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Abstract. In this paper, the grain microstructure and strain partitioning in a

polycrystalline NiTi wire subjected to tensile loading was reconstructed from an

experimental 3D-XRD dataset. The reconstruction of a volume containing more

than 8,000 stressed grains involved optimization with respect to both the geometrical

features and material elastic properties. The geometrical features of the microstructure

were reconstructed using Laguerre tessellations based on the experimental 3D-XRD

dataset. Two different algorithms fitting Laguerre tessellations were applied in order to

assess the sensitivity of the reconstruction to the choice of the algorithm. The material

properties in terms of elastic anisotropy were refined from an initial published value

to minimize the mismatch between experiment and simulation using an optimization

algorithm based on linear elasticity simulations. As a result of this, we constructed a

numerical microstructure model that statistically matches the experimentally probed

material in terms of positions and sizes of grains as well as partitioning of elastic strain

and stress in the microstructure (average elastic properties and standard deviations of

piecewise constant components of elastic strain and stress tensors in grains).

Keywords : elastic anisotropy, elasticity, microstructure, microstructure reconstruction,

3D-XRD, Laguerre tessellation, FEM

Submitted to: Modelling Simul. Mater. Sci. Eng.



Numerical microstructure model 2

1. Introduction

Realistic microstructure models are essential for representative modeling of deformation

phenomena in polycrystals on the level of individual grains and their interactions. In

general, a realistic microstructure model of a single-phase material has to accurately rep-

resent the microstructure morphology, and be accurately informed of crystal orientations

and material parameters characterizing crystal symmetry and deformation behavior of

single grains. 3D synchrotron x-ray diffraction (3D-XRD) [1] applied to a statistically

significant number of grains (detector configuration C in [1]), hereinafter referred to

as 3D-XRD method or 3D-XRD, provides many of these elements necessary to build

microstructure models. Namely, it provides information on microstructure geometry in

terms of grain center-of-mass positions, grain volumes, and grain orientations. Further-

more, 3D-XRD may provide information on elastic deformation of grains in terms of

grain-wise averaged elastic strains. Nevertheless, 3D-XRD does not provide informa-

tion on grain shapes, grain boundaries, grains’ neighborhoods, and inhomogeneity of

strain and stress fields within individual grains due to interactions of anisotropically de-

forming grains. This missing information may be extracted from numerical simulations

performed on microstructure models provided that these models accurately represent

real microstructures and the elastic constitutive response of the material.

The morphology of the microstructures has been modeled using Voronoi [2] and La-

guerre tessellations [3], where the grains are approximated by convex polyhedral cells

[4], hereinafter interchangeably referred to as grains or cells. Laguerre tessellations en-

able to optimize the cells geometry and position on provided geometrical statistics such

as grain size distributions or grain-wise input data such as grain sizes and center-of-

mass positions as experimentally identified by e.g. 3D-XRD [1], 3D-EBSD [5]. It has

been reported in the literature that Laguerre tessellations perform well in reproducing

statistics of real microstructures, but they are not as accurate in reproducing the topol-

ogy of individual grains and relationships between grains [6]. However, the accuracy of

the latter was shown to be improved by using more sophisticated optimization methods

coupled with Laguerre tessellations [7, 8, 9].

To sum up, the tessellation-based polycrystal models have been used to study various

deformation mechanisms activated in deformed metals such as elasticity, dislocation

plasticity, deformation twinning, displacive phase transformation and their coupling

[10, 11, 12, 13, 14]. However, these models have never been proven to represent accu-

rately the deformation behavior of real microstructures. The validation of Laguerre-

tessellation-based microstructure models has been performed strictly on morphological

comparisons between experimentally probed microstructures and their representations

by tessellations [6, 7, 8, 9]. Perfect grain to grain match between statistically signifi-

cant polycrystal models and real microstructures cannot be reached due to limitations

of both experimental techniques and the mathematical framework of Laguerre tessella-

tions. Nevertheless, statistically equivalent microstructure models comprising thousands

of grains can be reconstructed from experimental data. Although essential for reliabil-
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ity of simulations performed on statistically equivalent tessellation models, the critical

validation of these models in terms of statistical descriptors of deformation behavior

remains rare in the literature.

The aim of this paper is twofold. First, a microstructure model of NiTi reconstructed

from experimental data is aimed for further through-simulation understanding of stress-

induced martensitic transformation (MT) on the mesoscopic level of polycrystalline ag-

gregates. Due to stress-induced MT and coupled deformation processes the superelastic

NiTi wires exhibit outstanding structural and functional properties [15, 16, 17, 18] the

application of which is, however, largely hindered by poor fatigue performance in the

superelastic regime [19, 20]. The fatigue problems might stem from local stress inhomo-

geneity due to grain interactions and redistribution of stresses activated by anisotropy

of deformation processes proceeding in NiTi wires under stress [18, 21, 22, 23]. These

phenomena have been studied on the surface [24] but are difficult to be studied in the

bulk. Mesoscopic simulations can be used instead of experiments provided that the

microstructure model accurately represents the real microstructure. The verification of

this assumption is the second aim of the present paper.

The verification is based on statistical comparisons between the 3D-XRD experiment

and the microstructure model in terms of morphology and deformation behavior. The

latter relies on comparisons of grain-wise averaged strain and stress distributions result-

ing from elastic deformation. In fact, such validation based on deformation behavior

is an overall test of the model as the deformation behavior reflects all model features

such as morphological aspects, the distribution of grain orientations, and elastic prop-

erties. The single crystal elastic properties of phase transforming shape memory alloys

have, however, been often reported as changing prior to phase transformation. Pretrans-

formation softening has been experimentally observed during both temperature-induced

and stress-induced MT [25, 26, 27]. The reconstruction of the microstructure model pre-

sented in this paper takes this phenomenon into account by refining the elastic anisotropy

from the value determined by initial elastic constants identified in stress-free conditions

well above the phase transformation temperature. The refinement is based on the match

between 3D-XRD and simulation results in terms of elastic anisotropy-driven scatter in

grain-wise averaged strain components. In this paper we report a considerable mismatch

regarding this measure for the initial elastic constants, being an indirect evidence for

changes in elastic constants prior to stress-induced MT in NiTi. Note that the mismatch

might also stem from any plastic deformation. Although we cannot fully rule out an

occurrence of microplasticity, we can exclude any considerable plastic deformation. In

fact, we have investigated thoroughly plastic deformation phenomena in the superelastic

NiTi wires with respect to microstructure, temperature and deformation regime, i.e.,

prior, during, and after the stress-induced MT [23, 18]. The major conclusion is that the

yield stresses of austenite and martensite lie well above the superelastic stress-plateau at

room temperature, i.e., above the stress level applied in the present case. In-situ X-ray

powder diffraction experiments as well as the 3D-XRD experiments did not reveal any

distortion of diffraction peaks nor spots indicating the plastic deformation. Moreover,
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no any residual macroscopic strain was induced by tensile loading up to the level of the

stress-plateau and unloading that followed a reversible linear elastic stress-strain trend.

The paper includes three main sections dedicated to the presentation of the experi-

mental 3D-XRD dataset the microstructure model is based on, the description of the

applied methods, and the results. Section 3 entitled “Methods” includes subsections

dealing with the reconstruction of microstructure morphology using Laguerre tessella-

tions and two different optimization schemes, finite element modeling to simulate the

deformation behavior, and a description of the elastic anisotropy refinement. Section

4 entitled “Results” describes the match between the experimental 3D-XRD dataset

and the models in terms of morphological aspects, and the deformation behavior for

the initial and refined anisotropies. Finally, the main results of the present paper are

discussed and concluded in Sections 5 and 6, respectively.

2. Experimental dataset

The present paper is based on a 3D-XRD experiment originally focused on the evaluation

of stress redistribution near the martensite shear band front (MSBF) propagating under

tension in 100 µm superelastic NiTi wire [21]. As schematically shown in Fig. 1b,

the MSBF propagates upon tensile loading throughout the wire at a constant stress

indicated by the plateau in the stress-strain loading curve (Fig. 1a). At MSBF the

cubic B2 austenite transforms into monoclinic B19’ martensite, which provides the wire

with ∼ 8% of reversible tensile deformation. The grains transformed into martensite

could not be probed by 3D-XRD due to overlap and diffuseness of the diffraction spots

caused by twelve possibly formed martensite orientation variants and transformation

induced plasticity. Therefore, the 3D-XRD method probed ∼ 15,000 austenitic grains

near the MSBF (Fig. 1c) where the lattice orientation, volume and average elastic strain

tensor were identified for individual grains. The distribution of grain-wise averaged axial

strains showed that the conical MSBF affects the stress state in grains located in its

vicinity spanning up to ∼ 100µm from the cone tip as illustrated in Fig. 1d (for

details we refer to [21]). However, beyond this region the grains are left unaffected

by MSBF and their stress-strain state can be considered as purely due to elastic grain

interactions induced by tensile loading. This region (dash-dotted in Fig. 1d) represents

the volume of interest for the present paper and will be hereinafter referred to as the

wire microstructure. It contains 8,063 grains constituting the wire microstructure to

be reconstructed in the present paper while the experimental 3D-XRD data informing

about this microstructure will be hereinafter referred to as 3D-XRD dataset.

The 3D-XRD dataset provides information about the wire microstructure features in

terms of center-of-mass positions, volume and crystal lattice orientation of individual

grains and about elastic grain interactions in terms of grain-wise averaged strain tensor

components. The former provides a basis for the reconstruction of microstructure

morphology while the latter serves for the refinement of elastic anisotropy and for the
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validation of the microstructure model. Note that the 3D-XRD dataset is defined in a

laboratory coordinate system the z-axis of which is aligned with the wire axis as seen

in Fig. 1c,d.

Figure 1. The present paper is based on a 3D-XRD measurement of a NiTi wire

being under tension in a partially transformed state manifested macroscopically by

the stress plateau in the stress-strain curve (a) and the loading stage in the middle

of the stress plateau. The 3D-XRD measurement probed a vicinity of the martensite

shear band front (b), and provided information on individual austenite grains in terms

of lattice orientation, volume, and tensorial strains (c). A set of austenitic grains that

remained unaffected by the martensite shear band front (dash-dotted region in (d))

was considered for microstructure reconstruction in this paper.
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2.1. Microstructure

The 3D-XRD dataset reveals that the wire microstructure features a log-normal

distribution of grain volumes with mean value and standard deviation (std) of 62 and

2 µm3, respectively (Fig. 2a), and normal distribution of volume-equivalent grain

diameters with mean value and std of 5.1 and 1.3 µm, respectively (Fig. 2b). The

grain shape morphology was qualitatively evaluated as equiaxial based on the 3D EBSD

analysis reported in [21].

Figure 2. Distribution of grain volumes (a), and volume-equivalent grain diameters

(b) of the wire microstructure as identified by the 3D-XRD method and approximated

by a log-normal distribution and a normal distribution, respectively.

The 3D-XRD dataset provides complete crystallographic information about the

lattice orientation of individual grains , e.g., in terms of three Euler angles. The

preferential crystallographic orientation of the microstructure (texture) was assessed

using pole figures evaluated in the laboratory coordinate system where the z-axis is

aligned with the wire axis and the x,y-axes lie in the wire cross-section. The pole figure

for <111> directions (Fig. 3a) reveals their strong preferential orientation along the

wire axis and the <100> pole figure (Fig. 3b) confirms the strong fiber texture of the

microstructure.
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Figure 3. Preferential grain orientations of the wire microstructure expressed in

terms of the <111> pole figure (a) and the <100> pole figure (b) plotted in equal

area projection in the laboratory coordinate system where the z-axis is aligned with

the wire axis and the x,y-axes lie in the wire cross-section.

2.2. Distribution of grain-wise averaged strains

The 3D-XRD dataset provides information about the elastic strains within the
polycrystalline aggregate in terms of grain-wise averaged strain tensor components that
were identified using the 3D-XRD method with experimental errors estimated to be
about 1e-4 (for details see the supplementary material of [21]).
Unweighted distributions of grain-wise averaged strains with indicated mean and
standard deviation values are presented in Fig. 4 for all independent components of the
strain tensor expressed in the laboratory coordinate system, where the xy-plane lies in
the wire cross-section plane. Moreover, the inset figure informs about relative azimuthal
variations of radial and hoop strains (Fig. 4b), and the radial Poisson ratio (Fig.
4c) evaluated within the wire cross-section. The azimuthal variations were evaluated
relatively to their average values over the full azimuthal range. The azimuthal variations
being lower than 1.0 % confirms that the assumption of axial symmetry holds reasonably
well.
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Figure 4. Histograms fitted by normal density functions with indicated mean and

standard deviation (std) values representing unweighted distributions of grain-wise

averaged strains for all independent components of strain tensors expressed in the

laboratory coordinate system, where the z-axis is aligned with the wire axis while the

xy-plane lies in the wire cross-section plane as indicated by the inset figure (a). The

inset plots (b) and (c) show the relative azimuthal variations of mean values of radial

and hoop strains, and the radial Poisson ratio within the cross-section plane depicted

in (a), respectively.

3. Methods

3.1. Reconstruction of microstructure morphology

The morphology of the microstructure model to be constructed in the present paper was

based on Laguerre tessellations (see, e.g., [3]) that were optimized such that each cell

matches the corresponding grain in the 3D-XRD dataset as closely as possible in terms

of grain size and center-of-mass position. Two different models were considered, each of

them using a different reconstruction algorithm in order to assess how the reconstruction

method affects the resulting microstructure morphology and simulated elastic grain

interactions. One of the two algorithms described briefly hereinafter has been developed

in [7] by co-authors of the present paper, referred to as CE (cross-entropy) method, while

the second one has been developed in [8, 9] and implemented in the open-source software
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package Neper by R. Quey (referred to as Neper).

3.1.1. Laguerre tessellations A Laguerre tessellation is completely described by a 4n-

dimensional vector where n denotes the number of cells. More precisely, each cell Ci of

the tessellation (i = 1, . . . , n) can be associated with a so-called generator consisting of

a point xi ∈ R3 and a weight ri ≥ 0. The cell Ci is then given by

Ci = {y ∈ R3 : pow(y, (xi, ri)) ≤ pow(y, (xj, rj)) for each j = 1, . . . , n}

with pow(y, (x, r)) = ||y − x||2 − r2. So the problem of reconstructing the

wire microstructure morphology from the 3D-XRD dataset can be phrased as the

optimization problem of finding the generators that minimize the discrepancy between

volumes and centers of mass of the Laguerre cells and the grain sizes and centers of

mass from the 3D-XRD dataset. The biggest differences of the two reconstruction

methods described below are how exactly they measure this discrepancy, i.e., how the

cost function is defined, and which optimization algorithms they employ.

3.1.2. CE method The method developed in [7] is based on cross-entropy optimization

[28], where in each iteration of the algorithm several Laguerre tessellations (more

precisely their generators) are drawn from some probability distribution. The best

tessellations are selected with respect to the cost function and their generators are

used to update the probability distribution for the next iteration. The benefits of this

algorithm are that it does not easily get stuck in local minima and that the computations

can be performed in a highly parallel and even distributed environment.

3.1.3. Neper method The reconstruction method proposed in [8], on the other hand,

can employ several different non-linear, gradient-free optimization algorithms. The

unique feature, however, is that in each iteration of the reconstruction only few

generators are altered. In a Laguerre tessellation, these changes may also affect

neighboring cells and, in order to make the program more efficient, an update strategy

of the cost function is used that propagates these changes through the tessellation and

only the costs of the modified cells are recomputed.

3.2. Numerical simulations

3.2.1. Finite element discretization and elastic anisotropy assignment Elastic grain

interactions in the NiTi wire were simulated on microstructure models by the finite

element method (FEM) using the structural static analysis of the MSC Marc solver

[29]. The microstructure models were discretized using the Neper software allowing

for regularization of tessellations and subsequent discretization of each individual cell

by tetrahedral elements [9]. In order to verify the sensitivity of simulation results to

the degree of discretization, two versions of finite element models were prepared one of

which used linear four nodes tetrahedral elements (Element 134 [30]) while the other

one used more accurate quadratic ten nodes tetrahedral elements (Element 127 [30]).
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The anisotropy was assigned to sets of elements representing individual grains using the

orientation option in conjunction with the 3D ANISO orientation type [31], where the

grain orientation is defined by the basal lattice vectors expressed in the global coordinate

system coinciding with the laboratory coordinate system of the 3D-XRD experiment.

The vectors were calculated from grain orientations available in the 3D-XRD dataset.

The elastic properties were then defined in the local coordinate systems by a single

stiffness matrix filled with the considered elastic constants.

3.2.2. Boundary conditions The tensile loading in the NiTi wire was prescribed by

boundary conditions defined in terms of axial stresses so to match as closely as possible

the experimentally measured axial stresses in grains located at the boundaries. There-

fore, the surfaces of grains located at the wire cross-sectional boundaries were subjected

to axial stresses corresponding to grain-wise averaged axial stresses evaluated in these

grains using the 3D-XRD measured lattice strains and considered elastic constants.

3.2.3. Post-processing of simulation results The match between the microstructure

model and the real microstructure was evaluated by comparing the mean values and

standard deviations of distributions of grain-wise averaged strain and stress components

expressed in the laboratory cylindrical coordinate system having its z-axis aligned with

the wire axis. This required an automated post-processing of the simulation results

provided in terms of strains and stresses at the level of individual elements. Therefore,

these results were reduced into grain-wise averaged strain and stress components denoted

as εg,FEM
i,j , σg,FEM

i,j , respectively, by element-volume weighted averaging according to Eq.

1-2, where the superscript g denotes the indexes of individual grains and V g denotes

their volumes. The individual grains were discretized by N g elements of volumes V g
e on

which the strain and stress components, denoted by σg,FEM
e,i,j , εg,FEM

e,i,j , were respectively

evaluated as average values of stress and strain components calculated at the four

vertices of the individual tetrahedral elements. The average values were computed with

the help of the Python interface of the MSC Marc post-processor [32] and using the

following equations:

εg,FEM
i,j =

1

V g

Ng∑
e=1

V g
e ε

g,FEM
e,i,j (i, j = 1, 2, 3), and (1)

σg,FEM
i,j =

1

V g

Ng
e∑

e=1

V g
e σ

g,FEM
e,i,j (i, j = 1, 2, 3). (2)

3.3. Refinement of elastic anisotropy

The elastic properties of the austenite cubic structure of the NiTi wire are described by

three elastic constants C11, C12, C44 fully defining the fourth order elasticity tensor

Ctest
i,j,k,l, where the values of the indices i, j, k, l range from 1 to 3. Experimentally
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identified values of elastic constants are available in the literature for stress-free

austenite. However, the 3D-XRD dataset is obtained on stressed material near stress-

induced martensitic transformation, which may lead to premartensitic softening of the

basal plane shear modulus C ′ = (C11 − C12)/2 [26, 27]. This softening changes the

elastic anisotropy defined for cubic materials as A = C44/C
′. The magnitude of

elastic anisotropy affects the magnitude of strain and stress inhomogeneities in the

polycrystalline material, which may be evaluated by standard deviations of grain-wise

averaged strains and stresses. Therefore, we suggest a method of elastic anisotropy

refinement based on numerical simulations performed on a set of elastic constant

combinations selected in the vicinity of the values experimentally identified under stress-

free conditions. The mismatch between the 3D-XRD dataset and the simulation results

in terms of standard deviations of distributions of grain-wise averaged strains is then

considered as a criterion for identifying the elastic anisotropy of the material under

stress. Specifically, the sum of absolute differences in standard deviations std(εgi,j) of

distributions of all tensorial components of grain-wise average strains εgi,j is considered

as a measure of refinement quality according to the following equation:

∆std(εg) =
3∑

i=1

3∑
j=1

|std(εgi,j)
3D-XRD − std(εgi,j)

FEM| , (3)

where the superscripts 3D-XRD and FEM denote the values resulting from 3D-XRD

measurement and simulations, respectively. Besides, the L1 norm was also considered

as a measure of the mismatch between the 3D-XRD dataset and the simulation results

evaluated as a sum of absolute differences between vectors of histograms of grain-wise

averaged strains according to the following equations:

∆L1(εg) =
3∑

i=1

3∑
j=1

Nh∑
k=1

|hk(εgi,j)
3D-XRD − hk(εgi,j)

FEM| , (4)

where hk(εgi,j)
3D-XRD and hk(εgi,j)

FEM denote, respectively, the relative number of grains

in the kth histogram bar of 3D-XRD- and simulation-based equally binned distributions

of grain-wise averaged strain tensor component εgi,j, Nh is the number of bins.

The combinations of elastic constants have to provide average elastic properties in

agreement with the measured quantities. In the present paper, the axial stress in the wire

σexp
zz was measured by a load cell and the elastic axial deformation εexpzz was calculated

from the applied displacement (see Fig. 1a). Therefore, the average axial Young’s

modulus defined as Eexp = σexp
zz /ε

exp
zz is known from the experimental data. Hence, the

average Young’s modulus (〈Eg
zz〉3D-XRD ≡ 〈Eg

33〉3D-XRD), calculated over the total number

of grains Ng, has to be equal to the experimentally identified Young’s modulus Eexp. The

average Young’s modulus 〈Eg
zz〉3D-XRD could be calculated without considering the grain-

wise averaged strains in individual grains by classical homogenization theories such as

isostrain (Voigt), isostress (Reuss) or their average (Hill) [33] as well as by more advanced

approaches, e.g., Kroner [34]. However, the 3D-XRD dataset enables to express the

average Young’s modulus in terms of directly measured grain-wise averaged strains
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εg,3D-XRD

i,j and the tested elasticity tensor Cg,test
i,j,k,l , formed from considered combination

of elastic constants and expressed in the laboratory coordinate system for individual

grains. This condition is formulated in the following equation:

〈Eg
zz〉3D-XRD ≡ 〈Eg

33〉3D-XRD =

1
Ng

∑Ng

g=1

∑3
k=1

∑3
l=1C

g,test
33kl ε

g,3D-XRD

kl

〈εg33〉3D-XRD
= Eexp. (5)

If Condition (5) is not satisfied, the considered combination of elastic constants has to

be excluded. The number of combinations of elastic constants is defined by finite sets

of elastic constants C11, C12, C44 spanning around the initial constants Cini
11 , Cini

12 , Cini
44 .

The set is then reduced by Condition (5), which in fact can be geometrically expressed

in the space C11, C12, 〈Eg
33〉3D-XRD visualized in Fig. 5. Condition (5) delimits, for a

constant C44, the eligible combinations of C11, C12 that belong to the intersection of

the surface 〈Eg
33〉3D-XRD(C11, C12) with the plane 〈Eg

33〉3D-XRD = Eexp. This operation is

performed for all C44 in the predefined set, which may result in multiple intersections

and, hence, eligible combinations as shown schematically in Fig. 5.
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Figure 5. Illustration of how combinations of elastic constant are delimited for elastic

anisotropy refinement. The eligible combinations for a given C44 constant belong to

the intersection of the experimentally identified Young’s modulus plane Eexp with the

surface of the average Young’s modulus 〈Eg
33〉3D-XRD calculated in the space of C11, C12

using Eq. 5. Considering a set of C44 constants, multiple Young’s modulus surfaces

are constructed (a) resulting in multiple intersection lines (b).

4. Results

4.1. Reconstruction of microstructure morphology

The optimization algorithms (CE, Neper) considered in this paper converged to

statistically similar microstructures as summarized in Fig. 6 and 7. Note that Laguerre
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tessellations allow the removal of grains from the 3D-XRD dataset as it allows for

generators with empty cells [3]. Consequently, the obtained number of grains may

be smaller than the number of grains in the 3D-XRD dataset being reconstructed [7].

Indeed, in the case of the models CE and Neper the number of reconstructed grains was

7685 and 7949, respectively, compared to 8063 grains contained in the 3D-XRD dataset.

From a statistical point of view, both models generate a higher number of small grains

compared to the 3D-XRD dataset as indicated by the left tails of the red colored

distributions, related to regularized microstructure FEM models, shown in Fig. 6b1,b2,

that do not overlap with the green distribution related to the 3D-XRD dataset. Mean

and standard deviation of grain sizes differ from the 3D-XRD dataset by less than 10

% of the average grain size (5.1 µm). Grain by grain comparisons between the models

and the 3D-XRD dataset show nearly symmetrical distributions of differences in grain

sizes with standard deviations in the range 1.20-1.30 µm (Fig. 6c1,c2). Grains in the

CE and Neper models are in average misplaced by 1.05 and 0.92 µm, respectively, from

the grain center-of-mass positions provided by the 3D-XRD dataset, while the standard

deviation of the misplacement is equal to 1.94 and 1.81 µm, respectively (Fig. 6d1,d2).

Note that the mean values and the standard deviations of the distributions shown in

Fig. 6 were evaluated by fitting the data using normal density functions (for the grain

sizes and the differences in grain sizes) or using log-normal density functions (for the

errors in grain center-of-mass positions).
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Figure 6. Histograms on the left (CE model) and right (Neper model) show the

agreement of regularized microstructure models based on CE (a1) and Neper (a2)

with the 3D-XRD dataset in terms of grain size distributions (b1), (b2), where the

red distributions denoted by Model fitted by normal density functions (red dashed

curves) are related to models while the green ones denoted by 3D-XRD are related

to the 3D-XRD dataset. Furthermore, the misfit between the results obtained by the

microstructure models and the 3D-XRD dataset is evaluated in terms of distributions

of differences of grain size fitted by normal density functions (c1), (c2) and center-of-

mass positions fitted by log-normal density functions (d1), (d2).
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In terms of the grain shape and number of neighbors both algorithms delivered

exactly the same statistics as seen in Fig. 7. Both models lead to a mean sphericity

of the grains of 0.77 with a standard deviation of 0.09 (Fig. 7a1,a2). On average the

grains have 11 neighbors in both models as shown in Fig. 7b1,b2.

Figure 7. Histograms fitted by log-normal density functions (dashed curves)

representing the unweighted distributions of grain sphericities (a1), (a2) and numbers

of grain neighbors (b1), (b2) for the microstructure models of NiTi wire considered in

this paper: CE (left) and Neper (right).

4.2. Finite element microstructure models

Table 1 summarizes key figures of finite element microstructure models in terms of total

and per grain number of elements and nodes. The CE and Neper models were discretized

by ∼1.5 and ∼1.0 million elements, respectively, corresponding to 202 and 136 elements

per grain on average. In terms of number of nodes, the CE model contained ∼260,000

nodes in the linear element version and ∼2.1 million nodes in the quadratic element

version. The Neper model was prepared in the linear version only containing ∼187,000

nodes.
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Table 1. Number of elements and nodes used in the finite element discretization of

the two microstructure models.

Number of nodes

Number of elements linear/quadratic elements

Number of total mean total mean

grains number per grain number per grain

CE model 7685 1,555,401 202 266,423/2,105,803 78/410

Neper model 7949 1,081,699 136 187,463/1,474,082 57/276

4.3. Initial elastic anisotropy: 3D-XRD vs. microstructure models

The numerical microstructure models were first considered with the initial elastic

constants Cini
11 =169 GPa, Cini

12 =141 GPa, and Cini
44 =33 GPa in agreement with

experimentally identified values in stress-free conditions [21]. Note that these constants

correspond to rather low anisotropy of elastic properties (anisotropy factor of 2.36).

Three simulations were performed in order to test the sensitivity of the simulation

results with respect to the microstructure models (CE model vs. Neper model) and

the two types of discretization (linear vs. quadratic elements). The specifications of

all types of structural static simulations performed with the initial elastic constants are

listed in Table 2,including also computational times. All simulations were run on a

single CPU of a computational cluster with 50 GB and 300 GB of allocated RAM for

models discretized with linear and quadratic elements, respectively.

Table 2. Specifications of the simulations performed to assess the sensitivity of

numerical microstructure models to the degree of finite element discretization and

type of Laguerre tessellation optimization.

Reconstruction Type of

algorithm finite elements
Simulation Computational

name CE model Neper model Linear Quadratic time [h]

FEM CE LIN • • 0.30

FEM CE QUAD • • 15

FEM NE LIN • • 0.17

FEM NE QUAD • • 8

Table 3 compares the 3D-XRD measurements with the results of the three
simulations in terms of mean values (the upper part of Table 3) and standard deviations
(the lower part of the Table 3) of grain-wise averaged distributions of strain and stress
tensor components. Clearly, all three simulations provided nearly identical statistical
results, which agreed well with the mean values of the 3D-XRD dataset (see the upper
part of Table 3). However, the standard deviations from 3D-XRD and simulations
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do not match (see the lower part of Table 3). This fact is further evidenced by Fig.
8 directly comparing the distributions of grain-wise averaged strains and stresses as
provided by 3D-XRD and the CE model. Furthermore, grain-by-grain comparisons
between 3D-XRD and the simulation are shown in Fig. 9 in terms of 2D distributions
for all components of the grain-wise averaged stresses. For an ideal case of a perfect
match between the 3D-XRD dataset and the model, the 2D distributions are expected
to reduce into lines coinciding with the red identity line. However, it is not the case
nor are the major axes of the distributions aligned with the identity line. A perfect
grain-to-grain match of the grain-wise averaged stresses was not reached as like the
grain sizes and the grain positions did not perfectly match the 3D-XRD dataset as
shown in Fig. 6c,d. Note that the widths of the 2D distributions along their minor axes
seem to correlate with the widths and standard deviations of the 1D histograms of the
grain-wise averaged stresses shown in Fig. 8g-k, .i.e, the 2D distributions and the 1D
histograms of the normal stress components are broader compared to those of the shear
stress components.

Table 3. Mean values (upper part of the rows indicated by ’Mean’) and standard

deviations (lower part of the rows indicated by ’STD’) of the distributions of grain-

wise averaged components of strain and stress tensors in individual grains of NiTi wire

under axial tension as provided by the 3D-XRD method and simulated by numerical

microstructure models according to Table 2.

Strain distributions [%] Stress distributions [MPa]

εrr εθθ εzz εθr εzr εzθ σrr σθθ σzz σθr σzr σzθ

3D-XRD Mean -0.21 -0.21 0.52 0.00 0.06 0.00 -1 3 420 0 6 0

FEM CE LIN Mean -0.21 -0.21 0.51 0.00 0.05 0.00 2 1 423 0 1 0

FEM CE QUAD Mean -0.21 -0.21 0.52 0.000 0.05 0.00 -2 1 423 0 1 0

FEM NE LIN Mean -0.21 -0.21 0.51 0.00 0.02 0.00 -1 -1 425 0 0 0

FEM NE QUAD Mean -0.21 -0.21 0.52 0.00 0.02 0.01 -1 -1 424 0 0 0

3D-XRD STD 0.06 0.06 0.05 0.06 0.08 0.08 69 70 62 30 31 30

FEM CE LIN STD 0.03 0.03 0.03 0.03 0.03 0.03 31 32 35 20 22 23

FEM CE QUAD STD 0.04 0.04 0.04 0.03 0.04 0.04 30 31 34 18 20 20

FEM NE LIN STD 0.03 0.03 0.03 0.02 0.04 0.04 31 32 35 20 23 23

FEM NE QUAD STD 0.04 0.04 0.04 0.03 0.05 0.05 31 32 36 18 20 20
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Figure 8. Histograms fitted by normal density functions (dashed curves) representing

distributions of grain-wise averaged strain (a-f) and stress (g-l) tensor components

as provided by 3D-XRD (green) and FEM simulation (red) using linear elements,

microstructures based on the CE model, and initial elastic constants.
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Figure 9. Gaussian kernel density estimates for all components of grain-wise averaged

stresses between stresses measured by 3D-XRD and simulated by FEM using linear

elements, microstructures based on the CE model, and the initial elastic constants.

4.4. Refinement of elastic anisotropy

The elastic anisotropy was refined using the microstructure based on the CE model and

linear elements. The refinement was split into two steps. First, a rough refinement in

a neighborhood of the initial elastic constants Cini
11 , Cini

12 , Cini
44 was performed in order

to identify the range of anisotropy factors where the minimum discrepancy in standard

deviations of grain-wise averaged strains would be localized. Then a second refinement

was performed within this range considering a set of finely incremented elastic constants.

The rough refinement was based on C11, C12 sets spanned± 10 GPa from Cini
11 , Cini

12 using

increments of 2 GPa, i.e., C11 ∈ {159, 161, 163, . . . , 179}, C12 ∈ {131, 133, 135, . . . , 151}
while the C44 set spanned ± 5 GPa from Cini

44 using increments of 1 GPa, i.e., C44 ∈
{28, 29, 30, . . . , 38}. As detailed in Section 3.3, the number of possible combinations

of elastic constants around the initial ones is limited by the requirement on the value

of average axial Young’s modulus, cf. Eq. 5. However, for the rough refinement this

condition was relaxed by allowing ± 10 GPa discrepancy from the value of average

axial Young’s modulus. Furthermore, a requirement on the anisotropy factor equal to

or larger than 3 was considered. This requirement is based on the fact that standard

deviations of grain-wise averaged stresses increase with increasing anisotropy factor and

that preliminary simulations using anisotropy factors up to 3 showed standard deviations

being still small compared to 3D-XRD measurements. Using this conditioning a set of

52 combinations of elastic constants was generated spanning the anisotropy factor from

3 to 8 as visualized in Fig. 10.
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Figure 10. Set of combinations of elastic constants and related anisotropy factors as

considered for the rough refinement of elastic anisotropy.

The absolute difference in standard deviations of grain-wise averaged strains

according to Eq. 3 was evaluated between 3D-XRD and the simulations realized on

the complete set of combinations of elastic constants. The results of these evaluations

are visualized in Fig. 11 showing minima in the upper-left corner where anisotropies

ranging from 6 to 7 are located (compare Fig. 10 and 11). The mismatch between

3D-XRD and the simulations as it evolves with the anisotropy factor is visualized in

Fig. 12 in terms of absolute difference in standard deviations of grain-wise averaged

strains evaluated according to Eq. 3 and L1-based metrics evaluated according to Eq.

4. Both metrics show a minimum located in the range of the anisotropy factors 5 to 7.

However, the metrics did not reach the zero values at these minima, indicating that the

perfect match of the simulations with 3D-XRD was not reached.
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Figure 11. Absolute differences in standard deviations of grain-wise averaged strains

(Eq. 3) evaluated between 3D-XRD and the simulations for all combinations of elastic

constants considered in the rough refinement of elastic anisotropy.

Figure 12. Evolution of the statistical match between 3D-XRD and the simulations

with increasing elastic anisotropy. The match was evaluated in terms of standard

deviation as the sum of absolute differences in standard deviations of grain-wise

averaged strain (Eq. 3) components and using L1 norm according to (Eq. 4).

The anisotropy factor was further refined in the range 6-8 by considering sets of
elastic constants C11 ∈ {149, 150, 151, . . . , 189}, C12 ∈ {121, 122, 123, . . . , 161}, and
C44 ∈ {32, 32.2, 32.4, . . . , 36}. The eligible combinations of elastic constants were found
by imposing the condition of the average Young’s modulus (Eq. 5) and by using the
method described in Section 3.3. As a result a set of 99 elastic constants distributed in
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the space C11,C12,C44 as shown in Fig. 13 was considered. Within the space C11, C12, C44

minima of the absolute difference in standard deviations of grain-wise averaged strains
according to Eq. 3 were again identified as shown in Fig. 14 and a minimum was
identified with respect to the anisotropy factor as shown by black filled dots in Fig. 15.
This minimum coincides reasonably well with the minimum in the evolution of L1-based
metrics evaluated according to Eq. 4 with respect to the anisotropy factor and shown
by red empty dots in Fig. 15.

Figure 13. Set of combinations of elastic constants and corresponding anisotropy

factors as considered for the fine refinement of elastic anisotropy.
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Figure 14. Absolute differences in standard deviations of grain-wise averaged strains

(Eq. 3) evaluated between 3D-XRD and the simulations for all combinations of elastic

constants considered in the fine refinement of elastic anisotropy.

Figure 15. Evolution of the statistical match between 3D-XRD and the simulations

with increasing elastic anisotropy. The match was evaluated for all combinations of

elastic constants considered in the fine refinement of elastic anisotropy in terms of

the sum of absolute differences in standard deviations of grain-wise averaged strain

components (Eq. 3) and using L1 norm according to (Eq. 4)..
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4.5. Refined elastic anisotropy: 3D-XRD vs. microstructure CE model

Based on the elastic anisotropy refinement, the combination of elastic constants C11=159
GPa, C12=147 GPa, C44=35 GPa (anisotropy factor of 6.2) was selected in this section
to illustrate the statistical match of the microstructure model with the 3D-XRD dataset.
Table 4 compares the results based on the 3D-XRD dataset with simulation results for
the microstructure based on the CE model with initial elastic constants (CE model INI)
and those selected from the refinement of elastic anisotropy (CE model REF). Table
4 clearly shows a close match of the 3D-XRD dataset with the refined model in terms
of standard deviations (the lower part of Table 4) of grain-wise averaged distributions
of strain and stress tensor components. This statistical match of the 3D-XRD dataset
with the refined model is further illustrated by Fig. 16 directly comparing distributions
of grain-wise averaged strains and stresses as provided by 3D-XRD and the CE model.
Related 2D distributions of the grain-wise averaged stress components measured by 3D-
XRD and simulated using the refined elastic constants are shown in Fig. 17, where the
scales are identical to the scales used in Fig. 9 related to the initial elastic constants.
Unlike in the case of the initial elastic constants, the major axes of the distributions are
aligned with the red identity line. On the other hand, the distributions broadened along
the vertical simulation axes. The broadening is suggested to be due to the increased
elastic anisotropy analogically to its broadening effect on the the widths of the 1D
histograms of the grain-wise averaged stresses simulated with the initial and refined
elastic constants. The broadening of the 2D distributions reflects an increased stress
scattering among outliers, i.e., among the grains lying above and below the red identity
line that do not match the stresses of their experimental counterparts. Note that the
broadening is more pronounced in the case of the normal stress components compared
to the shear stress components similarly to the 1D histograms of the grain-wise averaged
stresses (Fig. 16) that are broader in the case of the normal stress components.

Table 4. Mean values (upper part of the rows indicated by ’Mean’) and standard

deviations (lower part of the rows indicated by ’STD’) of distributions of grain-wise

averaged components of strain and stress tensors in individual grains of the NiTi wire

under axial tension as provided by 3D-XRD method and simulated by the numerical

microstructure based on the CE model using the initial (CE model INI) and the refined

elastic anisotropy (CE model REF).

Strain distributions [%] Stress distributions [MPa]

εrr εθθ εzz εθr εzr εzθ σrr σθθ σzz σθr σzr σzθ

3D-XRD Mean -0.21 -0.21 0.52 0.00 0.06 0.00 0 7 419 0 -10 0

CE model INI Mean -0.21 -0.21 0.51 0.00 0.05 0.00 2 1 423 0 1 0

CE model REF Mean -0.22 -0.22 0.54 0.00 0.10 0.00 -5 1 427 0 3 0

3D-XRD STD 0.06 0.06 0.05 0.06 0.08 0.08 74 75 67 41 40 40

CE model INI STD 0.03 0.03 0.03 0.03 0.03 0.03 31 32 35 20 22 23

CE model REF STD 0.06 0.06 0.05 0.06 0.06 0.06 59 61 59 38 39 40
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Figure 16. Histograms fitted by normal density functions (dashed curves)

representing distributions of grain-wise averaged strain (a-f) and stress (g-l) tensor

components as provided by 3D-XRD (green) and simulations (red) using the CE model

of microstructure and refined elastic anisotropy.
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Figure 17. Gaussian kernel density estimates for all components of grain-wise

averaged stresses between stresses measured by 3D-XRD and simulated by FEM

using linear elements, microstructures based on the CE model, and the refined elastic

anisotropy.

5. Discussion

Elasticity is the fundamental deformation mechanism that results in elastic interactions
of grains within the polycrystalline aggregate. These interactions determine the
stress fields triggering other stress-induced deformation mechanisms such as plasticity,
martensitic transformation or deformation twinning. These are often initiated at local
specific stress states, which are induced by combined effects of elastic anisotropy
and grain interactions. The presented comparisons between the 3D-XRD dataset
and simulation results suggest that Laguerre tessellations can generate microstructure
models that realistically predict the elastic interactions of grains within polycrystalline
aggregates. Moreover, it follows from our results that Laguerre tessellations provide
realistic microstructure models irrespectively of the applied optimization procedure. The
statistical disagreement between the 3D-XRD dataset and the simulations summarized
in Table 4 and Fig. 16 may be ascribed to the disagreement in morphological features of
microstructures summarized in Fig. 6 and to limitations of both experimental techniques
(unidentified grains, limited accuracy of strain determination) and Laguerre tessellations
(empty cells, planar grain boundaries, convex grains).
In order to realistically simulate the process of, e.g., stress-induced MT, the values
of the elastic constants prior to the phase transformation have to be known as they
determine the stress field and critical local stress states that may trigger the local
phase transformation. The magnitude of stress inhomogeneities is proportional to the
elastic anistropy defined by elastic constants. In this paper, we show that the change
in elastic anisotropy can be determined from a simple optimization scheme. For this,
a combination of elastic constants is sought which globally minimizes the mismatch of
stress and strain between the experimental measurements and the simulations based on
a morphologically realistic model.
Locally, however, the grain-by-grain comparisons 3D-XRD vs. model in terms of the
grain-wise averaged stresses revealed 2D distributions (Fig. 17) showing that a perfect
match in the elastic deformation behavior was not reached. This may be sought as a
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consequence of the mismatch in the morphological parameters between the 3D-XRD
and the model evaluated in Fig. 6. In fact, Fig. 6b shows that the global statistics of
the grain sizes is nearly matched by the model. However, on the grain-by-grain basis the
grain sizes scatter from the experimental values by 20% of the mean grain size on average.
Similarly, the grain positions are on average misplaced by 20% from the experimentally
identified positions. This mismatch may be ascribed to the incompleteness of the
microstructure data provided by the 3D-XRD method. Nevertheless, the model was
reconstructed from a statistically significant dataset, informing about thousands of
grains. Therefore, the model reconstructed from such a 3D-XRD dataset is expected
to match the global statistics about the microstructure and the deformation behavior.
The model should be able to predict the statistics of the grain interactions due to
deformation mechanisms that are experimentally difficult to be studied by grain-resolved
methods, e.g., the stress-induced MT, provided that the deformation mechanism is
properly mathematically described in the model. To this end, the model should also
predict statistics of the elastic behavior that are not accessible by 3D-XRD method,
e.g., the distribution of critical local stress maxima in the grains. This distribution
can significantly differ from the distribution of grain-wise averaged stresses in terms of
both mean values and standard deviations as illustrated in Fig. 18, where we compare
the distributions of the grain-wise averaged axial stresses (Fig. 18a) and the grain-wise
maxima of axial stresses (Fig. 18b) resulting from finite element simulations based on
the CE model with the lower initial elastic anisotropy of 2.4 (dark red distributions in
Fig. 18) and the higher refined elastic anisotropy of 6.2 (light red distributions in Fig.
18). Clearly, the increased anisotropy induced not only a considerably higher scatter in
the local stress maxima but also an increase in the average value (Fig. 18b) although
the mean value of the grain-wise averaged stresses was not affected by the increased
elastic anisotropy (Fig. 18a).

Figure 18. Comparison of results for simulations using the microstructure based on

the CE model with initial elastic anisotropy (dark red) and refined elastic anisotropy

(light red) in terms of histograms fitted by normal density functions (dashed curves)

representing distributions of grain-wise averaged axial stresses (a) and grain-wise

maxima of axial stresses (b).

6. Conclusions

In the present paper the grain microstructure and strain partitioning in a polycrystalline

NiTi wire subjected to tensile loading was reconstructed from an experimental 3D-XRD
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dataset. The microstructure morphology was reconstructed by Laguerre tessellations

optimized on grain center-of-mass positions and sizes of individual grains provided by

the 3D-XRD dataset. Two optimization algorithms were tested, both of them led to

similar microstructure morphologies. The fundamental elastic deformation behavior

of the model was prescribed in terms of grain orientations provided by the 3D-XRD

dataset and the elastic properties of the cubic austenite phase. The initial anisotropy

of elastic properties according to published elastic constants was refined through an

optimization process driven by the mismatch in standard deviations (scatters) of grain-

wise averaged strain component distributions measured by 3D-XRD and obtained from

finite element simulations, respectively. The results of the optimization suggest that

the elastic anisotropy of the austenite under stress is higher compared to the anisotropy

calculated from the values of elastic constants experimentally evaluated by ultrasonic

methods. A close match between the 3D-XRD dataset and the model with refined

elastic anisotropy was found in terms of the distributions of grain-wise averaged strain

and stress components. A realistic microstructure model of a NiTi wire matching

the microstructure features as well as the elastic deformation behavior of the real

microstructure was thus obtained. The model will be further used in micromechanical

simulations of stress-induced MT in superelastic NiTi wires.
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[20] Alarcon E, Heller L, Chirani S A, Šittner P, Kopeček J, Saint-Sulpice L and Calloch S 2017

International Journal of Fatigue 95 76–89
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