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Abstract

Purpose: This study addresses the challenge of real-time detection of the weeds
Colchicum autumnale and Rumex species on grassland sites, which is an inher-
ently difficult problem because the predominantly green weed leaves provide little
contrast to the similarly colored vegetation backgrounds. The resulting detector
will be integrated into the SELBEWAG tool, a non-chemical, site-specific weed
treatment device.

Methods: We collected and annotated RGB video recordings from grassland
sites in Southwest Germany and trained a quantized EfficientDet object detec-
tion model, which has been optimized for low latency on edge devices.

Results: The detection system achieved a mean average precision of 0.606 across
both weed types (0.617 for Rumex and 0.595 for C. autumnale). With an opti-
mal decision threshold, the model demonstrated precision values of 56.0% for C.
autumnale and 48.1% for Rumex, with corresponding recall values of 62.1% and
67.1%, respectively. Detection performance was influenced by surrounding vege-
tation height and weed clustering.

Conclusion: The developed system provides effective real-time detection of
grassland weeds suitable for integration with the SELBEWAG tool. While
detection challenges remain, in particular in high vegetation conditions, the
approach significantly improves upon area-wide treatment methods by targeting
approximately twice the necessary area rather than entire fields.
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1 Introduction

The site-specific control of weeds in grassland sites offers significant advantages over
traditional area-wide approaches. This targeted approach can have a positive effect on
the productivity of grassland while adhering to nature conservation regulations that
apply, e.g., to extensive areas. Despite these benefits, manual weed control remains
infeasible due to its high labor intensity, creating a need for automated solutions. The
key challenge in automation is the precise localization of weeds, which is essential for
effective targeted treatment.

Our research focuses on detection capabilities for the SELBEWAG tool, a site-
specific weed control implement. The initial control concept, as described in Martin
et al. (2022), features a tractor-mounted device equipped with several high-pressure
water jets of 0.25m width that can be activated independently. This system provides
non-chemical treatment of grassland weeds, aligning with environmental sustainability
goals and making it particularly suitable for sensitive areas such as water protection
zones.

Real-time detection represents a critical advancement over previous approaches.
In a previous work, we developed a procedure to detect the weed Colchicum autum-
nale in drone images of grassland sites (Petrich et al. 2020). While this method offers
advantages for optimizing treatment routing, it presents significant disadvantages.
The optimal timing for detection and treatment often differs substantially—for exam-
ple, Colchicum autumnale can most easily be detected during its blooming period in
autumn, but treatment is most effective in early summer, by which time weed loca-
tions may have changed. Additionally, separating detection and treatment into two
distinct steps reduces practicality and increases operational effort.

To address these limitations, our approach integrates detection directly on the SEL-
BEWAG treatment tool by leveraging live video streams from rugged cameras mounted
at the front of the implement. This integration creates an important trade-off for the
weed detection system between accuracy and latency, which directly affects the work-
ing speed of the weed control tool. A further constraint is the reliance on less powerful
edge devices for running the detection model, necessitating efficient algorithms.

Our research specifically targets two problematic weed types in grasslands:
Colchicum autumnale and Rumex species (Bown 1995). C. autumnale, commonly
known as autumn crocus or meadow saffron, presents a serious threat to livestock due
to its high toxicity, containing the alkaloid colchicine which can be fatal even in small
doses. Its presence in hay or silage can lead to economic losses for farmers and poses
animal welfare concerns. Rumex species, particularly R. obtusifolius or broad-leaved
dock, are highly competitive perennials with extensive root systems and prolific seed
production, allowing them to rapidly colonize grasslands. They reduce forage quality
and yield by displacing valuable grass species, and their low palatability and nutritional
value for livestock further diminishes pasture productivity. Traditional site-specific
control methods for both weed types are often labor-intensive, highlighting the need
for precise, automated detection and treatment systems.

Research on the detection of C. autumnale in grasslands is relatively limited, with
Petrich et al. (2020) being one of the few studies addressing this specific weed species,
as mentioned above. In contrast, the detection of Rumex species has been much more
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extensively studied in the scientific literature. A comprehensive review by Binch and
Fox (2017) provides a thorough comparison of many previous weed detection proce-
dures for Rumex species. The methods examined in this review include among others
linear binary patterns, Fourier analysis, and support vector machines, though notably,
deep learning approaches were not included, which were less widespread at that time.
The considered methods were evaluated on a standardized dataset, providing a fair
benchmark. In recent years, deep learning methods have become increasingly preva-
lent in Rumex detection research. Several studies (Lam et al. 2021; Valente et al.
2019; Schneider et al. 2022; Valente et al. 2022) have focused on the detection of
Rumex using unmanned aerial vehicles (UAV), representing a different approach com-
pared to having the detection system integrated directly into a weed control tool as
in our work. Husham Al-Badri et al. (2023) introduced an adaptive non-maximum
suppression technique, to eliminate overlapping predicted bounding boxes, and pro-
posed ensemble classifiers with the combination of three extractors at its backbone.
For comparative purposes in Section 3, we consider the results of two recent publica-
tions: Güldenring et al. (2023) created an open-access Rumex dataset and established a
baseline detection model using YOLOX architectures. Similarly, Heil and Stein (2024)
compared the effectiveness of RGB and multispectral images for Rumex detection
using different YOLO model variants. The present paper differs from previous works
in several aspects. First, we address the detection of both C. autumnale and Rumex
species within a single system. Second, we conduct our evaluation under conditions
that closely approximate real-world application scenarios, particularly in the context
of the SELBEWAG tool. A preliminary version of our detection model was presented
in Haußmann et al. (2024a). The current paper expands upon this earlier work by
utilizing an improved dataset and providing more comprehensive details on both the
model training and evaluation.

In summary, we present a real-time weed detector capable of identifying C. autum-
nale and Rumex on grassland sites. We aim to integrate this detector into the
SELBEWAG weed control tool, and consequently evaluate its capabilities as closely as
possible to the real-world application. In particular, this includes design choices and
optimizations of the model to achieve low latencies on the target hardware, sometimes
at the cost of prediction performance.

2 Materials and methods

2.1 Ground truth datasets

The process of image data acquisition for this study is comprehensively described in
Haußmann et al. (2024b). For capturing the grassland imagery, we utilized cameras
mounted on an electric wheelbarrow, which effectively simulated the camera configu-
ration of the actual treatment tool in terms of camera model, mounting height, 90◦

angle to the ground as well as the natural lighting. This setup was chosen for its ease
of use and flexibility in field applications. The image data consisted of FullHD (1920
×1080 pixel) RGB video recordings captured at various grassland sites across South-
west Germany. We conducted multiple recordings of the same areas at different times
to capture various growth stages of the target weeds and the surrounding vegetation.
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For the annotation process, we first divided the source videos into smaller, more
manageable video fragments to facilitate efficient labeling. Using the LabelStudio soft-
ware (Tkachenko et al. 2020), we annotated each target weed with an axis-aligned
bounding box. Significant advantages of using video recordings rather than still images
were the increased context of having multiple frames of the same area and the ability
to interpolate annotations between frames, which reduced the manual labeling effort
while maintaining annotation quality.

To prepare the dataset for model training and evaluation, we extracted every third
frame from the videos. This sampling rate was determined based on the frame rate of
the recordings and the average driving speed of the electric wheelbarrow, ensuring that
consecutive extracted frames contained sufficiently different content. We then removed
all frames that did not contain any target weed species to focus the dataset on rele-
vant samples. To further refine our dataset, we implemented a perceptual hash-based
filtering approach (see below) to eliminate redundant frames. This was particularly
important for segments at the beginning of source videos where the camera was
activated, but the wheelbarrow remained stationary.

The perceptual image hashing technique (Zauner 2010; Farid 2021) allows identify-
ing different images that appear similar to the human eye. This method is commonly
applied in image spam detection and identification of unwanted content such as copy-
righted or illegal images. The employed perceptual hashing algorithm operates by first
shrinking the input image and converting it to grayscale. It then computes a discrete
cosine transform (DCT), which, similar to a Fourier transform, converts the image
from a 2D spatial domain to a 2D frequency domain where each value represents the
amplitude of a cosine with a given frequency (Burger and Burge 2016). This trans-
formation is also a fundamental component of JPEG compression. The algorithm
proceeds by calculating differences between row-wise neighboring “pixels” in the fre-
quency domain. By flattening and concatenating these individual values as binary
numbers, we obtain a single binary number—the image hash—that represents the con-
tent of original image. To detect similar images, we computed the Hamming distance
(i.e. comparing the two binary numbers digit by digit and counting the differences)
between the hashes of two given images. If this distance did not exceed a predeter-
mined threshold, the images were considered too similar, and only the first frame of
each group of similar frames was retained for each source video.

For the final dataset organization, we assigned each source video to training, vali-
dation, and test dataset splits with probabilities of 60%, 20%, and 20%, respectively.
Each split then comprised the selected video frames from the corresponding source
videos. To optimize the training process, we converted each split into the TFRecord
file format, which enables efficient data reading during the model training phase.

Basic statistics of the final ground truth dataset and its splits are shown in Table 1.
It can be assumed that the detection performance varies over the course of a season,
for example C. autumnale often emerges before the surrounding vegetation improving
the chances of detection early in the year. For this reason, we also present the dates
of the recordings in Figure 1 and provide a detailed evaluation of this phenomenon in
Section 3.
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dataset split #videos # frames #bounding boxes

training 150 11911 28873
validation 49 5368 14211
test 57 4215 10440

total 256 21494 53524

Table 1: Number of source videos, video frames and
bounding boxes in total and for each split of the ground
truth dataset.
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Fig. 1: Number of bounding boxes in the training, validation and test dataset grouped
by their recording date. Note that due to their individual availability at the considered
grassland sites, each recording focused on a single weed species, but some outliers can
still be found (barely visible).

2.2 Detection model

For our weed detection system, we employed the EfficientDet model family (Tan et al.
2020), which represents a one-stage object detector. These architectures utilize the
EfficientNetv2 image classification family (Tan and Le 2021) as backbone networks to
extract image features. A key component of the EfficientDet architectures is the bidi-
rectional feature network with fast normalization, which enables efficient and effective
feature fusion. The model family implements a unified scaling approach, using a single
scaling factor to govern the depth, width, and resolution for all backbone, feature, and
prediction networks. Based on this scaling methodology, different model architectures
are available, ranging from the least to most complex/performant: EfficientDet-D0
through EfficientDet-D7 and EfficientDet-D7x. Our detector implementation is based
on the code published by Tan et al. (2020).
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For deployment on edge devices such as the computing hardware of the SEL-
BEWAG tool, modified models optimized for post-training quantization are available
(EfficientDet-lite0 through EfficientDet-lite4). Model quantization (Jacob et al. 2018)
involves using efficient 8-bit integer arithmetic instead of 32-bit floating-point num-
bers during inference, which significantly decreases inference latency, particularly on
hardware commonly used for edge devices. While this approach slightly reduces pre-
diction performance, the trade-off is generally favorable for real-time applications. All
results presented in this paper were obtained using the quantized model running on the
LiteRT (formerly TensorFlow Lite) runtime (Google 2025), ensuring that we report
the most realistic prediction performance for practical field applications.

For training our detection model, we utilized pretrained weights from the COCO
2017 dataset (Lin et al. 2014) and employed the Adam optimizer (Kingma and Ba
2015). To enhance model robustness, we implemented image augmentation during
training, including horizontal flipping and random resizing of images between 0.8x and
1.2x of the original size before cropping to the original dimensions. These relatively
small modifications were appropriate given that the distance from the camera to the
ground remains almost constant in our application scenario.

The loss function for our detector combines multiple components as the model
outputs a list of bounding boxes and corresponding class scores representing the likeli-
hood that the bounding box belongs to each class (i.e. weed type). For the localization
error of the bounding boxes, we employed the Huber loss (Hastie et al. 2009), which
is a hybrid between the ℓ1 and the ℓ2 error. More specifically, for each bounding box
component, the error ℓ̃H(b̂, b) between the predicted value b̂ ∈ R and the corresponding
true value b ∈ R is given by

ℓ̃H(b̂, b) =

{
1
2 (b̂− b)2, if |b̂− b| ≤ δ,

δ|b̂− b| − 1
2δ

2, otherwise,
(1)

for δ = 0.1. For the class error, the focal loss (Lin et al. 2017) with label smoothing
was implemented. For each class, consider the predicted score ĉ ∈ [0, 1] for that class
and the true value c ∈ {0, 1} being one if and only if the currently considered class is

correct. The prediction error ℓ̃F(ĉ, c) is then given by

ℓ̃F(ĉ, c) =

{
α (1− ĉ)γ ℓ̃CE(ĉ, 1− 1

2β), if c = 1,

(1− α) ĉγ ℓ̃CE(ĉ,
1
2β), if c = 0,

(2)

where α = 0.25, γ = 1.5, and ℓ̃CE(ĉ, c) is the cross entropy loss given by

ℓ̃CE(ĉ, c) = −c log ĉ− (1− c) log(1− ĉ). (3)

Here, we incorporated label smoothing with parameter β = 0.1 to account for potential
inaccuracies in the training data. The total loss function aggregates the localization
and classification errors over all bounding boxes in a batch of the training data.

The model was trained for 300 epochs with a learning rate of 0.08, except for the
initial training step where a learning rate of 0.008 was used. We implemented a cosine
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learning rate schedule (Loshchilov and Hutter 2017) to optimize convergence. The loss
during training is shown in Figure 2.
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Fig. 2: Total loss during the training of the training and validation dataset.

Through hyperparameter tuning, we found that image size significantly impacts
model performance. An input resolution of 768 × 768 pixels provided the best trade-off
between inference latency and prediction performance for our application. Interest-
ingly, the choice of model architecture had less impact on the performance-latency
trade-off, leading us to select the smallest architecture, EfficientDet-lite0, for our final
implementation.

3 Results and discussion

In our analysis, we consider the output of the detection model as a list of bounding
boxes with corresponding class labels (either C. autumnale or Rumex) and associ-
ated confidence scores ranging from 0 to 1. For each detection, only the class label
with the highest score was selected. Additionally, we performed non-maximum sup-
pression (NMS, Neubeck and Van Gool (2006)) to prune overlapping bounding boxes,
retaining only the one with the highest confidence score. Here, two predicted bound-

ing boxes B
(1)
p , B

(2)
p ⊂ R2 are considered overlapping if IoU(B

(1)
p , B

(2)
p ) ≥ 0.5, where

IoU(B
(1)
p , B

(2)
p ) is the quotient of the areas of their intersection over union, i.e.,

IoU(B(1)
p , B(2)

p ) =
|B(1)

p ∩B
(2)
p |

|B(1)
p ∪B

(2)
p |

, (4)

where |B| denotes the area of a set B ⊂ R2. Given some decision threshold ddec ∈ [0, 1],
we select only those bounding boxes and corresponding class labels whose confidence
scores exceed the threshold ddec.

Similar to well-established evaluation protocols like the one for the COCO com-
petition (Lin et al. 2014), we determine whether a predicted bounding box Bp ⊂ R2
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correctly identifies a ground truth bounding box Bgt ⊂ R2 based on the correct
class label and IoU(Bp, Bgt). We employed an IoU threshold of dIoU = 0.5, which is
appropriate for our application since localization errors are not critical given that the
detected bounding boxes are coarsely mapped to a few nozzles (each with a width of
approximately 0.25m). More precisely, a predicted bounding box Bp that overlaps a
ground truth bounding box Bgt with IoU(Bp, Bgt) ≥ dIoU is classified as a true posi-
tive. If multiple predicted bounding boxes overlap with a single Bgt, only the one with
the highest IoU is considered a true positive, while the others are classified as false
positives (unless they overlap with another ground truth bounding box). Similarly, if
a single Bp overlaps with multiple ground truth bounding boxes, only the match with
the highest IoU is counted as a true positive. A predicted bounding box Bp without a
matching ground truth bounding box is categorized as a false positive, while a ground
truth bounding box Bgt without a corresponding predicted bounding box is classified
as a false negative.

For our evaluation metrics (Manning et al. 2008), we computed the numbers of true
positives ltp, false positives lfp, and false negatives lfn based on the test dataset unless
otherwise indicated. The precision prec ∈ [0, 1], which represents the probability that
a predicted bounding box with a given class correctly predicts a weed of that type, is
given by

prec =
ltp

ltp + lfp
. (5)

The recall rec ∈ [0, 1], which indicates the probability that a given weed in the ground
truth data is correctly predicted by the detector, is defined as

rec =
ltp

ltp + lfn
. (6)

Moreover, we use the Fβ ∈ [0, 1] metric as an aggregate of precision and recall, given
by

Fβ =
(β2 + 1) prec · rec
β2 prec+ rec

, (7)

for some β > 0. Rather than using the more commonly employed F1 metric, we focus
on F2, which places greater emphasis on recall than precision. This choice reflects our
application priorities: it is more important to detect all weeds (high recall) than to
ensure that all predictions are accurate (high precision). In the former case, missing
weeds might lead to site repopulation, while in the latter case, only some additional
areas might receive unnecessary treatment.

For assessing overall prediction performance, we utilize the precision-recall curve,
which plots the maximum precision obtainable for a given recall value. This curve is
generated by evaluating the model output at various decision thresholds between 0 and
1. The mean average precision (mAP), which represents the area under the precision-
recall curve averaged over all classes, provides a comprehensive scalar performance
metric, see Manning et al. (2008) for more details on these metrics.

The precision-recall curve for our model is presented in Figure 3a. The mAP
achieved is 0.606, with class-specific values of 0.617 for Rumex and 0.595 for C. autum-
nale, indicating similar detection performance for both target weeds. Interestingly,
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Rumex detection is slightly better despite having fewer examples in the ground truth
dataset (see Section 2.1). This superior performance is likely attributable to the more
distinct leaf shapes and coloring of Rumex species. These results for detecting Rumex
significantly exceed the mAP = 0.528 (IoU threshold of 0.5) obtained in Güldenring
et al. (2023) with a model architecture of comparable size (YOLOX-tiny). In the most
recent study by Heil and Stein (2024), mAP = 0.583 (YOLO-8n) and mAP = 0.629
(YOLO-9t) were reported for real-time capable architectures on RGB images. This
is very similar to what our model achieved. Note, however, that we additionally per-
formed model quantization to evaluate the most realistic prediction performance,
which slightly degrades the results.
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Fig. 3: Precision-recall curve (a) and confusion matrix (b) of the presented weed
detector.

The optimal decision threshold ddec—which is necessary for practical application
to decide if a detected area should be treated—was computed by maximizing the F2

metric averaged over all classes. This estimation, performed on the training dataset,
yielded a decision threshold of ddec = 0.213. Alternative strategies could be employed,
for example, to place even greater emphasis on recall.

Example detection results are shown in Figure 4. These images highlight the chal-
lenging nature of the detection task, even for human observers, as it involves identifying
(mostly) green leaves against a green background. The difficulty is particularly pro-
nounced when surrounding vegetation is high (Figures 4b,e,f) and the target weeds
may be partially occluded. Nevertheless, the detector generally performs well, correctly
identifying most weeds with only two clear false negatives (Figures 4a,e). Furthermore,
some false positives are observed, such as in Figure 4f where the predicted bounding
box in the bottom left very likely corresponds to a Taraxacum species. In Figure 4c,
on the other hand, it is unclear from the image whether there is an annotation error

9



or indeed another plant such as a Taraxacum species. Weed clusters, as exemplified in
Figure 4e, present a particular challenge. These clusters often result in many overlap-
ping detections for the same weed, leading to numerous false positives in the evaluation
since only the detection with the highest IoU is considered correct. However, these
multiple overlapping predictions have minimal impact on practical weed control since
the entire area is treated regardless. Moreover, it is often not obvious what the precise
extent of each individual weed should be, and, as mentioned above, precise localiza-
tion is of lower priority given the width of the individually controllable segments of
the SELBEWAG tool (approximately 0.25m).

Fig. 4: Randomly selected example images from the test dataset. Ground truth bound-
ing boxes are colored in blue, whereas predicted bounding boxes are indicated in red
together with their confidence score.

The confusion matrix presented in Figure 3b reveals very few instances where weed
types were misclassified. This is unsurprising given the significant visual differences
between C. autumnale and Rumex species.
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The evaluation metrics are summarized in Table 2. The results indicate that 56.0%
of C. autumnale detections are correct, while the precision for Rumex is about 8
percentage points lower. The recall values are better for both weed types, which is by
design since we maximized F2. As observed in Figure 4, weed detection in grassland
represents a challenging problem. High surrounding vegetation often poses challenges
for detection accuracy. In general, many false positives for Rumex originated from
localization problems (see Figure 4e), while others were due to other plants with red-
brown leaves. The detector also frequently struggles with different plants that have
leaves similar to C. autumnale. In practice, however, weeds are usually relatively rare
on sites where site-specific weed control is considered compared to the whole area. Our
approach results in treating roughly twice the necessary area, which is still significantly
better than area-wide weed control.

prec rec F1 F2 support

C. autumnale 0.560 0.621 0.589 0.607 8568
Rumex 0.481 0.671 0.560 0.622 1872

micro avg 0.543 0.630 0.583 0.610 10440
macro avg 0.521 0.646 0.575 0.616 10440

Table 2: Evaluation metrics for each weed type as
well as their per-instance (micro avg) and per-class
averages (macro avg) from the test dataset.

We also investigated how the precision for C. autumnale detection varies over time,
as detection performance is influenced by surrounding vegetation. Since C. autumnale
often experiences accelerated growth in late spring/early summer, it might be expected
that the timing of recordings affects precision—a consideration important for practical
application. Figure 5 illustrates this relationship for C. autumnale.
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Fig. 5: Precision of the C. autumnale detection over time. The precision was estimated
for all images of the test dataset that were recorded at the given dates.

11



For Rumex, too few recording dates were available to conduct a similar investiga-
tion. The data for 2023 shows a clear downward trend in precision over time, while
the 2024 data exhibits an upward trend, though no late-season recordings (which
showed the strongest performance degradation in 2023) were made in 2024. Moreover,
recall from Figure 1 that most examples in the ground truth dataset were captured
in 2023 providing more weight to the former hypothesis. The differences might also
be caused by the different growth conditions such as weather patterns. In summary,
the results regarding temporal effects are not definitive, and more data is required to
draw conclusions.

4 Conclusion

In this study, we developed and evaluated a real-time detection system for Colchicum
autumnale and Rumex species in grassland environments, designed specifically for
integration with the SELBEWAG non-chemical weed control tool. Our approach suc-
cessfully addresses the challenging task of identifying predominantly green weeds
against similar backgrounds. The quantized EfficientDet model achieved satisfactory
detection performance while meeting the operational constraints of edge devices.

Despite the inherent difficulties in weed detection—particularly in areas with high
surrounding vegetation—our system significantly improves upon conventional area-
wide treatments by targeting approximately twice the necessary area rather than entire
fields. The prioritization of recall over precision in our model design ensures that the
majority of weeds are detected, preventing site repopulation while still substantially
reducing the treated area compared to traditional methods. This selective approach
in combination with the non-chemical treatment of the SELBEWAG tool aligns with
environmental sustainability goals and is particularly valuable in sensitive areas such
as water protection zones.

Future work should focus on further improving detection accuracy in challenging
conditions and investigating the temporal effects on detection performance throughout
the growing season. Moreover, the presented approach should be extended to further
(grassland) weeds. Nevertheless, the current system represents a practical and effective
solution for environmentally sensitive grassland management that balances ecologi-
cal considerations with agricultural productivity. Regarding the integration into the
SELBEWAG tool, in an upcoming study we analyze the timing and latencies of the
detection and the overall control system.
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