
USING CONVOLUTIONAL NEURAL NETWORKS AND PATTERN MATCHING FOR

DIGITIZATION OF PRINTED CIRCUIT DIAGRAMS

LUKAS FUCHS1, MARC DIESSE2, MATTHIAS WEBER1, ARIF RASIM2, JULIAN FEINAUER2,
VOLKER SCHMIDT1

1Institute of Stochastics, Ulm University, 89069 Ulm, Germany

2 pragmatic minds GmbH, 73230 Kirchheim unter Teck, Germany

Abstract. The maintenance and repair of industrial machinery rely on circuit diagrams, which serve as

essential references for troubleshooting and have to be updated when machinery is adapted. However, many

circuit diagrams are not available in a proper data structure, i.e., they exist as as unstructured PDF files,
rendered images or even photos. Existing methods for digitization often focus on isolated tasks, such as

symbol detection, but fail to provide a comprehensive approach. This paper presents a novel pipeline for

extracting the underlying graph structures of circuit diagrams, integrating image preprocessing, pattern
matching, and graph extraction. A U-net model is employed for noise removal, followed by gray-box pattern

matching for device classification and a final graph extraction step to reconstruct circuit connectivity. A

detailed error analysis highlights the strengths and limitations of each pipeline component.

Keywords: Circuit diagram; Image processing; Convolutional neural network; Pattern recog-
nition; Distortion analysis; Similarity measure

1



2 USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD

1. Introduction

The maintenance and repair of machinery are critical tasks in various industries, including manufacturing,
transportation, and energy production. These machines internally are described by circuit diagrams, which
serve as essential blueprints for understanding and troubleshooting electrical systems [23]. However, the
preservation and interpretation of these circuit diagrams pose significant challenges due to their represen-
tation and age. There are attempts to introduce standards [3, 5, 18]. However, on the other hand, there
is an evolution (or non-existence) of documentation standards. Often, these diagrams are available only as
PDF files, with the underlying structure no longer accessible in a more usable format. Sometimes, these
files dot not even contain a proper vector graphic, but only scanned images. Despite the fact, that most
modern circuit diagrams are being created by means of specialized ECAD (electronic computer-aided design)
software, there are significant challenges in leveraging this data. First, many legacy circuit diagrams stored
in archives no longer have corresponding ECAD files, making it difficult to digitize them. Second, certain
proprietary ECAD software, particularly older systems, may lack convenient interfaces for exporting data,
limiting users to printed outputs, which can complicate the digital processing.

Traditional methods of interpreting circuit diagrams are labor-intensive and prone to human errors. Man-
ual transcription and analysis are not only time-consuming but also susceptible to inaccuracies, especially in
complex diagrams with extensive interconnections. However, this reconstruction process is crucial not only
for troubleshooting, but also for adapting the machine. For instance, when a single device is exchanged, a
new circuit diagram must be drawn to reflect the updated configuration. The ability to generate updated
diagrams efficiently ensures that machinery can be modified and maintained with minimal disruption.

Several attempts have been made in the literature to address these tasks. In [24,25], convolutional neural
network (CNN) based proof-of-concepts for automatic detection of electrical devices in circuit diagrams
are presented, demonstrating high accuracy for predefined symbol classes while identifying challenges with
certain line styles. In [20], a Hough transformation is applied for line detection, showcasing its effectiveness
but emphasizing the need for preprocessing to handle textual elements and noise. Furthermore, in [9],
neural networks are explored for analyzing hand-drawn schematics, highlighting their robustness but also
the trade-offs in computational efficiency and interpretability.

The motivation of the present paper is to combine the strengths of these individual approaches while
overcoming their shortcomings, by developing a holistic pipeline that can accurately extract the underlying
graphs from circuit diagrams, despite present text elements, different line styles and noise. The proposed
pipeline consists of image preprocessing, pattern matching, and graph extraction. Initially, a neural network
(NN), specifically a U-net [16, 27], is employed to remove unnecessary information such as noise, text,
logos, and other extraneous elements from the circuit diagram. Following this, a gray-box pattern matching
technique [7] classifies the devices within the diagram and a line detection method identifies wires within the
diagram. Finally, a graph extraction approach identifies and extracts a graph-based representation of the
circuit diagram, suitable for computing, e.g., connected components [14]. Furthermore, the present paper
provides a comprehensive error analysis, showing the benefits and drawbacks of the individual components
of the proposed pipeline, which aims to facilitate the digital preservation, analysis, and visualization of these
diagrams, thereby supporting maintenance activities and reducing downtime.

The rest of this paper is structured as follows: First, in Section 2, the type of data considered is presented.
Then, in Section 3, the graph extraction pipeline is stated, starting with background removal, followed by
device and line detection, and lastly graph extraction. Finally, in Section 4, the precision of the individual
steps of the pipeline is analyzed.

2. Description of data

For training and calibration of the proposed pipeline, openly available circuit diagram data was used. This
training data was assembled from public repositories [2] in the common KiCad schematic format [13], which
is widely used in many open hardware projects. KiCad is an open source ECAD software and was employed
to plot the schematic circuit diagrams to PDF. These PDFs are vector graphics and thus infinitely resolved;



USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD 3

however, they are not easily accessible for the tasks performed within the pipeline due to their unstructured
nature and lack of consistent structural standards in PDF formats [31]. More specifically, PDF files can
include invisible lines, and objects observable as a single structural element can be composed of several
non-hierarchically structured lines, etc. As a remedy, PDF files are converted into images and the methods
described below are applied to these images rather than directly to PDFs. The images contain precisely the
information observable for the human eye in a rendered PDF, i.e., the necessary details for accurate graph
extraction.

Besides addressing the previous mentioned problems, considering rasterized images additionally enables
the use of well-studied convolutional neural networks and pattern matching approaches for the circuit diagram
extraction pipeline.

To calibrate the presented pipeline in a supervised setting and to quantify the quality of its results, we
compute two binary images x, y ∈ {0, 1}m×n of height m ∈ N = {1, 2, . . .} and width n ∈ N from each circuit
diagram in its vector graphic representation. The image x represents simulated but realistic input data of
the pipeline. This is, x includes not only wires and devices but also additional elements such as images, text,
and gaps within lines of wires. In contrast, the image y contains only the essential information of the circuit
diagram, namely the wires represented by connected lines and devices. The image y allows for the straight
forward extraction of information. To generate these pairs of image data (x, y), we utilize a-priori knowledge
of the structure of the PDF files generated by KiCad [13]. This is, the PDF files do not contain dashed lines,
and text is properly decoded as text, not as individual line segments. This allows us to efficiently compute
two versions of the circuit diagram, the image x containing the original text, newly introduced dashed lines
and noise, and y containing neither of them. More precisely, to generate a pair x, y ∈ {0, 1}m×n of a raw
input image and its corresponding preprocessed image, a given vector-based circuit diagram is processed as
follows:

First, to generate x, connected lines are randomly replaced by dashed lines. This modification is applied
independently to each line segment longer than 0.5 cm, with a probability of 0.5. The minimum length
threshold ensures that small lines within devices, which are essential for preserving their meaning, remain
unaltered. The dashed line style (a, b), where a denotes the length of the line segments and b the length of
the gap, is chosen uniformly at random from the range [0.015, 0.15] cm. This ensures diverse and realistic
variations in line styles. The modified vector graphic is rendered to an image with a resolution uniformly
drawn from [150, 500] dpi to account for the large variability of scales and line widths of circuit diagrams
in image representation. The rendering is performed as a binary (black and white) image. Formally, the
resulting image I from a rendering is an element of {0, 1}m×n, where m and n denote the dimensions of
the image. A value of 0 corresponds to background, whereas a value of 1 corresponds to the foreground,
i.e., a line, a device, text, etc. To simulate scanning artifacts, noise is added by randomly inverting each
pixel’s value with a probability of 0.02. This random process generates the network input x. To generate
the corresponding clean image y, the text from the original vector graphic is removed before rendering the
graphic at the same resolution. For a visualization of the result of this procedure, see Figure 4. Note that
this procedure is random, thus, it is applied to each PDF page several times in order to generate a larger
database. More precisely, first, 140 pages of PDF files of circuit diagrams derived from [13] are split into
training and test data. Thereby, 90% of these data were selected as training data, in order to calibrate the
pipeline. The remaining 10% of the data were set aside and only considered during validation, see Section 4.
Then, from each of these PDF pages, 20 image pairs (x, y) are generated as stated above.

3. Methods

This section describes the pipeline of graph extraction from circuit diagrams step by step. First, the image
preprocessing procedure is outlined. The goal of this step is to clean the images by removing noise and
irrelevant text, which facilitates faster and more robust subsequent processing. Additionally, dotted and
dashed lines are replaced by connected lines to simplify line detection. Next, the pipeline identifies the
devices in the circuit diagram, follwowed by line detection to identify connections between them. Finally,
the extracted information is combined to generate a graph representing the connected devices.



4 USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD

3.1. Text removal and dashed line connection. The aim of this section is to introduce a neural
network-based procedure to preprocess the image data, enhancing the effectiveness and robustness of sub-
sequent pattern matching and graph extraction tasks. The goal is to produce “clean” images y from input
images x that do not contain any elements not important for graph extraction such as, text, noise (appearing
in scanned PDFs), or dashed lines. Recall that for an image x ∈ {0, 1}n×m, a pixel of value 1 is considered
as foreground, and a pixel of value 0 is considered to belong to the background. The neural network’s task
is to assign a value of 1 to pixels belonging to the actual circuit diagram and a value of 0 to all others. This
encodes the removal of unnecessary elements and allows for conversion of dashed lines into continuous lines
to improve line detection. This is particularly important because dashed lines can appear in various forms,
making them challenging to handle with conventional methods, see Figure 1 for examples.

a) b) c) d)

Figure 1. Exemplary types of dashed lines. (a) Straight dashed line, (b) dashed line with
corner, (c) dashed line with gap at corner, (d) dashed junction with gap at junction.

The neural network U : {0, 1}m×n → [0, 1]m×n utilized in this paper is a U-net, which is similar to the
network proposed in [27]. It was originally designed for classifying pixels in medical images, but it is now
widely used for image segmentation in many different fields [17, 32]. In this context, the task of the present
paper can be viewed as a classification problem, where each pixel in x is labeled as foreground or background.
In particular, the U-net features a symmetric encoder-decoder structure that captures contextual information
through downsampling and recovers spatial details via upsampling. Additionally, skip connections between
the encoder and decoder layers allow the network to integrate low-level features with high-level context,
improving the precision of pixel-wise outputs while mitigating issues like vanishing gradients. Thus, the
neural network U is a high-parametric function, the parameters of which have to be fitted in order to
perform the desired task, where the network training is done on the pairs (x, y) of raw and cleaned images
introduced in Section 2.

As a loss function for training, the weighted mean squared loss (WMSE) is utilized, i.e., a function
WMSE: {0, 1}3×m×n → R is used. More precisely, for any pair of training data x, y ∈ {0, 1}m×n, and
corresponding network output U(x) = ỹ ∈ [0, 1]m×n, the loss WMSE(x, y, ỹ) is given by

WMSE(x, y, ỹ) =
1

mn

m∑
i=1

n∑
j=1

(ỹij − yij)
2 · (0.01 + xij + yij), (1)

where xij , yij , ỹij wirh 1 ≤ i ≤ m, 1 ≤ j ≤ n refer to the corresponding pixel values of the images x, y, ỹ,
respectively. Note that WMSE is used instead of the classical mean squared error in order to address the
heavily imbalanced class problem, i.e., a large fraction of background pixels, which are almost meaningless
for the circuit diagram, and a very low fraction of foreground pixels, which are of high importance. In order
to train the network to reliably perform on a wide range of data, and even properly perform on slightly
rotated inputs such as those arising from scans, the images x, y are rotated by an angle ϕ = ϕ1 + ϕ2, where
ϕ1 and ϕ2 are independently and uniformly drawn from the sets {0, 90, 180, 270} and [−10, 10], respectively.
To preserve binary values, the so-called nearest-neighbor interpolation is applied during rotation [6].

Training of network parameters is done by minimizing the values of WMSE(x, y, ỹ) given in Eq. (1), using
an Adam optimizer [11] with a learning rate of 0.01, where the network architecture is similar to the one
described in [27], but with half the number of channels per layer. This is motivated by the rather simple task
and the large input images which have to be loaded while training. Thus, by utilizing a reduced network
complexity, a memory requirement is achieved that matches that of commercially available graphics cards.
This allows for very fast training and application of this method. Note that the prediction of the network



USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD 5

U can take values between 0 and 1. Thus, to achieve a binary clean image during inference, the network
output U(y) ∈ [0, 1] is pixel-wise rounded to the nearest integer in {0, 1}.

3.2. Object detection. Circuit diagrams prominently feature devices alongside wire connections, see
Figure 4a. These device elements range from basic devices, such as resistors, capacitors, and transistors, to
more complex digital and analog integrated circuits (ICs), including, for example, microcontrollers, sensors
and operational amplifiers. To derive a graph representation from a circuit diagram, the detection of those
devices is a crucial step.

One common approach to object detection in computer vision is template matching [10, 12], where a
template, that is a small image or a feature representation of the object to be detected, is systematically
compared to cutouts taken from all over a given image. The goal is to find pixels in the target image that
closely match the template. Often, this type of object detection is performed using neural networks [8] to
handle high variations in object scale, rotation, and lighting conditions. However, in the present scenario,
which involves simple black-and-white images, a traditional pattern-matching approach is chosen to maintain
a fast white-box model with explainable errors.

Fortunately, there are industry standards for symbols used in circuit diagrams for elementary devices, like
the American IEEE Standard 315 [4] and IEC 60617 [5], widely used in Europe. Hence, we can draw from
a rich library of device templates to detect. Figure 2 depicts some examples.

Resistor Capacitor Transistor

Figure 2. Examples of elementary circuit diagram devices as per IEEE Standard 315.

For template matching, a standard method is used which is based on the Pearson correlation coefficient
(PCC), [12,30]. The similarity PCC(c, z) ∈ [−1, 1] of a cutout c ∈ {0, 1}k×l and a template z ∈ {0, 1}k×l is
given by

PCC(c, z) =

k∑
i=1

l∑
j=1

(cij − c̄)(zij − z̄)(
k∑

i=1

l∑
j=1

(cij − c̄)2

) 1
2
(

k∑
i=1

l∑
j=1

(zij − z̄)2

) 1
2

, (2)

where c̄ = 1
kl

∑k
i=1

∑l
j=1 cij , z̄ = 1

kl

∑k
i=1

∑l
j=1 zij , and cij , zij ∈ {0, 1} for i ∈ {1, . . . , k}, j ∈ {1, . . . , l}

denote the pixel values of c, z ∈ {0, 1}k×l, respectively.
To detect occurrences of a given pattern z ∈ {0, 1}k×l within a binary image I ∈ {0, 1}m×n, where

1 ≤ k < m and 1 ≤ l < n, the values of PCC(c, z) are computed using a sliding window approach. More
specifically, the sliding window extracts all possible cutouts c of size (k, l) from I, ensuring that the pattern z
fits within each position. At each valid location (p, q) in the image, where 1 ≤ p ≤ m−k and 1 ≤ q ≤ n−l, the
corresponding cutout is defined as c = Ip:p+k, q:q+l ∈ {0, 1}k×l, which consists of the pixels from row indices p
to p+k−1 and column indices q to q+l−1. The value of PCC(c, z) for the cutout c and the pattern z is then
used to quantify their similarity. By iterating over all valid positions (p, q) ∈ {1, . . . ,m− k} × {1, . . . , n− l}
of the cutout c = Ip:p+k, q:q+l, a correlation map is obtained, highlighting regions in I that closely match
z. Note that the computation of the PCC across all valid positions can be efficiently implemented using
convolution operations.

Recall that the values of PCC(c, z) belong to the interval [−1, 1], where −1 and 1 correspond to a positive
and negative linear relation between the cutout c and the pattern z, respectively. Translated to our applica-
tion on binary images and templates, this means that PCC(c, z) yields a value of 1 if z = c and a value of



6 USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD

−1 if z = 1− c. Thus, our criterion for detection is a value of PCC(c, z) higher than some threshold t > 0.
To avoid false positives, i.e., falsely detected templates, the threshold of t = 0.8 was empirically chosen.

Given that multiple instances of the template may appear in the image and that a single template can yield
several matches, we apply non-maximum suppression with a low intersection over union (IoU) threshold [26],
where the value of IoU((p, q), (p′, q′)) for two cutouts (p, q) and (p′, q′) of size k · l is defined as the ratio of
the number of pixels present in both cutouts to the number of pixels present in at least one of them, i.e.,

IoU((p, q), (p′, q′)) =
max{0, k − |p− p′|}max{0, l − |q − q′|}

2kl −max{0, k − |p− p′|}max{0, l − |q − q′|}
. (3)

Since devices will not overlap in a diagram, we chose a small threshold of 0.2, i.e., for two cutout positions
(p, q) and (p′, q′) of an image I and a template z with PCC(Ip:p+k, q:q+l, z) > PCC(Ip′:p′+k, q′:q′+l, z) > 0.8
and IoU((p, q), (p′, q′)) < 0.2, the matched template z at position (p′, q′) is neglected. If the values of
PCC(Ip:p+k, q:q+l, z) and PCC(Ip′:p′+k, q′:q′+l, z) given in Eq. (2) are equal, we keep one of both cutout
positions. The procedure described above filters the matches, ensuring that we obtain a refined list of
detected devices that do not heavily overlap.

Note that the classic pattern matching procedure described above has shortcomings when applied to images
that show a lot of noise or arbitrary rotations and resolution, compared to more robust approaches ranging
from allowing a cleverly chosen set of template deformations [21] to feature matching methods with [22]
or without [12, 28] the assistance of deep learning models. However, since we performed a preprocessing
step to remove noise, and deformations in devices and variations in gray scale values do not appear in the
considered cases, the simple and fast approach is chosen as described above. Moreover, this procedure has the
advantage to provide clear and interpretable errors, as mismatches can be directly traced back to template
discrepancies.

The templates utilized to demonstrate the pipeline were sourced from the KiCad symbolic libraries.
Specifically, a subset of the most critical devices from the library Device.kicad sym [1] was selected. In
the detection pipeline, the templates were up- or downscaled with linear interpolation and scale factors
s ∈ {0.7, 0.8, 0.9, 1.0, 1.2}. Furthermore, the templates were rotated to four distinct orientations, that is,
0◦, 90◦, 180◦ and 270◦. To enhance scale robustness additionally, a morphological dilation operation was
applied to both the image and templates using a (3, 3) rectangular structuring element [15]. This process
increased the thickness of all edges, improving the correlation of shapes on different scales.

Clearly, if the scope of the pipeline are circuit diagrams designed by a different ECAD software, other
appropriate templates should be chosen to not lose a significant amount of detection recall, since there
could be differences in the device symbol designs in spite of the industry standards. Another notable
consideration is the computational cost associated with template matching through correlation and sliding
window methods, particularly with high-resolution input images. To address this, it is advisable to limit the
number of templates used in the matching process, since the computational cost linearly increases with the
number of patterns. Thus, in practical applications, the list of templates used in pattern recognition should
be wisely selected based on the specific field of application and relevant industry standards. However, it is
important to note that the primary cost here is time, not memory – template matching typically requires
modest memory resources and can be executed on standard hardware. As such, if real-time performance is
not a priority, expanding the template set remains a viable strategy, particularly given the low risk of false
positives when using a similarity threshold of t= 0.8.

For the quantitative analysis of the pipeline performed in Section 4, we selected templates for matching
standard bipolar transistors, capacitors, ferrite coils, resistors, ground markings and diodes, which results in
a set of 14 original templates and a set of 280 modified, i.e., scaled and rotated, templates.

3.3. Line detection and clustering. After extracting the electrical devices from the circuit diagram
using the pattern matching method described in Section 3.2 (see also Figure 4), the next step is to identify
the wires, which are represented by chains of horizontally or vertically aligned consecutive foreground pixels,
called lines in the following. More precisely, for any integer ℓ > 1, a (horizontal or vertical) line A =
{a1, . . . , aℓ} ⊂ Z2 = {. . . ,−1, 0, 1, . . .}2 is a set of ℓ pixel positions such that there exists an orientation



USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD 7

o ∈
{(

1
0

)
,
(
0
1

)}
satisfying aj − aj−1 = o for all j ∈ {2, . . . , ℓ}. To detect these sets of pixel positions, a line

detection algorithm based on binary morphological operations [15] is applied.

Line detection algorithm. For detecting horizontal lines, we use a horizontal opening operation [15], i.e.
any foreground pixel which is not included in the union of all sets of k horizontally consecutive foreground
pixels is replaced with a background pixel. For vertical lines, a similar vertical opening is performed, where
the number k must be chosen as the pixel length of the shortest line to detect. We set k =

⌊
m
160

⌋
for

horizontal lines and k =
⌊

n
160

⌋
for vertical lines, where m,n denote width and height of the input image,

respectively, and ⌊r⌋ = max{ℓ ∈ N : ℓ ≤ r} is the largest integer smaller than or equal to r > 0. It should
be noted that this procedure is again efficiently computable, using convolutions.

Since wires are represented by straight lines in images, identifying the start and end coordinates of them
is now straightforward. For cases involving lines that are far from being perfectly straight, a more robust
approach would be required. Typically, this involves applying the Hough transform [29] to identify line
candidates.

Note that the procedure described above generates duplicated lines if lines within the original image are
thicker than one pixel. Furthermore, as a consequence of the preprocessing steps stated in Section 3.1, there
can be foreground noise in the neighborhood of the lines, also resulting in superfluous line detections. To
counteract this, lines that are encompassed in other lines are removed as a postprocessing step. Here, the
term “encompassed” means the following: A line A ⊂ Z2 is encompassed in a line B ⊂ Z2 if A and B share
the same orientation, the size of A is less than or equal to the size of B, and the distance of A and B, i.e.,
the smallest distance between the pixel positions in A and B is smaller or equal than a threshold of 5.

A further postprocessing step is the removal of lines with a length shorter than or equal to a threshold of
5 pixels.

Classification of line crossings. To derive connectivity information of wires, it remains to cluster the
family of detected lines into connected components. For this, it is important to note that there is a variety
of junction styles, with different meanings, see Figure 3. Thus, in the following, we employ another (small)
CNN in to determine the type of line crossings.

T-junctions Not connected Connected

Figure 3. Different variants of junctions between wires. Left: The first three images
show so-called T-junctions, representing connected wires, using either a straight intersection
(without or with dot), or a diagonal connection. For line crossings, two different notations
are present in the image data. Middle: Plain crossing of unconnected wires (without dot).
Right: crossing of connected wires (with dot).

The utilized CNN is denoted by S : {0, 1}50×50 → [0, 1]10 and processes 50×50 pixel cutouts c ∈ {0, 1}50×50

centered at intersections of lines. More precisely, if the line detection algorithm detects a junction of two lines
at pixel (p, q) ∈ Z2 in the image I, a cutout c = Ip−25:p+25,q−25:q+25 is computed. For pixel positions (p, q)
which would result in cutouts that exceed the original image I, we apply zero padding [19]. The network S
is trained to classify a cutout c to belong to one of 10 different classes, representing the five junctions shown
in Figure 3, the four corner junctions arising from the connected version of Figures 1b and 1c (each with
rotations by 0◦, 90◦, 180◦, and 270◦), and a class representing the case that no junction is present in c.

The architecture of the network S : {0, 1}50×50 → [0, 1]10 can be given as the superposition of simple
(almost everywhere) differentiable functions, called layers, i.e.,

S = Softmax ◦ FC ◦Dropout ◦ Flatten ◦ Pool2 ◦ ReLU ◦ Conv2 ◦ Pool1 ◦ ReLU ◦ Conv1, (4)



8 USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD

where the functions appearing on the right-hand side of Eq. (4) will be explained below in detail. Observe
that the network S processes an input image c ∈ {0, 1}50×50 and successively transforms it to a vector of
length 10, representing the probability that c belongs to the individual classes. For simplicity of the notation
of the individual layers, we implicitly assume, that c is a matrix of shape (50, 50, 1) instead of (50, 50).

Layers of the classification network. The convolutional layer Conv1: R50×50×1 → R48×48×32 in Eq. (4)
consists of 32 filters of size 3×3×1, whereas the convolutional layer Conv2: R24×24×32 → R22×22×64 consists
of 64 filters of size 3× 3× 32. Both convolutional layers utilize a stride of 1 and no padding. Formally, for
any integers h,w > 2 and d, t ≥ 1, a convolution layer Conv : Rh×w×d → Rh−2×w−2×t is given by

Conv(X)j,k,l =

2∑
α=0

2∑
β=0

d∑
γ=1

Wα+1,β+1,γ,lXj+α,k+β,γ , (5)

where X ∈ Rh×w×d is some input matrix, Conv(X)j,k,l denotes the value of Conv(X) at entry (j, k, l) ∈
{1, . . . , h−2}×{1, . . . , w−2}×{1, . . . , t}, and W ∈ R3×3×d×t is a matrix of the trainable parameters. Then,
an activation layer follows after each convolutional layer in Eq. (4), which is represented by the activation
function ReLU: R → [0,∞) with ReLU(r) = max{0, r} for each r ∈ R. The non-linearity of this function
allows the network to represent non-linear, complex correlations present in the training data. Furthermore,
the max-pooling layers Pool1 : R48×48×32 → R24×24×32 and Pool2 : R22×22×64 → R11×11×64 in Eq. (4) reduce
the spatial dimensions of their inputs. Both functions perform downsampling using a 2×2 region with stride
2, selecting the maximum value within each pooling region. Formally, for any integers h,w ∈ {2, 4, . . .} and
d ≥ 1, a pooling layer Pool : Rh×w×d → Rh/2×w/2×d is given by

Pool(X)j,k,l = max {X2j−1,2k−1,l, X2j−1,2k,l, X2j,2k−1,l, X2j,2k,l } , (6)

where X ∈ Rh×w×d and (j, k, l) ∈ {1, . . . , h/2} × {1, . . . , w/2} × {1, . . . , d}.
The flatten layer Flatten: R11×11×64 → R11·11·64 in Eq. (4) reshapes the input matrix into a vector of

size 11 · 11 · 64 = 7744, and the dropout layer Dropout: R7744 → R7744 introduces regularization to prevent
the network S from overfitting, which is given by Dropout(X)j = wj · Xj for any input vector X ∈ R7744

and j ∈ {1, . . . 7744}, where w1, . . . , w7744 ∈ {0, 1} are independently sampled realizations of a Bernoulli
distributed random variable with parameter 0.5.

The fully connected layer FC: R7744 → R10 in Eq. (4) is a linear transformation given by FC(X) = WX+b
for any input vector X ∈ R7744, where W ∈ R10×7744 is a trainable weight matrix and b ∈ R10 is a trainable
bias vector. Finally, for any input vector X = (X1, . . . , X10) ∈ R10 and j ∈ {1, . . . , 10}, the softmax
activation layer Softmax: R10 → [0, 1]10 in Eq. (4) is defined as

Softmax(X)j =
eXj∑10
k=1 e

Xk

. (7)

This ensures that the outputs are within the set [0, 1]10. Further details on the layer architecture of CNNs
can be found, e.g., in [19].

Training of network parameters. To train the parameters of the classification network S, i.e. the
parameters of the convolutional layers and the linear layer, we generate synthetic training data consisting
of pairs (c, g) of image data and junction label. Thereby c ∈ {0, 1}50×50 is a (binary) image of a junction,
and g = (g1, . . . , g10) ∈ {0, 1}10 represents the corresponding intersection class as one hot encoding, i.e.,
gi = 1 if and only if the intersection class of c is the i-th class. In total, we generate 500 samples for each
of the 9 connection classes by applying random augmentations to the line crossings. More precisely, we
apply random translations to the line coordinates by up to 3 pixels and we modify the size of dot markings
by uniformly drawing their radius from the interval [2, 4]. Furthermore, for all intersection classes we add
noise close to foreground by switching any background pixel, having a pixel distance of less than one to
foreground, into a foreground pixel with a probability of 0.03. Finally, we generate 1 000 samples for the
undefined class by randomly placing rectangles, triangles, and off-center lines to capture ambiguous cases.
The network is then trained for multi-class classification using the categorical cross-entropy loss function



USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD 9

L : {0, 1}10 × (0, 1)10 → R given by

L(g, S(c)) = −
10∑
i=1

gi log(S(c)i), (8)

for any pair (c, g) ∈ {0, 1}50×50 × {0, 1}10 of training data, where log : (0,∞) → R is the natural logarithm.

Clustering of detected lines. First, cutouts containing pairs of possibly intersecting lines are determined,
which will be classified by the network S given in Eq. (4). Therefore, for each pair (A,B) of detected lines,
where A is a horizontal line and B is a vertical line, the pair (a, b) of the closest pixel positions a ∈ A
and b ∈ B is computed. If the distance between a and b is larger than 25 pixels, the lines A and B are
considered as non-intersecting. Otherwise, a cutout c centered at µ = a+b

2 is computed , i.e., c is given by

c = I⌊µ1⌋−16:⌊µ1⌋+16,⌊µ2⌋−16:⌊µ2⌋+16, where µ1, µ2 are the coordinates of µ = (µ1, µ2) ∈ R2. The network S
is then used to determine whether the wires depicted in c are connected or not. For the remainder of the
paper, by slight abuse of terminology, the term wire will denote a connected component of lines.

3.4. Connectivity graph. In order to suitably represent the set of devices and wires, as well as connections
between them, we will use some basic notions from graph theory [14]. That is, we consider a graph G =
(V,E) with a (non-empty) set of nodes V containing all detected devices and wires of a circuit diagram.
Furthermore, the set E ⊂ V × V of edges of the graph contains pairs of nodes, representing connections
between devices and wires. More precisely, (u, v) ∈ E if and only if a wire u ∈ V and a device v ∈ V are
connected with each other, which means, that a connection-point of the wire, i.e. any endpoint of some line
in the component has a distance of less than 5 pixels to a foreground or background pixel of the device.
Finally, we delete all detected wires that are not contained in any edge of the graph G, which can be due to
false positives in the line detection step.

On the one hand, this representation is low-dimensional and, on the other hand, it allows for the direct
application of algorithms from the well-established field of graph theory. As a result, there exist several
efficient algorithms for computing properties of graphs that are important in practical applications. For ex-
ample, for troubleshooting electrical devices, these algorithms can identify all devices that are interconnected
or determine the shortest paths connecting them.

Furthermore, for validation purposes, we will utilize graph similarity measures to check the quality of the
pipeline proposed in the present paper, since these measures are capable of displaying global graph features,
such as connectivity of devices. In particular, in Section 4 below, we will compare graphs generated by hand
labeling with those generated by the pipeline presented.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. Then, the so-called graph edit distance (GED) is given
by

GED(G,G′) =
|V ∩ V ′|+ |E ∩ E′|
|V ∪ V ′|+ |E ∪ E′|

, (9)

where the symbols ∩,∪ are used for the intersection and union of sets, respectively, and |·| denotes cardinality.
Intuitively, in our case, the quantity GED(G,G′) given in Eq. (9) describes the fraction of correctly detected
wires and devices, as well as connections between these objects. To further investigate where some low
precision of the graph detected by our pipeline might come from, we consider the precision Np(G,G′) and
the recall Nr(G,G′) of nodes, which are given by

Np(G,G′) =
|V ∩ V ′|
|V ′|

, and Nr(G,G′) =
|V ∩ V ′|

|V |
, (10)

assuming that |V |, |V ′| > 0. Moreover, assuming that |E|, |E′| > 0. we consider the precision Ep(G,G′) and
the recall Er(G,G′) of edges, which are given by

Ep(G,G′) =
|E ∩ E′|
|E′|

and Er(G,G′) =
|E ∩ E′|

|E|
. (11)

Finally, as a measure of global similarity of two graphs G and G′, the numbers of their connected com-
ponents are compared to each other. A connected component C ⊂ V of a graph G = (V,E) is a subset of



10 USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD

nodes such that for any u, v ∈ C, there exists a path of connected nodes u0, u1, . . . , uℓ ∈ C from u to v, i.e.,
u = u0, uℓ = v and (ui, ui+1) ∈ E for each i ∈ {0, 1, . . . , ℓ− 1}, and there is no path between any u ∈ C and
any v ∈ V \ C. The number of connected components of a graph G will be denoted by c(G). To compare
two graphs G and G′, we consider the relative number NC(G,G′) of connected components of G and G′,
defined as

NC(G,G′) =
c(G′)

c(G)
. (12)

4. Results and discussion

Before quantifying the overall graph extraction quality, the quality of the individual steps considered in
Section 3 is analyzed separately.

4.1. Quality of the U-net output. Recall that the pipeline starts with a U-net based preprocessing
of circuit diagrams in order to remove unnecessary text and noise, and to connect dashed line segments. A
visual impression of the results achieved can be obtained from Figure 4, where a high extraction quality can
be observed.

(a) (b) (c) (d)

Figure 4. Pipeline overview. (a) Raw circuit diagram image x, (b) corresponding clean
ground truth image y, (c) predicted clean circuit diagram ỹ produced by the U-net pre-
processing step of Section 3.1, with highlighted devices detected by the template matching
algorithm of Section 3.2, (d) same prediction ỹ with highlighted wires, identified using the
line detection algorithm of Section 3.3.

To assess the quality of the network output more quantitatively, we analyze the various types of errors
individually. This analysis is done on test data, not used for network training. On these data, the U-net
stated in Section 3.1 successfully removes 99.8% of black pixels attributed to noise and 99.8% of black pixels
associated with text. Additionally, 96.5% of white pixels in dashed lines are accurately replaced by black
pixels. Moreover, 100.0% of background pixels remain correctly unmodified. A visualization of these results
is given in Figure 5, where it becomes clear that the task of detecting dashed lines is the hardest one for the
U-net.



USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD 11

Figure 5. Precision per pixel class. The quality of the U-net preprocessing with respect
to black pixels that should be set to white (bw), black pixels that should remain unchanged
(bb), white pixels that should be set to black (wb), and white background pixels that
should not be changed (ww). The classification of black pixels that should be classified as
white pixels is further distinguished into pixels belonging to noise (bw: noise) and pixels
belonging to text (bw: text). Note that the box plots shown in this figure correspond to
results achieved on test data, not used for network training.

However, even though the U-net achieves a high accuracy over all pixels, in circuit diagrams not all pixels
are equally important. For example, there are cases where the value of a single pixel determines whether
two devices are connected or not. The quality measure considered in Figure 5 cannot reflect this. Thus, as
a second quality measure, the resulting correct detection of lines and devices is analyzed.

4.2. Synthetic distortion of input images. To assess the precision of the proposed pipeline and further
analyze the quality of the pipeline with respect to different qualities of the image data, its performance
was analyzed under synthetic distortions, where the distortions included three types: (1) noise of varying
magnitudes added to the input image, (2) scaling applied to the input image, and (3) increased gap sizes
within dashed lines.

Varying magnitude of noise. For the analysis of the robustness of the noise, the test data were modified
by changing each background pixel to a foreground pixel with a certain probability p ∈ [0, 0.2], while keeping
all other parameters (scaling and gap size) constant. Figure 6a presents the resulting pipeline precision.
Specifically, the metrics include the mean fraction of correctly classified foreground pixels in the ground
truth image (orange), the mean fraction of correctly classified lines in the line detection step (blue), and the
mean fraction of devices accurately identified in the pattern matching step (green). To evaluate the number
of correctly identified lines and devices, these elements were manually labeled. A detected line was considered
correct if its start and endpoint matched those of a labeled line within a tolerance of 10 pixels with respect
to the maximum metric. Likewise, a device was classified as correctly detected if the intersection over union
between a detected template and the corresponding (pre-labeled) bounding box exceeded the value of 0.8,
see Figures 4c and 4d.

Although the pixel-wise classification performance does not show a significant decrease under increasing
noise levels, the quality of line detection and device detection decreases significantly at extreme but unrealistic
noise levels. This degradation occurs primarily because the noise removal network is trained using a loss
function that considers only local (pixel-wise) losses. It does not account for global properties such as line
connectivity, which are critical for accurate line and device detection.



12 USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD

Effect of scaling. Similarly, to evaluate the effect of scaling, the same validation image was rendered
at different resolutions ranging from 75 to 500 dpi, while keeping other distortion magnitudes unchanged.
The results obtained in this case are shown in Figure 6b, where the performance of the pipeline decreases
significantly at very low resolutions. For example, at 75 dpi, the pixel-wise error is still low; however, since
lines are rendered with a width of just one pixel, device and line detection show a strong decrease in accuracy.

Impact of gap size. Finally, the impact of gap size in dashed lines was studied. The validation image
was modified to include dashed lines, where each line had a straight segment of 0.15 cm and gaps of size δ
cm for some δ > 0, with a probability of 0.5 for any given line being dashed. The parameter δ was varied
within the range [0cm, 0.7cm], see Figure 6c for the results obtained in this case. Note that the green line,
corresponding to device detection, is omitted here because, as expected, variations of gap size do not have
any notable effect on pattern matching quality. It can be observed that until the gap sizes are less than four
times the length of the straight segment, the line detection quality remains unaffected.

Figure 6. Distortion analysis. The influence of different magnitudes of noise (a), resolu-
tions (b) and gap sizes in dashed lines (c) are shown, for the pixel-wise classification (orange),
the detection of lines (blue) and the detection of electrical devices (green). Since the gap
size of lines does not influence the detection of devices, the respective curve is neglected in
(c).

4.3. Similarity of graphs. To obtain a quality metric that evaluates more than just the local detection of
individual wires and devices, we will consider the similarity of graphs G,G′ extracted from the circuit diagram
(see Section 3.4), once by hand and once by the presented pipeline. Based on these graph representations, we
compute graph similarity measures that capture not only local similarities, such as the number of correctly
detected devices and wires, but also global aspects, including correctly detected connections between wires
and devices as well as the overall connectivity. Formal definitions of these measures have been provided
in Section 3.4. For node comparison similar criteria as described above were used. Two device nodes are
considered equal if the center points of the bounding boxes differ by no more than 10 pixel with respect to
the maximum metric. Two wire nodes are considered equal if they share a line, where lines are regarded as
equal if start and endpoint match within a tolerance of 10 pixels as above.

Figure 7 visualizes graph similarities obtained for the validation image under different levels of added
noise (see Figure 6a). The node precision Np(G,G′) introduced in Eq. (10), which represents the fraction of
detected wires and devices in G′ that are also present in the ground truth graph G compared to the number
of detected wires and devices, remains very high even for noisy images. This indicates that the proposed
pipeline rarely detects nonexistent devices or wires. To be more precise, false positives in line detection can
happen frequently if the noise level is high but this does not impact the resulting graph, since we can delete
isolated wire nodes without losing information. For the node recall Nr(G,G′) given in Eq. (10), it turns out



USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD 13

that 0.9 < Nr(G,G′) < 0.98, which is slightly lower but still high. Recall that Nr(G,G′) reflects the ratio
of correctly detected wires and devices in G′ compared to those in the ground truth graph G and is directly
related to the blue and green lines in Figure 6a.

Edge precision Ep(G,G′) and edge recall Er(G,G′), introduced in Eq. (11) and visualized in Figure 7a
in green and red, respectively, measure the accuracy of detected connections rather than individual wires
and devices. Considering these similarity measures is crucial because they give insight into the performance
of the connection classifier, as there would be a missing graph connections if a wire node, i.e. a connected
component of lines is not fully detected. The results shown in Figure 7a indicate that edge precision Ep(G,G′)
is extremely high, which means that false connections are rarely detected. However, edge recall Er(G,G′),
which is the fraction of ground truth edges correctly identified, declines significantly in the presence of
extreme noise. Nevertheless, for reasonable noise levels, the edge recall Er(G,G′) remains above 98%.

Figure 7b illustrates the normalized graph edit distance GED(G,G′) given in Eq. (9), representing the
number of modifications required to transform a graph obtained from the proposed pipeline into the cor-
responding ground truth graph. This measure effectively summarizes the results shown in Figure 7a. The
distribution of values of GED(G,G′) reveals that for low noise levels, extreme outliers are absent, demon-
strating consistent performance.

Finally, Figure 7c shows the relative number NC(G,G′) of connected components of the extracted graph
G′ and the ground truth graph G, in dependence of the noise added. Specifically, NC(G,G′) is the normalized
number of connected components in G′, indicating how much more components G′ has compared to G. Note
that in all but one case, G′ has more connected components than G. For circuit diagrams with less than 9%
noise, the number of connected components in G′ generally matches that of G. However, at extreme noise in
the validation image, connectivity in G′ decreases significantly, leading to more disconnected components.

In summary, the proposed pipeline performs well, not only on clean circuit diagrams, such as those directly
extracted from PDFs, with an accuracy exceeding 95% across all metrics, but also on images with reasonable
distortion levels. Despite being trained only on local features, such as individual noise, wires, and devices,
the pipeline achieves a high precision even with respect to global similarity measures like connectivity.

Figure 7. Graph similarity measures. Quantitative similarity of graphs G extracted by
hand from the validation circuit diagram and graphs G′ extracted by the proposed pipeline
in dependence of the noise added to the image. The similarity is quantified by means of
mean node/edge recall/precision (a), normalized graph edit distance (b), and the relative
number of connected components (c). The underlying data corresponds to the validation
data of Figure 6a.

5. Conclusion and outlook

A pipeline for automatically extracting graph representations of connected components from circuit dia-
grams is proposed. The pipeline integrates image processing, pattern-matching-based device detection, and



14 USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD

skeletonization-based line detection. While the methodologies are demonstrated using image data derived
from vector graphic-based circuit diagrams, application to image data arising from scanning is straight for-
ward. The method focuses on interpretable methods, especially suitable for fast and large scale applications.
On the other hand, the methods presented in this paper, especially the pattern matching, have some draw-
backs, when considering rotations. In our future work, we aim to use a combination of edge detection and
a light-weighted CNN-based regression to predict and correct small rotations within the image in order to
overcome this. Future work will also include exploring an alternative to the current line detection method
where, instead of relying on morphological operations to extract vertical and horizontal lines, a more rotation-
invariant approach could involve skeletonizing the entire image. Subsequently, foreground pixels with more
than two neighbors - referred to as crossing points - would be removed to isolate individual line segments.
These segments could then be grouped through clustering techniques. Afterwards, the original crossing
points from the non-skeletonized image could be reanalyzed using a crossing classifier to identify connected
components. This pipeline would then offer improved robustness to image rotation, although it would likely
require a more complex model for accurate classification of the crossing points.

References

[1] Kicad symbols. https://gitlab.com/kicad/libraries/kicad-symbols/.

[2] Open source hardware park. https://oshpark.com/shared_projects/.
[3] IEEE standard for graphic symbols for electrical and electronics diagrams (including reference designation letters). IEEE

Std 315-1975 (Reaffirmed 1993), pages 1–176, 1975.

[4] American national standard - supplement to graphic symbols for electrical and electronics diagrams. ANSI/IEEE Std
315A-1986, pages 1–64, 1986.

[5] Graphical symbols for diagrams. IEC 60617-DB, 2025.

[6] K. Alomar, H. I. Aysel, and X. Cai. Data augmentation in classification and segmentation: A survey and new strategies.
Journal of Imaging, 9(2):46, 2023.

[7] A. Apostolico and Z. Galil. Pattern Matching Algorithms. Oxford University Press, 1997.
[8] J. K. Basu, D. Bhattacharyya, and T. Kim. Use of artificial neural network in pattern recognition. International journal

of software engineering and its applications, 4(2), 2010.

[9] J. Bayer, A. K. Roy, and A. Dengel. Instance segmentation based graph extraction for handwritten circuit diagram images.
arXiv preprint arXiv:2301.03155, 2023.

[10] C. M. Bishop and N. M. Nasrabadi. Pattern Recognition and Machine Learning. Springer, 2006.

[11] S. Bock, J. Goppold, and M. Weiß. An improvement of the convergence proof of the adam-optimizer. arXiv preprint
arXiv:1804.10587, 2018.

[12] R. Brunelli. Template Matching Techniques in Computer Vision: Theory and Practice. J. Wiley & Sons, 2009.

[13] J.-P. Charras, F. Tappero, and W. Stambaugh. KiCad Complete Reference Manual. 12th Media Services, 2018.
[14] R. Diestel. Graph Theory. Springer, 2024.

[15] E. Dougherty. Mathematical Morphology in Image Processing. CRC Press, 1992.

[16] G. Du, X. Cao, J. Liang, X. Chen, and Y. Zhan. Medical image segmentation based on U-net: A review. Journal of Imaging
Science & Technology, 64(2):0710, 2020.

[17] O. Furat, T. Kirstein, T. Leißner, K. Bachmann, J. Gutzmer, U. A. Peuker, and V. Schmidt. Multidimensional character-
ization of particle morphology and mineralogical composition using CT data and R-vine copulas. Minerals Engineering,

206:108520, 2024.

[18] D. J. Garland and F. W. Stainer. Modern Electronic Maintenance Principles. Elsevier, 2016.
[19] I. Goodfellow. Deep Learning. MIT Press, 2016.

[20] C. R. Kelly and J. M. Cole. Digitizing images of electrical-circuit schematics. APL Machine Learning, 2(1):016109, 2024.

[21] H. Y. Kim and S. A. de Araújo. Grayscale template-matching invariant to rotation, scale, translation, brightness and
contrast. In D. Mery and L. Rueda, editors, Advances in Image and Video Technology, pages 100–113. Springer, 2007.

[22] J. Kim, J. Kim, S. Choi, M. A. Hasan, and C. Kim. Robust template matching using scale-adaptive deep convolutional

features. In 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA
ASC), pages 708–711. IEEE, 2017.

[23] S. Larick. Functional schematic diagrams. Proceedings of the IRE, 34(12):1005–1007, 1946.
[24] X. Li and X. Liu. Optimizing parameter extraction in grid information models based on improved convolutional neural

networks. Electronics, 13(14):2717, 2024.

[25] S. Mani, M. A. Haddad, D. Constantini, W. Douhard, Q. Li, and L. Poirier. Automatic digitization of engineering diagrams
using deep learning and graph search. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), pages 673–679, 2020.

[26] A. Neubeck and L. Van Gool. Efficient non-maximum suppression. In 18th International Conference on Pattern Recognition
(ICPR’06), volume 3, pages 850–855, 2006.



USING CNN AND PATTERN MATCHING FOR DIGITIZATION OF PCD 15

[27] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Medical
image computing and computer-assisted intervention–MICCAI 2015: 18th International Conference, Munich, Germany,

October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

[28] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient alternative to SIFT or SURF. In 2011 International
conference on computer vision, pages 2564–2571. Ieee, 2011.

[29] R. Szeliski. Computer Bision: Algorithms and Applications. Springer, 2022.

[30] R. E. Woods and R. C. Gonzalez. Digital Image Processing. Prentice Hall, 3rd edition, 2021.
[31] Q. Zhang, V. S.-J. Huang, B. Wang, J. Zhang, Z. Wang, H. Liang, S. Wang, M. Lin, C. He, andW. Zhang. Document parsing

unveiled: Techniques, challenges, and prospects for structured information extraction. arXiv preprint arXiv:2410.21169,

2024.
[32] Z. Zhang, Q. Liu, and Y. Wang. Road extraction by deep residual U-net. IEEE Geoscience and Remote Sensing Letters,

15(5):749–753, 2018.


