenesis controls seawater potassium isotope composition. In
787 review. *Earth Planet. Sci. Lett.*

788 Löhr, S.C., Abbott, A.N., Baldermann, A., Farkaš, J., 2026b. Impact of authigenic clay
789 formation on marine trace element cycling. Accepted. *Nat. Commun.*

790 Loyola, C., Farkaš, J., Collins, A.S., Gilbert, S.E., Verdel, C., Löhr, S.C., Brock, G.A., Shields,
791 G.A., Baldermann, A., Redaa, A., Blades, M., Subarkah, D., Bishop, C., Giles, S.H.,
792 Christie-Black, N., Haines, P.W., 2025. In situ Rb–Sr dating and REE analysis of
793 glauconites and detrital feldspars from the Ediacaran/Cambrian strata: Centralian and
794 Adelaide Superbasins, Australia. *Precam. Res.* 427, 107851.

795 Lyons, T.W., Tino, C.J., Fournier, G.P., Anderson, G.P., Leavitt, W.D., Konhauser, K.O.,
796 Stüeken, E.E., 2024. Co-evolution of early Earth environments and microbial life. *Nat.*
797 *Rev. Microbiol.* 22, 572–586.

798 Maire, E., Withers, P.J., 2014. Quantitative X-ray tomography. *Int. Mater. Rev.*, 59, 1–43.

799 MathWorks, 2025. MATLAB R2025b. The MathWorks, Inc., Natick, Massachusetts, USA.

800 Martin, J., Lusher, A., Nixon, F.C., 2022. A review of the use of microplastics in reconstructing
801 dated sedimentary archives. *Sci. Total Environ.* 806, 150818.

802 McLachlan, G.J., Peel, D., 2000. Finite Mixture Models. New York: Wiley.

803 Mernagh, T.P., 2015. A Review of Fluid Inclusions in Diagenetic Systems. *Bulletin of the
804 Geological Society of China* 89, 697–714.

805 Montagna, P., Silenzi, S., Devoti, S., Mazzoli, C., McCulloch, M., Scicchitano, G., Taviani,
806 M., 2008. Climate reconstructions and monitoring in the Mediterranean Sea: A review on
807 some recently discovered high-resolution marine archives. *Rend. Fis. Acc. Lincei* 19, 121–
808 140.

809 Mosser-Ruck, R., Pironon, J., Cathelineau, M., Trouiller, A., 2001. Experimental illitization of
810 smectite in a K-rich solution. *Eur. J. Miner.* 13, 829–840.

811 Müller, R.D., Mather, B., Dutkiewicz, A., Keller, T., Merdith, A., Gonzalez, C.M., Gorczyk,
812 W., Zahirovic, S., 2022. Evolution of Earth's tectonic carbon conveyor belt. *Nature* 605,
813 629–639.

814 Odin, G.S., 1982. Interlaboratory standards for dating purposes. In: Odin, G.S. (ed.), *Numerical
815 dating in stratigraphy*. Wiley (New York), 123–150.

816 Odin, G.S., Matter, A., 1981. De glauconiarum origine. *Sedimentology* 28, 611–641.

817 Paytan, A., Kastner, M., Campbell, D., Thiemens, M.H., 1998. Sulfur Isotopic Composition of
818 Cenozoic Seawater Sulfate. *Science* 282, 1459–1462.

819 Pestitschek, B., Gier, S., Essa, M., Kurzweil, H., 2012. Effects of Weathering on Glauconite:
820 Evidence from The Abu Tartur Plateau, Egypt. *Clays Clay Miner.* 60, 76–88.

821 Prewitt, J.M.S., Mendelsohn, M.L., 1966. The analysis of cell images. *Ann. N. Y. Acad. Sci.*
822 128, 1035–1053.

823 Rafiei, M., Löhr, S.C., Alard, O., Baldermann, A., Farkaš, J., Brock, G.A., 2023. Microscale
824 Petrographic, Trace Element, and Isotopic Constraints on Glauconite Diagenesis in Altered
825 Sedimentary Sequences: Implications for Glauconite Geochronology. *Geochem. Geophys.
826 Geosyst.* 24, e2022GC010795.

827 Richter, F.M., Rowley, D.B., DePaolo, D.J., 1992. Sr isotope evolution of seawater: the role of
828 tectonics. *Earth Planet. Sci. Lett.* 109, 11–23.

829 Rubio, B., López-Pérez, A.E., 2024. Exploring the genesis of glaucony and verdine facies for
830 paleoenvironmental interpretation: A review. *Sed. Geol.* 461, 106579.

831 Sánchez-Navas, A., Martín-Algarra, A., Eder, V., Jagannadha Reddy, B., Nieto, F., Zanin,
832 Y.N., 2008. Color, mineralogy and composition of Upper Jurassic West Siberian
833 glauconite: useful indicators of paleoenvironment. *Can. Miner.* 46, 1249–1268.

834 Santiago Ramos, D.P., Morgan, L.E., Lloyd, N.S., Higgins, J.A., 2018. Reverse weathering in
835 marine sediments and the geochemical cycle of potassium in seawater: Insights from the K
836 isotopic composition ($^{41}\text{K}/^{39}\text{K}$) of deep-sea pore-fluids. *Geochim. Cosmochim. Acta* 236,
837 1–22.

838 Scheiblhofer, E., Moser, U., Löhr, S., Wilmsen, M., Farkaš, J., Gallhofer, D., Bäckström, A.M.,
839 Zack, T., Baldermann, A., 2022. Revisiting Glauconite Geochronology: Lessons Learned
840 from In Situ Radiometric Dating of a Glauconite-Rich Cretaceous Shelfal Sequence.
841 *Minerals*, 12, 818.

842 Selby, D., 2009. U-Pb zircon geochronology of the Aptian/Albian boundary implies that the
843 GL-O international glauconite standard is anomalously young. *Cretaceous Research* 30,
844 1263–1267.

845 Seton, M., Gaina, C., Müller, R.D., Heine, C., 2009. Mid-Cretaceous seafloor spreading pulse:
846 Fact or fiction? *Geology* 37, 687–690.

847 Soille, P. *Morphological Image Analysis: Principles and Applications*. Berlin: Springer, 1999.

848 Sommer, C., Straehle, C., Köthe, U., Hamprecht, F.A., 2011. Ilastik: Interactive learning and
849 segmentation toolkit. In: 2011 IEEE Int. Symp. Biomed. Imaging: From Nano to Macro.
850 IEEE, 230–233.

851 Steffen, W., Richardson, K., Rockström, J., Schellnhuber, H.J., Dube, O.P., Dutreuil, S.,
852 Lenton, T.M., Lubchenco, J., 2020. The emergence and evolution of Earth System Science.
853 *Nat. Rev. Earth Environ.* 1, 54–63.

854 Swart, P.K., 2015. The geochemistry of carbonate diagenesis: The past, present and future.
855 *Sedimentology* 62, 1233–1304.

856 Teng, F.-Z., Hu, Y., Ma, J.-L., Wei, G.-J., Rudnick, R.L., 2020. Potassium isotope fractionation
857 during continental weathering and implications for global K isotopic balance. *Geochim.
858 Cosmochim. Acta* 278, 261–271.

859 Tribouillard, N., Bout-Roumazeilles, V., Guillot, F., Baudin, F., Deconinck, J.-F., Abraham,
860 R., Ventalon, S., 2023. A sedimentological oxymoron: highly evolved glauconite of earliest
861 diagenetic origin. *C. R. Géosci.* 355, 157–173.

862 Wanamaker Jr., A.D., Hetzinger, S., Halfar, J., 2011. Reconstructing mid- to high-latitude
863 marine climate and ocean variability using bivalves, coralline algae, and marine sediment
864 cores from the Northern Hemisphere. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 302, 1–9.

865 Wang, K., Close, H.G., Tuller-Ross, B., Chen, H., 2020. Global Average Potassium Isotope
866 Composition of Modern Seawater. *ACS Earth Space Chem.* 4, 1010–1017.

867 Wang, K., Li, W., Li, S., Tian, Z., Koefoed, P., Zheng, X.-Y., 2021. Geochemistry and
868 Cosmochemistry of Potassium Stable Isotopes. *Geochem.* 81, 125786.

869 Warren, J. K., 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine
870 and nonmarine deposits. *Earth-Sci. Rev.* 98, 217–268.

871 Weaver, C.E., Pollard, L.D., 1973. *The Chemistry of Clay Minerals*, 213 pp. Elsevier,
872 Amsterdam, London, New York.

873 Wilmsen, M., 2007. Accommodation- versus capacity-controlled deposition in the Cenomanian
874 (Upper Cretaceous) of northern Germany. *Beringeria* 37, 239–251.

875 Wilmsen, M., Bansal, U., 2021. Depositional setting and limiting factors of early Late
876 Cretaceous glaucony formation: implications from Cenomanian glauconitic strata (Elbtal
877 Group, Germany). *Facies* 67, 24.

878 Wilmsen, M., Niebuhr, B., Hiss, M., 2005. The Cenomanian of northern Germany: facies
879 analysis of a transgressive biosedimentary system. *Facies* 51, 242–263.

880 Winkelstein, I.Z., Lohmann, K.C., 2016. Shallow burial alteration of dolomite and limestone
881 clumped isotope geochemistry. *Geology* 44, 467–470.

882 Zheng, X.-Y., Beard, B.L., Neuman, M., Fahnestock, M.F., Bryce, J.G., Johnson, C.M., 2022a.
883 Stable potassium (K) isotope characteristics at mid-ocean ridge hydrothermal vents and its
884 implications for the global K cycle. *Earth Planet. Sci. Lett.* 593, 117653.

885 Zheng, X.-Y., Chen, X.-Y., Ding, W., Zhang, Y., Charin, S., Gérard, Y., 2022b. High precision
886 analysis of stable potassium (K) isotopes by the collision cell MC-ICP-MS “Sapphire” and
887 a correction method for concentration mismatch. *J. Anal. At. Spectrom.* 37, 1273–1287.

888 **Figures and Tables**

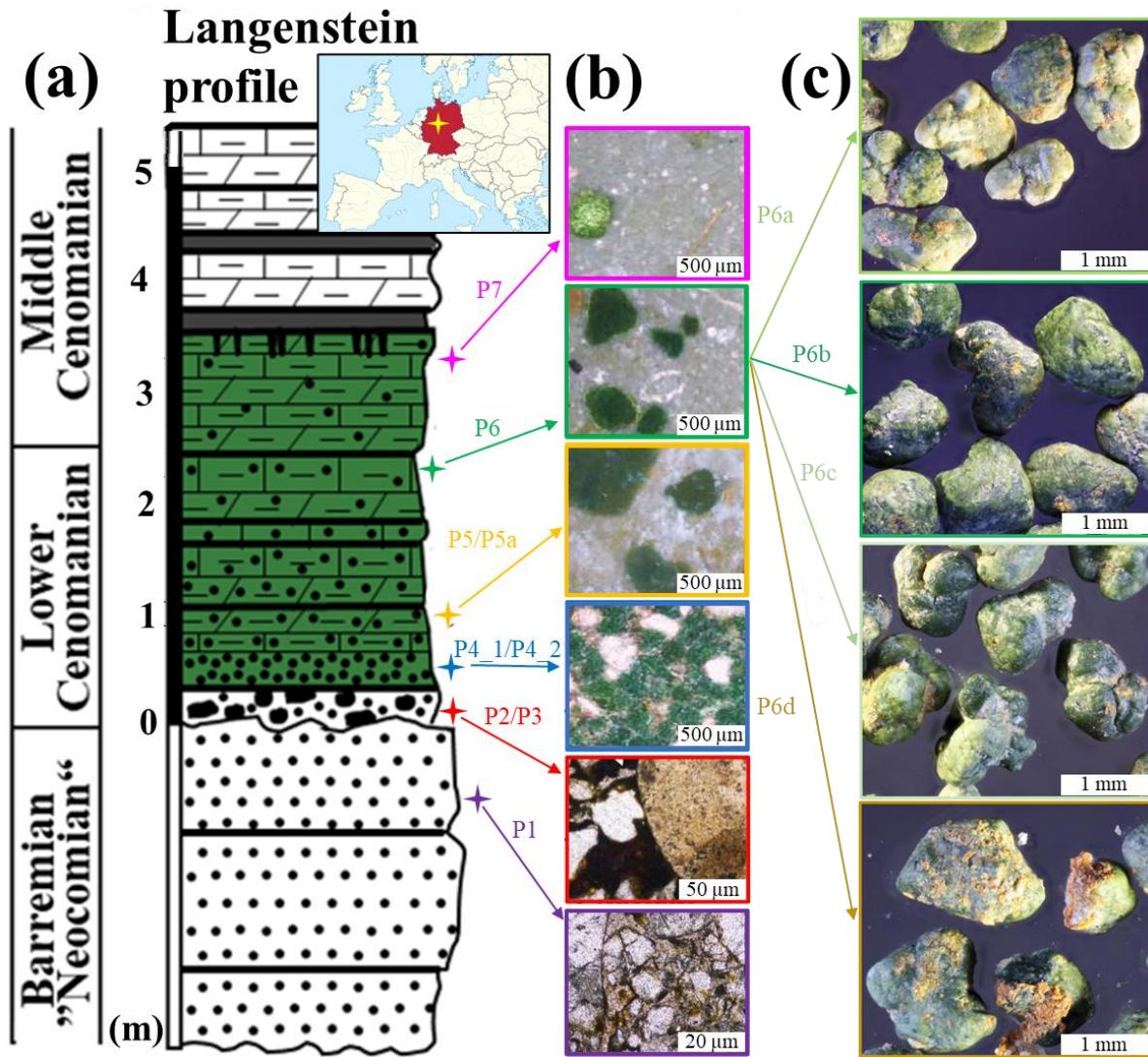
889

890 Table 1: Mean composition ($\pm 2\text{SD}$) of the bulk glauconite fractions (P4-P7) and separated
891 glauconite sub-fractions (P6 sub-series) determined by EMP analysis.

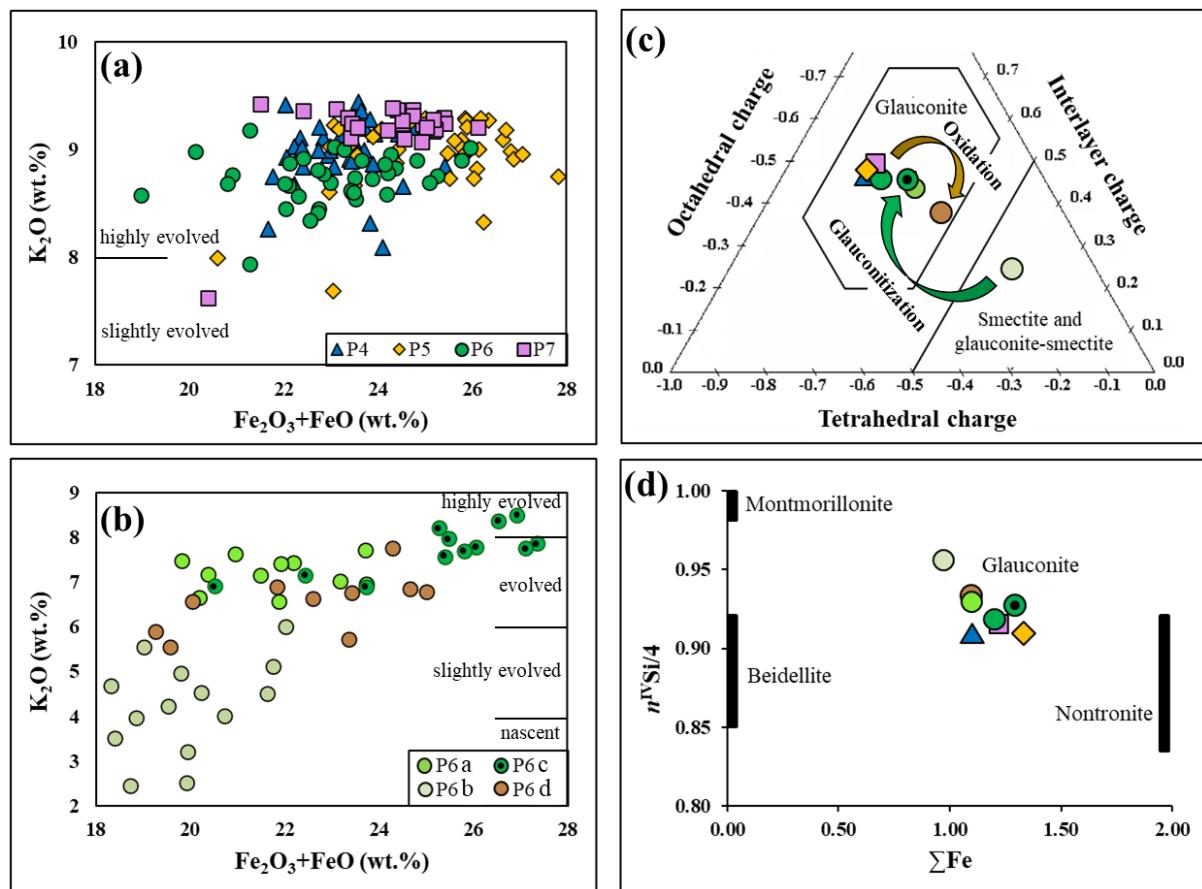
Sample type	No. of spots	Data type	Al_2O_3 (wt.%)	MgO (wt.%)	SiO_2 (wt.%)	Na_2O (wt.%)	CaO (wt.%)	Fe_2O_3 (wt.%)	FeO (wt.%)	K_2O (wt.%)	P_2O_5 (wt.%)	Total (wt.%)
P4_1	37	mean	8.42	4.10	51.25	0.02	0.39	21.33	1.92	8.97	0.21	96.62
		2SD	0.61	0.17	1.34	0.02	0.81	0.81	0.07	0.29	0.43	1.11
P5	44	mean	6.95	4.07	51.28	0.03	0.40	23.16	2.08	8.96	0.23	97.17
		2SD	0.84	0.23	1.85	0.03	1.38	1.39	0.13	0.32	0.69	1.16
P6	37	mean	8.22	4.30	52.40	0.02	0.51	21.13	1.90	8.73	0.34	97.55
		2SD	0.88	0.22	1.39	0.02	0.57	1.40	0.13	0.23	0.78	1.36
P7	26	mean	7.74	4.29	52.68	0.03	0.13	22.16	2.00	9.19	0.10	98.31
		2SD	0.61	0.16	0.87	0.03	0.13	1.18	0.11	0.33	0.19	1.21
P6a	11	mean	9.68	4.35	53.96	0.33	0.35	18.24	2.73	6.94	0.22	96.81
		2SD	1.27	0.60	0.87	0.10	0.17	1.19	0.18	0.38	0.25	1.13
P6b	12	mean	7.16	4.32	52.71	0.17	0.25	20.58	3.63	7.42	0.30	96.54
		2SD	1.35	0.56	1.17	0.06	0.05	1.74	0.31	0.53	0.28	1.22
P6c	14	mean	11.46	4.02	57.91	0.30	0.26	17.17	2.19	4.12	0.13	97.55
		2SD	1.25	0.55	0.94	0.16	0.17	1.01	0.30	1.05	0.11	1.41
P6d	10	mean	9.49	4.18	54.74	0.24	0.29	18.64	3.09	6.35	0.26	97.29
		2SD	1.32	0.42	1.46	0.14	0.11	1.78	0.43	0.65	0.32	1.23

892

893 Table 2: Mean values ($\pm 1\text{SD}$) of morphological descriptors determined by statistical analysis
894 of CT-derived 3D image data of glauconite grains from the P6 sub-series. The '*' refers to the
895 presence of oxidized rims of different thickness at the glauconite grain surfaces (cf. Fig. 1c).

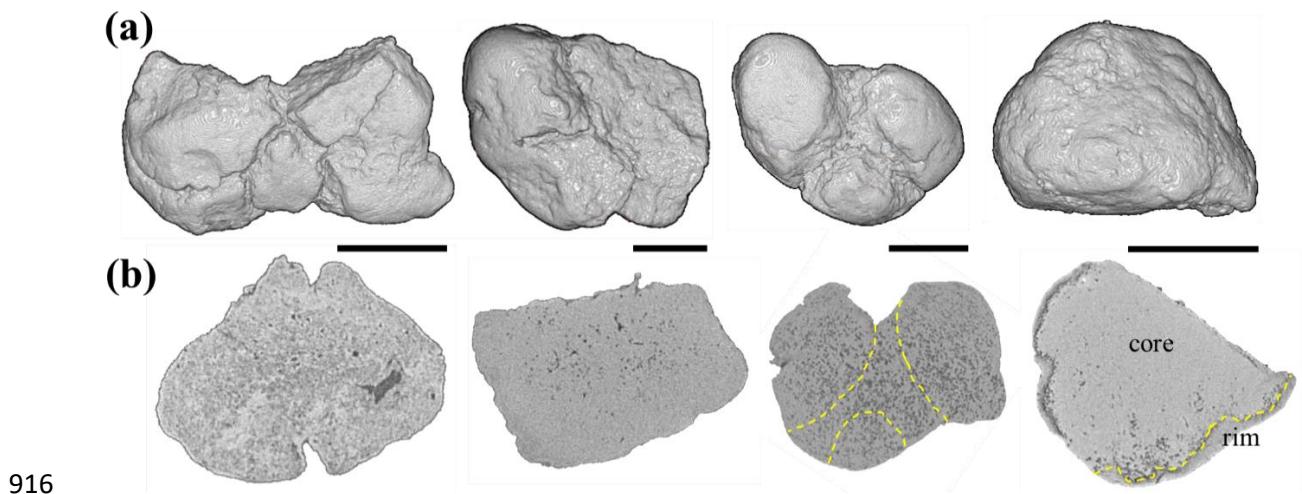

Sample type	Total porosity (vol.%)	Inner porosity (vol.%)	Sphericity (-)	Mean pore volume (μm^3)	Inner pore volume (μm^3)	Average rust layer thickness (μm)*
Light green pellets (sample P6a)	10.1 ± 8.1	10.9 ± 9.9	0.75 ± 0.11	27.1 ± 9.1	24.3 ± 17.4	4.5
Medium/dark green pellets (sample P6b)	1.8 ± 0.6	1.3 ± 1.4	0.73 ± 0.03	15.7 ± 10.9	9.2 ± 10.7	4.7
Foraminifera test infills (sample P6c)	7.8 ± 12.6	9.4 ± 15.8	0.75 ± 0.01	34.5 ± 50.5	52.0 ± 85.2	4.2
Oxidized grains (sample P6d)	4.4 ± 2.5	1.0 ± 0.3	0.74 ± 0.02	27.8 ± 23.9	7.5 ± 8.2	10.2

896

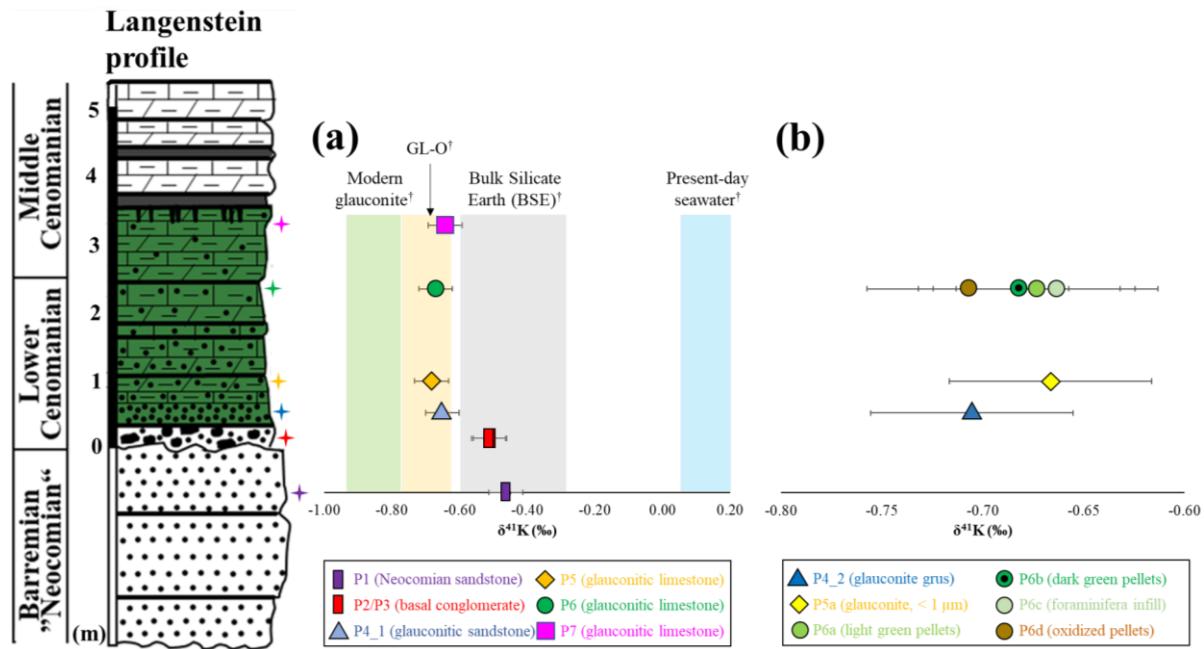

897 Table 3: Mean $\delta^{41}\text{K}$ isotopic composition ($\pm 2\text{SD}$) of the detrital/burial diagenetic clay fraction
 898 (samples P1-3), bulk glauconite fractions (samples P4-P7) and separated glauconite pellets (P6
 899 sub-series).

Sample type	Description	$\delta^{41}\text{K}$ (‰)	2SD	n
P1	Ilt and Ilt-Smc	-0.46	0.05	5
P2	Ilt and Ilt-Smc	-0.51	0.02	5
P3	Ilt and Ilt-Smc	-0.51	0.04	4
P4_1	Glauconite grains	-0.65	0.03	5
P4_2	Glauconite grus	-0.71	0.05	4
P5	Glauconite grains	-0.68	0.04	5
P5a	Glauconite (< 1 μm)	-0.67	0.03	8
P6	Glauconite grains	-0.67	0.03	5
P6a	Light green grains	-0.67	0.02	5
P6b	Dark green grains	-0.68	0.05	5
P6c	Foraminifera test infills	-0.66	0.03	5
P6d	Oxidized grains	-0.71	0.04	4
P7	Glauconite grains	-0.64	0.05	7
GL-O_1	Dark green grains	-0.65	0.03	5
GL-O_2	Dark green cracked grains	-0.67	0.02	7
GL-O_3	Very dark green grains	-0.66	0.05	5
GL-O_4	Medium green grains	-0.65	0.03	5
GL-O_5	Medium green cracked grains	-0.80	0.02	5
GL-O_6	Light green grains	-0.63	0.03	5
GL-O_7	Weathered grains	-0.68	0.02	5

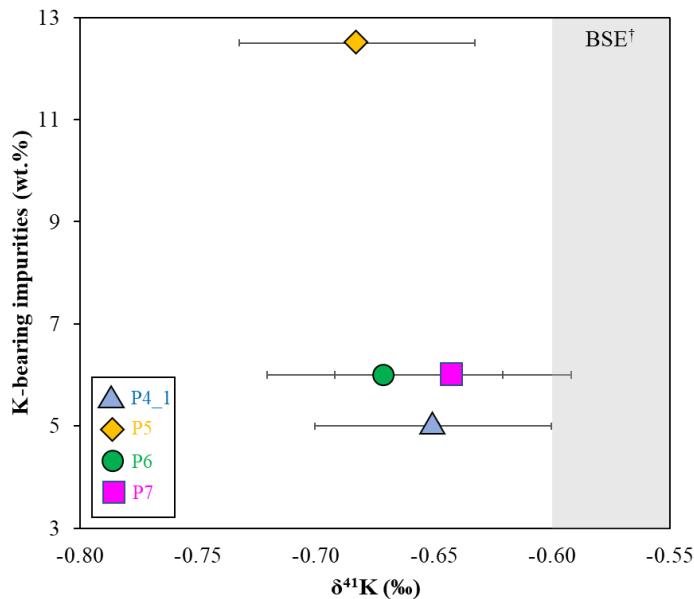
900



902 Figure 1: (a) Overview of the study site, where the yellow star marks the locality Langenstein
 903 in the Subhercynian Cretaceous Basin (Germany). The lithostratigraphic profile of Langenstein
 904 includes the glauconite-bearing interval colored in green. (b) Lithofacies at Langenstein (from
 905 bottom to top): Neocomian sandstone embedded in a clayey matrix (P1); conglomerate with
 906 apatite grains and hematite cement (P2 and P3); glauconite-bearing sandstone (P4_1 and P4_2);
 907 glauconitic mud- to packstones (P5-P7 and P5a). (c) Photomicrographs of separated green grain
 908 sub-fractions from sample P6 (from top to bottom): light green pellets (P6a), dark green pellets
 909 (P6b), foraminifer test infillings (P6c) and oxidized (weathered) pellets (P6d).

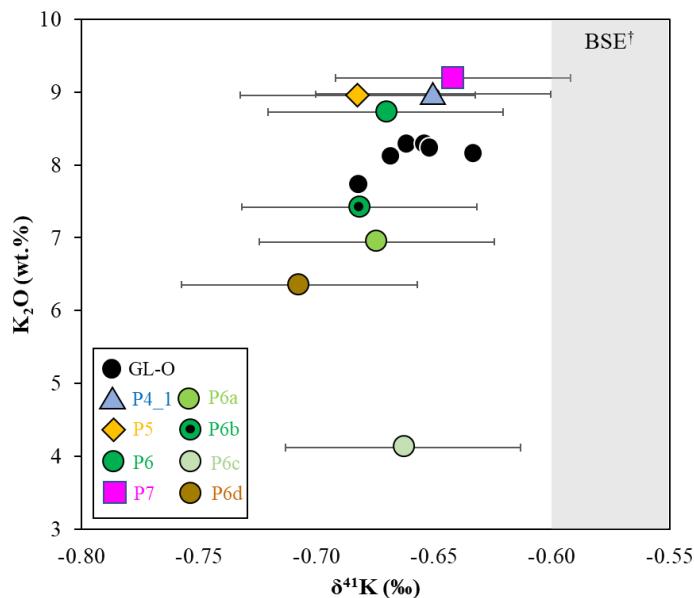

910

911 Figure 2: Chemical composition of glauconite and glauconite-smectite. (a,b) Cross-plot of K_2O
 912 vs total Fe content shows the green grains to be nascent to highly evolved and Fe-rich, which
 913 is typical of Mesozoic to Cenozoic glauconites. (c,d) The plot of the averaged chemical data in
 914 the charge distribution diagram and $n^{\text{IVSi}/4}$ vs total Fe content diagram identifies the green
 915 grains as glaucony members. Note that P6d grains follow reverse glauconitization.

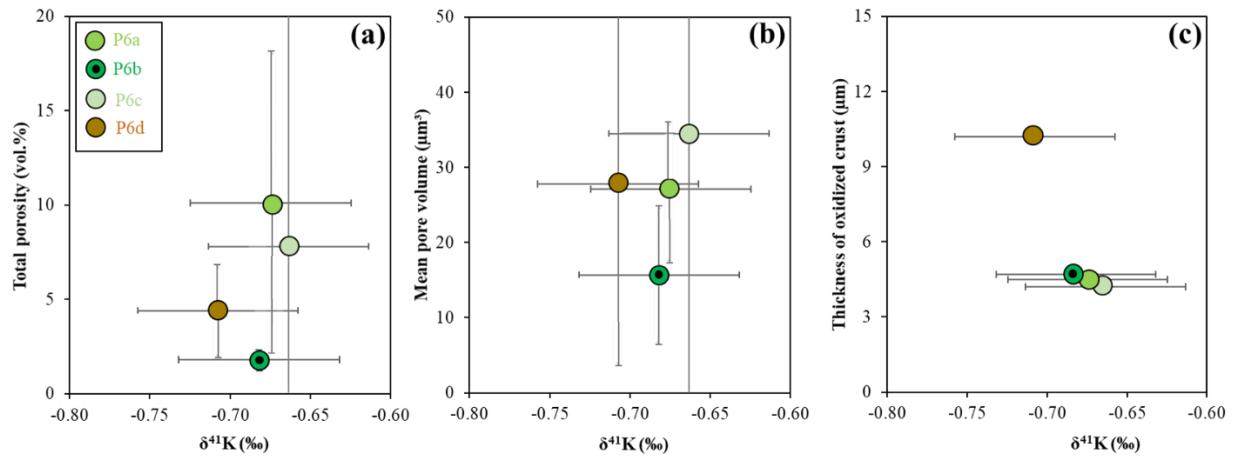


916
917 Figure 3: 3D images of selected glauconite pellets from sub-sample P6 show microstructural
918 features based on processed CT image data in (a) from left to right: light green pellets,
919 medium/dark green pellets, foraminifer test infillings (here: Hedbergella, with former chambers
920 marked with dashed yellow lines) and oxidized (weathered) pellets and corresponding sections
921 in (b). Scale bar: 200 μ m. See Table 2 for mean values of morphological descriptors of the
922 glauconites.

923


924 Figure 4: $\delta^{41}\text{K}$ isotope systematics observed across the Langenstein profile showing (a) the
 925 transition from continental detrital/burial diagenetic sedimentation to marine glauconite
 926 deposition and (b) the narrow $\delta^{41}\text{K}$ isotope range of glauconite separates from the P6 sub-series
 927 despite significant microstructural differences. The $\delta^{41}\text{K}$ compositions of modern glauconites
 928 (Löhr et al., submitted), present-day seawater (Wang et al., 2020), Bulk Silicate Earth (Wang
 929 et al., 2021) and GL-O are included for comparison.

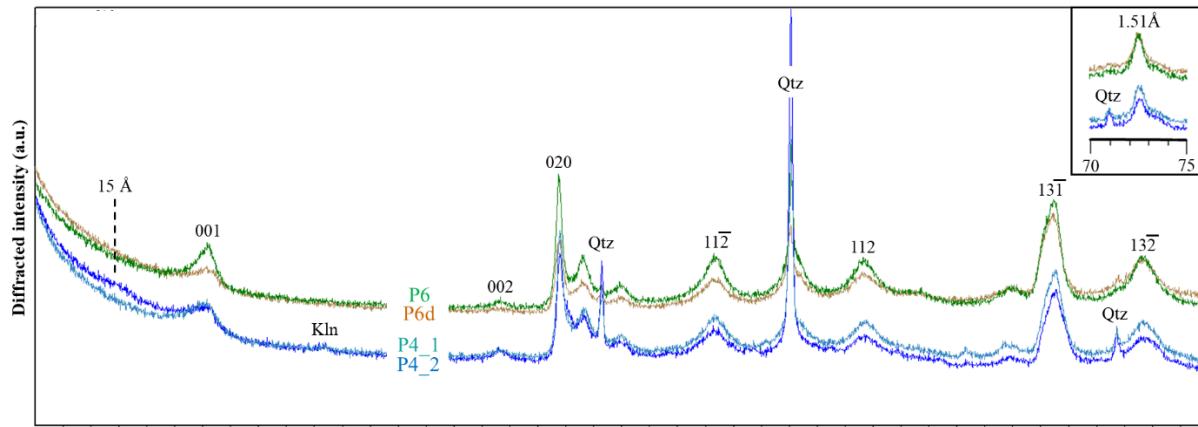
930


931 Figure 5: Content of K-bearing clay mineral impurities (i.e., detrital illite and burial diagenetic
 932 illite-smectite) in bulk glauconite fractions (data from Scheiblhofer et al., 2022) plotted against
 933 the glauconite $\delta^{41}\text{K}$ composition. Note the absence of a correlation. BSE (Wang et al., 2021) is
 934 included for comparison.

935

936

937 Figure 6: K_2O contents vs $\delta^{41}\text{K}$ isotope compositions of individual glauconite fractions from
 938 Langenstein (this study) and GL-O (data from Löhr et al., 2025). Note the absence of a
 939 correlation. BSE compositional range (Wang et al., 2021) is included for comparison.



940

941 Figure 7: Effect of (a) total porosity, (b) mean pore volume and (c) thickness of oxidized surface
 942 crust on the $\delta^{41}\text{K}$ isotopic composition of glauconite separates from the P6 sub-series. Crust
 943 thicknesses have been obtained on a single grain, meaning no 1SD can be presented.

944

945

946

947 Figure 8: Effect of grain surface oxidation on the bulk mineralogical composition of extracted
 948 glauconite grains. Note the asymmetric broadening of the glauconite 001-reflection (sample
 949 P6d) and the appearance of a 15 Å-peak (sample P4_2) upon intensified chemical weathering,
 950 which point the reverse glauconitization.