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Abstract:

We consider the problem of estimating hitting probabilities related to a class of interacting particle systems.
These systems, in which two types of particles — ‘electrons’ and ‘holes’ — move on a graph, are simplified
versions of models describing charge transport in disordered materials. The probability of interest is the
probability that an electron reaches a certain region of the graph before colliding with a hole. We provide a
detailed description of our model and explain how it can be simulated. Next, we give a brief introduction to
importance sampling, which we use to improve the efficiency of our estimators. To our knowledge, importance
sampling has not yet been used to estimate probabilities related to interacting particle systems. We describe
how importance sampling can be used to improve the efficiency of estimators of hitting time probabilities
involving discrete time Markov chains. We then use importance sampling to estimate the probability that we
are interested in. In doing so, we observe that there are a number of complexities that arise when working
with interacting particle systems. We describe some simple heuristics for implementing importance sampling.
These heuristics make minimal changes to the probability measure under which the original system evolves.
We consider a specific example of our problem and investigate the effectiveness of the importance sampling
approach. We show that our estimators outperform standard Monte Carlo estimators. Finally, we describe
possible future work, which includes a more sophisticated importance sampling approach that uses ‘locally
optimal’ changes of measure.

Keywords: Importance sampling, Monte Carlo, interacting particle systems, hitting time, rare event simula-
tion, Markov chains.
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1 INTRODUCTION

In this paper, we apply importance sampling to an interacting particle system on a graph. To the best of our
knowledge, such systems have not yet been considered in the rare event simulation literature. Interacting
particle systems consist of a number of randomly moving particles which interact with one another, usually
according to simple rules. A hallmark of such systems is that they often exhibit complex and interesting be-
havior on a macroscopic level. Interacting particle systems have applications in many fields and, in particular,
can be used to model a number of fundamental physical processes. From a computational perspective, the
most significant challenge when dealing with interacting particle systems is that they have extremely large
state spaces. For a general introduction to the topic, see Liggett (2005).

The specific problem we consider has its origins in the physics of organic solar cells. Often, charge transport
in such materials is modeled using a continuous time Markov chain, which describes the locations of charge
carriers as they ‘hop’ on the vertices of a geometric graph; see Brereton et al. (2014) and Stenzel et al. (2014).
One of the aims when designing efficient solar cells is to limit recombination, which causes a charge carrier
to disappear before it reaches an electrode. In Markov chain models, an electron (one type of charge carrier)
is treated as ‘recombining’ if it collides with a hole (another type of charge carrier). When studying recombi-
nation, a quantity of interest is the probability that an electron starting at a given location reaches an electrode
without recombining. In general, such probabilities must be calculated using Monte Carlo methods. Because
of the size and complexity of the systems being considered, the computational cost of the simulations is very
large. Thus, it is of great value to develop tools that can reduce computational cost. One possible tool is
importance sampling.

There are a number of challenges that must be addressed when applying importance sampling to interacting
particle systems. We consider a simple problem that shares many features with realistic models of charge
transport. We describe a technique by which importance sampling can be effectively applied to interacting
particle systems and show that the resulting estimators outperform standard Monte Carlo. Finally, we briefly
discuss some more sophisticated approaches that will be investigated in the future.

2 PROBLEM DESCRIPTION

The problem we consider can be described as follows. Two types of particles, ‘electrons’ and ‘holes’, move
on a connected graph, G = (V,E), according to a continuous time Markov chain. We consider the case where
there is one electron and K holes, where K > 0 is an arbitrary integer. No more than one hole is allowed
to occupy a vertex at any given time. When the electron collides with a hole, both the electron and the hole
are destroyed. We wish to determine the probability that the electron is able to reach an ‘electrode’, A ⊂ V ,
before it is destroyed by a hole. The problem setting is illustrated in Figure 1.

More formally, the position of the electron is described by a V -valued continuous time Markov chain, {Et}t≥0,
that jumps with rate 1 according to the transition matrix P1. The positions of the holes are described by the V -
valued continuous time stochastic processes, {H(1)

t }t≥0, . . . , {H
(K)
t }t≥0. Each of these processes attempts

to jump at rate 1 according to the transition matrix P2. However, if the vertex to which the process tries
to jump is already occupied by a hole, the process remains where it is. Thus, the collection of processes,
{H(1)

t }t≥0, . . . , {H
(K)
t }t≥0, forms an exclusion process (see Grimmett (2010), Liggett (2005)). Note that the

complete system {St}t≥0 = {(Et, H(1)
t , . . . ,H

(K)
t )}t≥0 is a continuous time Markov chain taking values in

a subset of V K+1. The system starts in an initial configuration (e0, h
(1)
0 , . . . , h

(K)
0 ).

We are interested in the event that {Et}t≥0 collides with one of the {H(k)
t }t≥0 before it reaches a target

set A ⊂ V . More precisely, we define two hitting times, τelec = inf{t ≥ 0 : Et ∈ A} and τrecomb =

inf
{
t ≥ 0 : Et = H

(k)
t for some k ∈ {1, . . . ,K}

}
. The probability of interest is P(τelec < τrecomb). In or-

der to determine this probability, it is sufficient to consider the discrete time Markov chain, {S̃n}n∈N0 =

{(Ẽn, H̃(1)
n , . . . , H̃

(K)
n )}n∈N0

, which records the state of {St}t≥0 after each attempted jump by a particle. In
practice, {S̃n}n∈N0 is updated at the (n+ 1)th step as follows.

Algorithm 2.1 (Generating S̃n+1 given S̃n = (en, h
(1)
n , . . . , h

(K)
n )).

1. Draw U ∼ U(0, 1).

2. If U ≤ (K + 1)−1, move the electron. That is, draw Ẽn+1 ∼ P1(en, ·) and set H̃(k)
n+1 = h

(k)
n for all
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ElectronHoles

A

Figure 1. Illustration of the problem setting. The holes (colored red) and electron (colored blue) move about
on the vertices of the graph. We wish to calculate the probability that the electron reaches the region A (the
electrode) before it collides with a hole.

k ∈ {1, . . . ,K}.

3. If U > (K + 1)−1, attempt to move a hole. That is, draw k∗ uniformly from {1, . . . ,K}. Draw the
proposed move, Hprop ∼ P2(h

(k∗)
n , ·).

• If Hprop 6= h
(k)
n for all k ∈ {1, . . . ,K}, then set H̃(k∗)

n+1 = Hprop, Ẽn+1 = en and H̃(k)
n+1 = h

(k)
n

for all k ∈ {1, . . . ,K} \ {k∗}.
• Otherwise, set Ẽn+1 = en and H̃(k)

n+1 = h
(k)
n for all k ∈ {1, . . . ,K}.

Because of the combinatorial complexity of the state space of {S̃n}n∈N0 , it is not practical to work with the
transition matrix of {S̃n}n∈N0

explicitly. However, observe that only three types of event can occur in one
step: an electron can move, a hole can attempt to move and successfully move to another vertex, or a hole can
attempt to move and remain where it is. We write pE(v | e, h(1), . . . , h(K)) for the conditional probability that
the electron moves to v ∈ V given the current state of the system is (e, h(1), . . . , h(K)). Thus,

pE(v | e, h(1), . . . , h(K)) =
1

K + 1
P1(e, v).

We write pH(k, v | e, h(1), . . . , h(K)) for the conditional probability that the kth hole is selected to move and
moves to v ∈ V given the current state of the system is (e, h(1), . . . , h(K)). Thus,

pH(k, v | e, h(1), . . . , h(K))

=


1

K+1

[
P2(h(k), v) I

(
v 6= h(i) for all i ∈ {1, . . . ,K}

)]
if v 6= h(k),

1
K+1

[
1−

∑
v′∈V \{v} P2(h(k), v′) I

(
v′ 6= h(i) for all i ∈ {1, . . . ,K}

)]
if v = h(k),

where I(A) denotes the indicator function of the set A. Note that
∑
v∈V p

E(v | e, h(1), . . . , h(K)) +∑K
k=1

∑
v∈V p

H(k, v | e, h(1), . . . , h(K)) = 1. Given the probabilities pE(v | e, h(1), . . . , h(K)) and
pH(k, v | e, h(1), . . . , h(K)) for all v ∈ V and k ∈ {1, . . . ,K} , the dynamics of the Markov chain {S̃n}n∈N0

are fully determined.

3 RARE EVENT SIMULATION

The problem described above is actually a hitting time problem. This is a class of problems that have been
extensively studied in the rare event simulation literature. The classical setting is as follows. Let {Xn}n∈N0
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be a discrete time Markov chain with finite state space X , transition matrix P and X0 = x0 for some xo ∈ X .
We wish to estimate ` = P(τA < τB), where A and B are disjoint sets in X , τA = inf{n ∈ N0 : Xn ∈ A},
τB = inf{n ∈ N0 : Xn ∈ B} and P(min{τA, τB} <∞) = 1.

The naive approach to estimating ` via Monte Carlo is to simulate a large number, N , of realizations of
{Xn}n∈N0

and count the number of times that a realization hits A before B. This leads to the crude Monte
Carlo (CMC) estimator ̂̀

CMC =
1

N

N∑
i=1

Ii,

where the {Ii}Ni=1 are independent replicates of the random variable I(τA < τB). The efficiency of such an
estimator is typically measured by its relative error, which is the standard deviation of the estimator divided
by the quantity being estimated.

The idea of importance sampling is to produce a more efficient estimator by sampling the object of interest
under a different probability measure, which makes the event of interest more likely. In the case of a Markov
chain, we do this as follows. We define a new transition matrix, Q, by considering products of the form

Q(x, y) = r(x, y)P (x, y) for all x, y ∈ X ,

where
∑
y∈X Q(x, y) = 1 for all x ∈ X and r(x, y) > 0 for all x, y ∈ X such that P (x, y) > 0

and y /∈ B. The importance sampling estimator is then defined as follows. Independent replicates,
{Y (1)

n }n∈N0
, . . . , {Y (N)

n }n∈N0
, of a Markov chain starting at x0 with transition matrix Q are simulated. Then,

̂̀
IS =

N∑
i=1

L
(
{Y (i)

n }n∈N0

)
I(τ (i)A < τ

(i)
B ) (1)

is calculated, where τ (i)A = inf{n ∈ N0 : Y
(i)
n ∈ A}, τ (i)B = inf{n ∈ N0 : Y

(i)
n ∈ B} , τ (i) = min{τ (i)A , τ

(i)
B }

and

L
(
{Y (i)

n }n∈N0

)
=

τ(i)∏
n=0

P (Y
(i)
n , Y

(i)
n+1)

Q(Y
(i)
n , Y

(i)
n+1)

=

τ(i)∏
n=0

1

r(Y
(i)
n , Y

(i)
n+1)

.

The path functional L(·), called the likelihood ratio, weights the samples to ensure an unbiased estimator; see,
e.g., L’Ecuyer et al. (2009). If the new transition matrix, Q, is chosen well, the relative error of the importance
sampling estimator will be substantially smaller than that of the CMC estimator.

In principle, it is possible to construct a zero-variance change of measure in this setting using Doob’s h-
transform; see Asmussen and Glynn (2007). The resulting Markov chain has the same dynamics as the orig-
inal chain conditioned on the event {τA < τB}. Although this is not practically useful (because it requires
knowledge of the very probabilities that we are trying to estimate) it does give insight into what a good change
of measure should look like. For more information on applying importance sampling to Markov chains, see
Kroese et al. (2011) and Asmussen et al. (2013).

4 APPLYING IMPORTANCE SAMPLING TO AN INTERACTING PARTICLE SYSTEM

Applying importance sampling to interacting particle systems is challenging for a number of reasons. In
particular, it is hard to find simple changes of measure that can make the event of interest more likely. For
example, in the setting of Section 2, it may not be wise to ‘push’ the electron towards the set A, as this could
also push the electron in the direction of holes. Even if there are clear ways to make the event of interest more
likely, these may be atypical under the original measure. Furthermore, the state spaces of interacting particle
systems are high dimensional and the change of measure clearly needs to be state dependent. This makes it
difficult to use approaches that attempt to learn good changes of measure, such as the cross-entropy method
(see Rubinstein and Kroese (2004)).

The heuristic that we adopt is to make only local changes. We evolve the system as normal except when the
electron gets too close to a hole. When this occurs, we change the transition probabilities so that a collision
between the electron and the hole is less likely to occur. This approach has a number of advantages. Firstly,
we only need to update the likelihood ratio and calculate new probabilities when the electron gets too close to
a hole. Secondly, because we do not change the transition probabilities very often, we do not sample under a
measure that is dramatically different to the original measure. Thirdly (and, arguably, most importantly), when
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we do apply importance sampling in a step of the algorithm, the likelihood ratio is multiplied by a factor that
is strictly less than 1. This means that there is no risk of variance blow-up and, ignoring issues surrounding
the additional computation time, we do not perform worse than CMC.

There are a number of different ways to reduce the probability that an electron collides with a nearby hole.
Due to space issues, we describe only one approach here. In this approach, the electron and holes move less
frequently to vertices occupied by the opposite type of particle than they would under the original probability
measure. The frequency with which they move is controlled by a parameter ρ ∈ (0, 1]. We set

qE(v | e,h(1), . . . , h(K)) =
wE(v | e, h(1), . . . , h(K))

C(e, h(1), . . . , h(K))
· pE(v | e, h(1), . . . , h(K)),

where

wE(v | e, h(1), . . . , h(K)) =

{
ρ if v = h(k) for some k ∈ {1, . . . ,K},
1 otherwise.

Similarly, we set

qH(k, v | e,h(1), . . . , h(K)) =
wH(v | e, h(1), . . . , h(K))

C(e, h(1), . . . , h(K))
· pH(k, v | e, h(1), . . . , h(K)),

where

wH(v | e, h(1), . . . , h(K)) =

{
ρ if v = e

1 otherwise.

The probabilities are normalized so that they sum to one. That is, we take

C(e, h(1), . . . , h(K)) =
∑
v∈V

wE(v | e, h(1), . . . , h(K)) · pE(v | e, h(1), . . . , h(K))

+

K∑
k=1

∑
v∈V

wH(v | e, h(1), . . . , h(K)) · pH(k, v | e, h(1), . . . , h(K)).

Let {Šn}n∈N0 = {(Ěn, Ȟ(1)
n , . . . , Ȟ

(K)
n )}n∈N0 be the Markov chain defined by these dynamics. Note that,

when no hole is adjacent to the electron, the dynamics of {Šn}n∈N0
are exactly the same as those of the

original chain. The functions wH(v | e,h(1),...,h(K))
C(e,h(1),...,h(K))

and wE(v | e,h(1),...,h(K))
C(e,h(1),...,h(K))

play the role of r(x, y) in the
importance sampling estimator given in (1) and are used to construct the likelihood ratio. A replicate of
L({Šn}n∈N0

)I(τelec < τrecomb) can be simulated as follows.

Algorithm 4.1 (Importance sampling by changing the jump frequencies).

1. Set Š0 = (e0, h
(1)
0 , . . . , h

(K)
0 ). Set n = 0. Set L0 = 1.

2. Draw U ∼ U(0, 1).

3. If U ≤
∑
v∈V q

E(v | Šn), move the electron. That is, draw Ěn+1 ∼ µE(· |Sn), where

µE(v | Šn) =
qE(v | Šn)∑
v′∈V q

E(v | Šn)
for all v ∈ V.

Set H(k)
n+1 = H

(k)
n for all k ∈ {1, . . . ,K}. Set

Ln+1 =
C(Šn)

wE(Ěn+1 | Šn)
· Ln.

4. If U >
∑
v∈V q

E(v | Šn), move a hole. That is, draw k∗ ∼ µK(· | Šn), where

µK(k | Šn) =

∑
v∈V q

H(k, v | Šn)∑K
k′=1

∑
v∈V q

H(k′, v | Šn)
for all k ∈ {1, . . . ,K}.
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Then, draw the new state, Ȟ(k∗)
n+1 ∼ µH(· | k∗, Sn), where

µH(v | k∗, Sn) =
qH(k∗, v | Šn)∑

v′∈V q
H(k∗, v′ |Šn)

for all v ∈ V.

Set Ěn+1 = Ěn and Ȟ(k)
n+1 = Ȟ

(k)
n for all k ∈ {1, . . . ,K} \ {k∗}. Set

Ln+1 =
C(Šn)

wH(Ȟ
(k∗)
n+1 | Šn)

· Ln.

5. If Ěn = Ȟ
(k)
n for some k ∈ {1, . . . ,K}, return 0. If Ěn ∈ A, return Ln. Otherwise, set n = n+ 1 and

repeat from step 2.

Note that, in practice, C(Šn) is straightforward to compute and µE(· | Šn), µK(· | Šn) and µH(· | k∗, Sn) can
be easily sampled from via acceptance-rejection.

5 EXPERIMENTS

For reasons of space, we only consider one specific example of the problem here. The basic setup, illustrated in
Figure 2, is the following. We consider an m×m square lattice. The lattice has periodic boundary conditions
above and below and reflective boundary conditions to the left and right. The initial configuration of the system
consists of m × l holes, which occupy the rightmost l columns. The electron starts in the leftmost column.
The electrode is the rightmost column. With probability α, the electron moves right. Otherwise, it selects one
of the other directions uniformly at random. With probability β, a hole attempts to move left. Otherwise, it
selects one o f the other directions uniformly at random. The parameter l allows us to control the rarity of the
event {τelec < τrecomb}.

A

Electron Holes

Figure 2. Illustration of the setup used in the numerical experiments, with m = 5 and l = 1.

The results of the experiments, with m = 10, α = .7 and β = .7, are shown in Table 1. For each l,
the best case relative error of the importance sampling estimator is roughly 1/2 of the relative error of the
corresponding CMC estimator. This means that the importance sampling estimator can obtain a similar level
of accuracy to the CMC estimator using 1/4 as many samples. Although the reduction in relative error is
not a large improvement in the classical rare event simulation context, it is a significant improvement in our
context. This is because simulations of realistic physical systems often need to be run over periods of several
weeks (and, thus, reducing the sample size by a factor of 2–4 is significant). We observe that, although the
importance sampling estimator require more computational effort per sample, this overhead can be mitigated
through careful implementation.
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Table 1. Estimates (̂̀) and estimated relative errors (R̂E) for the crude Monte Carlo (CMC) and
importance sampling (IS) estimators with sample size N = 107.

CMC IS(ρ = 0.01) IS (ρ = 0.05) IS (ρ = 0.10) IS (ρ = 0.50),

l = 1̂̀ 1.730× 10−1 1.729× 10−1 1.729× 10−1 1.731× 10−1 1.731× 10−1

R̂E 6.15× 10−4 3.78× 10−4 3.87× 10−4 3.96× 10−4 4.81× 10−4

l = 2̂̀ 2.114× 10−2 2.130× 10−2 2.108× 10−2 2.115× 10−2 2.113× 10−2

R̂E 2.13× 10−3 1.21× 10−3 1.23× 10−3 1.26× 10−3 1.55× 10−3

l = 3̂̀ 1.784× 10−3 1.787× 10−3 1.783× 10−3 1.785× 10−3 1.781× 10−3

R̂E 7.47× 10−3 3.33× 10−3 3.42× 10−3 3.53× 10−3 4.70× 10−3

6 EXTENSIONS

The methodology presented above represents only the first steps on the road to finding effective importance
sampling strategies for interacting particle systems. New techniques need to be developed and the existing
strategies need to be tested in a number of different settings to identify where they work well and where they
fail. Currently, the authors are working on changes of measure that consider what may occur several steps
ahead. This allows for strategies where holes organize to let the electron pass and where the electron is able
to start moving away from a hole that is not immediately adjacent to it. These ‘locally optimal’ changes of
measure can be constructed by solving discrete Dirichlet problems, though the dimension of these problems
can be prohibitively high.
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